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Abstract
Tissue segmentation is a critical task in computational pathol-
ogy due to its desirable ability to indicate the prognosis of
cancer patients. Currently, numerous studies attempt to use
image-level labels to achieve pixel-level segmentation to re-
duce the need for fine annotations. However, most of these
methods are based on class activation map, which suffers
from inaccurate segmentation boundaries. To address this
problem, we propose a novel weakly-supervised tissue seg-
mentation framework named PistoSeg, which is implemented
under a fully-supervised manner by transferring tissue cate-
gory labels to pixel-level masks. Firstly, a dataset synthesis
method is proposed based on Mosaic transformation to gener-
ate synthesized images with pixel-level masks. Next, consid-
ering the difference between synthesized and real images, this
paper devises an attention-based feature consistency, which
directs the training process of a proposed pseudo-mask re-
fining module. Finally, the refined pseudo-masks are used to
train a precise segmentation model for testing. Experiments
based on WSSS4LUAD and BCSS-WSSS validate that Pis-
toSeg outperforms the state-of-the-art methods. The code is
released at https://github.com/Vison307/PistoSeg.

Introduction
Benefiting from the rapid development of deep learning,
computational pathology has recently freed pathologists
from tedious tasks such as cancer diagnosis, subtyping, and
others. In computational pathology, automatic tissue seg-
mentation is one of the most important studies, as tumor gen-
eration and development are closely related to the tumor mi-
croenvironment (TME), which is formed by the interaction
of various types of tissues (Arneth 2019). Accurate differ-
entiation and segmentation of histopathological tissues can
indicate the prognosis of cancer patients, guide oncologists
in the medication decision, and help determine the clinical
therapy, which are essential in cancer treatment (Hinshaw
and Shevde 2019).

Currently, most automated tissue segmentation pipelines
are based on fully-supervised methods, which require fine
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Figure 1: Synthesis of histopathology images is convenient
due to the homogeneity of tissue sections, which is impos-
sible for natural images because of not only the difficulty of
discriminating background from the foreground in natural
images but also the indivisible nature of natural objects.

annotations at the pixel level. However, the massive differ-
ence between the centimeter scale of histopathology sec-
tions and the sub-micron scale of cells makes the acquisition
of pixel-level annotations very time-consuming and labori-
ous. In addition, only professional pathologists or those with
clinical backgrounds are competent for annotation, making
it hard to utilize popular annotation methods for natural im-
ages such as crowdsourcing (Wazny 2017), which further in-
creases the difficulty of obtaining pixel-level annotated data.

According to previous research (Han et al. 2022a), coarse-
grained image labels can reduce over 95% of the annota-
tion time compared to pixel-level annotations. This opens a
new research direction named weakly-supervised semantic
segmentation (WSSS). Currently, many WSSS methods are
based on the class activation map (CAM) (Zhou et al. 2016).
The basic idea of CAM is to use localization clues brought
by classification models to generate pixel-level pseudo-
masks. However, since classification tasks only need to fo-
cus on the most discriminative regions, a well-known draw-
back of CAM is its inability to depict exact object bound-
aries (Ahn and Kwak 2018). Furthermore, histopathology
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images are more homogeneous than natural images, as tis-
sue sections are formed by irregular and arbitrary repetitions
of cells and tissues, making the morphological features of
different tissue types more similar to each other than natural
images, which amplifies the boundary uncertainty.

Actually, the homogeneity of histopathology images
makes the synthesis of them easier than natural images,
as shown in Figure 1, although it may cause problems for
CAM-based methods. Since the same type of tissues tends to
cluster together, numerous histopathology images have only
a single tissue category besides the background (tissue-free
regions). This prior knowledge inspires us with a new ap-
proach to achieve WSSS for histopathology images. Firstly,
synthesized images can be built using histopathology images
with a single tissue category, which can inherit pixel-level
annotations from the image-level labels (Jia et al. 2017),
making all synthesized images have pixel-level annotations
as well. Then, a segmentation model can be trained in a
fully-supervised manner to generate pseudo-masks for the
original training set. Since there is no classification during
the procedure, the problem of CAM can be eliminated.

In general, this paper proposes a framework named Pis-
toSeg for weakly-supervised tissue segmentation based on
dataset synthesis, providing a new direction for the research
community. Besides, this paper devises a novel attention-
based feature consistency, directed by which a pseudo-mask
refining module is proposed to take advantage of CAM-
based methods, making our proposed framework easy to be
integrated with existing WSSS methods. The main contribu-
tions of this paper are in three aspects.

• This paper proposes a novel WSSS framework named
PistoSeg, which fulfills tissue segmentation by dataset
synthesis to transfer tissue category labels to pixel-level
masks. Therefore, weakly-supervised segmentation is
implemented under a fully-supervised manner. To the
best of our knowledge, this is the first method that brings
data synthesis into WSSS for histopathology images,
providing a new direction for the research community.

• An attention-based feature consistency is proposed to
constrain the features of the same image after different
pseudo-mask strategies for more efficient feature extrac-
tion. Directed by this consistency, a pseudo-mask refin-
ing module is designed to further improve the segmenta-
tion performance on the basis of dataset synthesis.

• Various experiments validate the PistoSeg achieves the
best performance beyond the state-of-the-art methods on
the WSSS4LUAD and BCSS-WSSS datasets.

Related Works
WSSS for Natural Images
Semantic segmentation based on fully-supervised learning
encounters the scarce data source problem due to the dif-
ficulty of obtaining pixel-level annotations. To solve this
problem, a common approach is replacing fine-grained an-
notations with weak labels, such as image-level labels
(Wang et al. 2020), scribbles (Lin et al. 2016), points (Bear-
man et al. 2016), and bounding boxes (Oh, Kim, and Ham

2021). Among them, image-level labels are the most effort-
less to obtain and thus have received much attention.

Since CAM (Zhou et al. 2016) was proposed, numerous
WSSS methods at the image level have been designed for
natural images, which primarily focus on addressing the
boundary ambiguity problem in CAM. For example, SC-
CAM (Chang et al. 2020) divided objects into subcategories
by clustering at the feature level and trained a classifica-
tion network with the subcategory information, forcing the
classification network to learn better boundaries. AffinityNet
(Ahn and Kwak 2018) was proposed based on random walk-
ing, which propagated local class responses to adjacent re-
gions with similar semantic features to realize the bound-
ary refinement. Wang et al. proposed SEAM (Wang et al.
2020), whose core idea was that if an image passes through
an affine transformation, its segmentation mask should go
through the same transformation, which brings a regular-
ization for model training. However, all the methods men-
tioned above were designed for natural images. Due to the
higher homogeneity of histopathology images, the perfor-
mance is usually unsatisfactory when directly applying them
to histopathology images.

WSSS for Medical Images
Fine annotations of medical images require expert knowl-
edge and are more difficult to obtain. Some scholars tried to
adopt multiple instance learning (MIL) into WSSS for med-
ical images. For example, Xu et al. proposed multiple clus-
tered instance learning to segment cancer and non-cancer
regions (Xu et al. 2014). CAMEL was proposed by con-
sidering histopathology images as bags and latticed patches
as instances (Xu et al. 2019). Jia et al. proposed DWS-
MIL to segment cancerous regions in histopathology im-
ages (Jia et al. 2017). Besides MIL, CaCL (Wang et al.
2019) utilized variational autoencoder for binary WSSS
of immunohistochemistry-stained images. However, since
these methods only consider negative and positive labels,
only binary segmentation (e.g., cancer and non-cancer) can
be achieved, whose clinical importance is largely restricted
as the TMA contains interactions of multiple tissue types.

Others applied CAM-based methods on WSSS of medi-
cal images as well. For instance, HistoSegNet (Chan et al.
2019) utilized GradCAM (Selvaraju et al. 2017) with a se-
ries of designed post-processings for histopathology image
segmentation. Han et al. proposed WSSS-Tissue with a pro-
gressive dropout mechanism to propel CAMs to focus on
the indiscriminative regions (Han et al. 2022a). Chen et al.
introduced category and anatomy causality and proposed C-
CAM (Chen et al. 2022). However, C-CAM is designed for
MRI images whose anatomical relationships (e.g., tissue lo-
cations) are relatively fixed and not present in histopathol-
ogy images. Li et al. proposed OEEM, which forced the
segmentation model to learn from the credible supervision
signals by assigning higher weights to samples with lower
losses (Li et al. 2022). Although the above research can alle-
viate the fuzzy boundary problem to some extent, the gap be-
tween classification and segmentation makes this issue can-
not be solved entirely. In contrast, PistoSeg takes a different
approach by training a segmentation model on a synthesized
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Figure 2: An overview of the PistoSeg framework. Firstly, based on the Mosaic transformation, a synthesized dataset generation
module generates synthesized histopathology images with pixel-level masks, which are utilized to train a preliminary segmen-
tation model. Next, assisting with an attention-based feature consistency, a pseudo-mask refining module generates refined
masks, which are utilized to train a precise segmentation model for semantic segmentation with higher accuracy.

dataset in a fully-supervised manner, which avoids this prob-
lem fundamentally. Besides, the pseudo-masks of PistoSeg
can also be refined with CAM-based methods with a pro-
posed feature consistency.

Methodology
Framework Overview
The goal of WSSS is to train a segmentation model which
can predict the pixel-level masks for images in the test
dataset with only image-level labels. Considering that if the
image-level label of a histopathology image has only one
category, all pixels in the image fall in the same category as
well. Inspired by this, we propose a PistoSeg, which can be
divided into two modules as shown in Figure 2.

In the first module, the PistoSeg selects images with one
tissue category from the training set. The selected images
are then spliced and composed based on the Mosaic trans-
formation (Bochkovskiy, Wang, and Liao 2020) to form a
synthesized dataset with pixel-level annotations. Finally, a
preliminary segmentation model is trained with the synthe-
sized dataset, which is employed to infer pseudo-masks for
the whole training set.

Next, this paper proposes an attention-based feature con-
sistency, under which the pseudo-mask refining module is
trained for generating the better pseudo-masks, serving as

pixel-level annotations for the following precise segmenta-
tion. The pseudo-mask refining module takes training im-
ages as input and employs the preliminary segmentation
model and a CAM-based model to transfer the images to
logits and CAM. Considering the features of an image after
different transfers should be consistent, an attention-based
feature consistency is proposed to generate refined pseudo-
masks. Eventually, a precise segmentation model can be
trained based on the refined pseudo-masks, which is utilized
to realize WSSS for the test dataset.

Synthesized Dataset Generation Module
The most straightforward approach to obtain a dataset with
pixel-level annotations is directly utilizing images contain-
ing a single tissue type. However, as there are usually mul-
tiple types of tissues in real TMEs, this strategy is far from
satisfactory. To efficiently utilize such single tissue type in-
formation for segmentation tasks, the PistoSeg splices im-
ages containing only one tissue type to generate synthesized
images with multiple tissue types based on Mosaic transfor-
mation, which will be described in detail in the following.

Single Tissue Type Image Splicing In the beginning,
nh × nw images with a single tissue type are selected
from the training set. Each image is cropped to the size of
Hp ×Wp. Next, these images are gridded following a raster
order to form a spliced image I ′i ∈ R(nhHp)×(nwWp)×3. Af-
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ter repeating the above steps four times, four spliced images,
denoted as I ′1 to I ′4, are obtained.

Mosaic Transformation The four spliced images are then
utilized to form one synthesized image shaped (nhHp) ×
(nwWp) based on Mosaic transformation. Firstly, random
rotation and scaling are applied to each spliced image. Then,
an anchor point A = (HA,WA) is generated (shown in Fig-
ure 2), where αnhHp ≤ HA ≤ βnhHp and αnwWp ≤
WA ≤ βnwWp (0 < α < β < 1 are two hyperparameters.
We set α = 0.2 and β = 0.8 in implementation). Next, I ′1
to I ′4 are randomly cropped according to the anchor point,
generating four intermediate images I ′′1 to I ′′4 , whose shapes
are HA×WA, (nhHp−HA)×WA, HA× (nwWp−WA),
and (nhHp −HA) × (nwWp −WA), respectively. Finally,
the four cropped intermediate images are placed in the four
corners to form a synthesized histopathology image Ik, i.e.,

Ik =

[
I ′′1 I ′′3
I ′′2 I ′′4

]
. (1)

Since each synthesized image Ik is made up of images
with single tissue type, pixel-level masks are available for
the synthesized image, which can be utilized as the ground
truth for training a preliminary segmentation network.

Pseudo-Mask Refining Module
Although the preliminary segmentation model can directly
generate pseudo-masks of the training set, artifacts that dif-
fer from the actual tissue morphology exist in the synthe-
sized dataset, which makes the pseudo-masks not optimal.
Considering the inputs of CAM are without artifacts, we
propose an attention-based feature consistency to train a
pseudo-mask refining module to take advantage of CAM-
based methods. It should be noted that any CAM generation
mechanism can be applied here, including but not limited to
pure CAM (Zhou et al. 2016), GradCAM (Selvaraju et al.
2017), and GradCAM++ (Chattopadhay et al. 2018). The
structure of the pseudo-mask refining module is shown in
the Supplemental Materials Figure 1, whose fundamental
presumption is that the feature representations of the logits
and the CAMs of a same image should follow consistency.

Attention-based Feature Consistency In this paper, an
attention-based feature consistency is proposed to regular-
ize the feature similarity of the same image under different
transfers, i.e., the logits of the pseudo-mask Mpseudo trans-
ferred by preliminary segmentation and the CAMs MCAM
transferred by CAM-based models. Specifically, to constrain
the consistency of features under these two different trans-
fers, we project them to the attention feature space.

Technically, suppose the concatenated pyramid features
of a training image extracted by a convolution neural net-
work (CNN) are F ∈ RC×H×W , where C denotes the
channels and H , W are the height and width of the feature
map. Firstly, the features are flattened along the spatial di-
mensions, and then two fully connected layers are applied to
map the features to the query and key spaces as

Q = WQF, K = WKF, (2)

where WQ ∈ RC′×C and WK ∈ RC′×C are trainable pa-
rameters. In implementation, C ′ is set to 192.

Then, a spatial-aware attention matrix A ∈ RHW×HW is
calculated by the softmax of the inner product of the query
and key as

A = Softmax(Q⊺K), (3)

where Aij measures the similarity between the i-th and j-th
feature. Therefore, we treat A as the attention feature space.

Next, the logits and CAMs are down-sampled to the same
shape as the feature map. Finally, we use matrix multipli-
cation to project MCAM and Mpseudo to the attention feature
space as

M̂pseudo = Mpseudo ↓ A, (4)

and
M̂CAM = MCAM ↓ A, (5)

where ↓ stands for down-sampling and flattening.

Loss Design Since training images have image-level la-
bels, they can be utilized as supervisions for CNN. Here, the
multi-label soft margin loss is adopted as

Lcls = − 1

L

L−1∑
i=0

yi log
1

1 + e−zi
+ (1− yi) log

e−zi

1 + e−zi
,

(6)
where L is the tissue category number. Besides, yi and zi are
the image-level label and predicted logits of category i.

Besides, since the logits and CAMs transferred to the at-
tention space are correspond to the same training image,
they should obey consistency with each other. The feature
consistency loss is defined as

Lcons = ∥M̂pseudo − M̂CAM∥1. (7)

However, the consistency loss in Eq. 7 will impose great
influence on the feature learning process of the attention
space, which may deviate the feature representations from
the input space of images. To address this problem, a cross
regularization is adopted as

Lcross = ∥Mpseudo − M̂CAM∥1 + ∥MCAM − M̂pseudo∥1. (8)

The total loss is calculated as the summation of the above
three losses, i.e.,

L = Lcls + Lcons + Lcross. (9)

Precise Segmentation with Refined Masks
Finally, a precise segmentation model is trained using re-
fined pseudo-masks. Three different outputs can be utilized
as refined masks. The first two can be calculated by Eq. 4
and Eq. 5. The last one can be obtained by generating CAMs
from F and transferring the CAMs to the attention space.
It is empirically found that using the last refined CAM can
achieve the best performance, which will be validated in the
Experimental Result section.
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Method Publication Tumor IoU Stroma IoU Normal IoU mIoU fwIoU
HistoSegNet (Chan et al. 2019) ICCV’19 0.6521 0.3975 0.4610 0.5035 0.5424

SEAM (Wang et al. 2020) CVPR’20 0.6425 0.4019 0.6981 0.5808 0.5459
SC-CAM (Chang et al. 2020) CVPR’20 0.7982 0.7268 0.6529 0.7260 0.7647

C-CAM (Chen et al. 2022) CVPR’22 0.6140 0.2535 0.6337 0.5004 0.4673
WSSS-Tissue (Han et al. 2022a) MIA’22 0.7471 0.5804 0.3327 0.5534 0.6667

OEEM (Li et al. 2022) MICCAI’22 0.7597 0.6104 0.7462 0.7054 0.6983
Training with Synthesized Images - 0.6707 0.3631 0.5291 0.5210 0.5409

Training with Pseudo-Masks of Real Images - 0.6794 0.3866 0.6545 0.5735 0.5590
PistoSeg - 0.8119 0.7173 0.7246 0.7513 0.7707

Table 1: Performance comparison on the WSSS4LUAD dataset. We bold the highest and underline the second highest methods.

Method Publication TUM STR LYM NEC mIoU fwIoU
HistoSegNet (Chan et al. 2019) ICCV’19 0.3314 0.4646 0.2905 0.0191 0.2764 0.3719

SEAM (Wang et al. 2020) CVPR’20 0.7437 0.6216 0.5079 0.4843 0.5894 0.6571
SC-CAM (Chang et al. 2020) CVPR’20 0.7679 0.7061 0.5802 0.6007 0.6637 0.7158

C-CAM (Chen et al. 2022) CVPR’22 0.7557 0.6796 0.3100 0.4943 0.5599 0.6680
WSSS-Tissue (Han et al. 2022a) MIA’22 0.7798 0.7295 0.6098 0.6687 0.6970 0.7367

OEEM (Li et al. 2022) MICCAI’22 0.8021 0.7474 0.6260 0.6378 0.7033 0.7544
Fully-Supervised - 0.8107 0.7486 0.5868 0.5987 0.6862 0.7531

PistoSeg - 0.8110 0.7504 0.6184 0.6422 0.7055 0.7589

Table 2: Performance comparison on the BCSS-WSSS dataset. We bold the highest and underline the second highest methods.

Experimental Result
Dataset
Two weakly-supervised tissue segmentation datasets are
adopted in this paper. The first is the WSSS4LUAD dataset
(Han et al. 2022b) with 10,091 training images, where 1,181,
1,680, and 1,832 images are only with tumor (TUM), stroma
(STR), and normal (NOM) tissues, respectively. The valida-
tion dataset comprises 31 small images (the height and width
are 200 ∼ 500 pixels) and 9 large images (the height and
width are 1500 ∼ 5000 pixels). The test dataset contains 66
small images and 14 large images.

Another is the BCSS-WSSS dataset (Amgad et al.
2019)(Han et al. 2022a) containing 23,422 training images,
3,418 validation images, and 4,986 testing images shaped
224 × 224. Four tissue categories exist in the BCSS-WSSS
dataset, i.e., tumor (TUM), stroma (STR), lymphocytic infil-
trate (LYM), and necrosis (NEC). Specifically, 4,738, 2,903,
679, and 1,058 images have only tumor, stroma, lympho-
cytic infiltrate, and necrosis. It is worth noting that back-
ground masks are provided for validation and testing but are
unavailable for training for both two datasets.

Experiment Settings and Implementation Details
All experiments are done with an Nvidia RTX 3090 GPU.
Codes are written with Pytorch 1.12.0 and Pytorch Light-
ning 1.6.4. Unet++ (Zhou et al. 2018) is selected for prelim-
inary and precise segmentation, with the learning rate being
1e-3 and 5e-4, respectively, and decayed by 0.9 every epoch.
Binary cross entropy is employed as the segmentation loss,
and AdamW (Loshchilov and Hutter 2019) is adopted to
optimize the segmentation models. Training epochs are set
to 15. We follow the training settings in Ref. (Wang et al.

2020) for the pseudo-mask refining module with 20 training
epochs and 1e-3 of learning rate. We generate 224 × 224-
shaped synthesized image with nh = nw = 7 and nh =
nw = 2 for WSSS4LUAD and BCSS-WSSS, respectively.
As the images are irregularly shaped in WSSS4LUAD, a
224 × 224 sliding window with 50% overlapping is uti-
lized, and the segmentation outputs of overlapped areas are
averaged. For evaluation, category-wise intersection over
union (IoU), mean IoU (mIoU), and frequency weighted IoU
(fwIoU) are adopted as the metrics. All baselines and com-
parison methods are implemented strictly following their pa-
pers or using their open-sourced codes.

Comparative Results
Comparative Results on WSSS4LUAD Performance
comparison of PistoSeg and other state-of-the-art methods
on the WSSS4LUAD dataset is listed in Table 1. The Pis-
toSeg achieves the best mIoU and fwIoU, demonstrating
its outstanding performance in general. Although the Pis-
toSeg achieves the second best performance in stroma IoU
and normal IoU compared with SC-CAM and OEEM, the
performance of SC-CAM on normal IoU is less than 0.7,
and the stroma IoU of the OEEM is just slightly higher than
0.6. The weak performance of SC-CAM and OEEM for nor-
mal and stroma tissue indicates that they achieve high per-
formance in one category while sacrificing the accuracy of
other categories, so their overall performances are poor. In
order to better illustrate the effectiveness of training with
synthesized images in the PistoSeg, two training strategies
are implemented and compared. First, the preliminary seg-
mentation model is trained over the synthesized dataset only.
Second, the model is re-trained over the real histopathol-
ogy images with pseudo-masks generated by the first strat-
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Loss TUM STR NOM mIoU fwIoU
1 ✓ 0.6373 0.2870 0.5369 0.4871 0.4912
2 ✓✓ 0.6249 0.3462 0.6148 0.5286 0.5107
3 ✓✓ 0.2884 0.4493 0.5394 0.4257 0.3616
4 ✓ ✓ 0.7933 0.6909 0.6658 0.7166 0.7477
5 ✓✓✓ 0.8119 0.7173 0.7246 0.7513 0.7707

Table 3: The effect of different loss combinations. The first
column is the experiment number. The loss combination
from left to right represents Lcls, Lcons, and Lcross.

egy. The performance of these two strategies are denoted
by “Training with Synthesized Images” and “Training with
Pseudo-Masks of Real Images” in Table 1, respectively. The
results show that these two strategies, which does not rely
on CAM, can beat some of the current mainstream CAM
methods, and the refined PistoSeg can achieve the state-
of-the-art performance on WSSS. For the first strategy, the
mIoU reaches 0.5210, which exceeds HistoSegNet and C-
CAM. The reason for the weak performance of HistoSegNet
is that it only uses a series of adjustment and post-processing
operations on GradCAM, which leads to poor generaliza-
tion. Besides, C-CAM is designed for MRI images with
solid causal relationships between tissue locations and cat-
egories. However, the arbitrary repetition of cells and tis-
sues results in non-causality in histopathology images. For
the second strategy, the mIoU reaches 0.5735, which fur-
ther exceeds WSSS-Tissue. The reason for the weak per-
formance of WSSS-Tissue is that the progressive dropout
module drops the most discriminative features extracted by
the CNN during the training process, so the model’s ability
to discriminate different tissues with similar morphological
features (e.g., stroma and tumor) is limited, leading to unsat-
isfactory segmentation performance.

Comparative Results on BCSS-WSSS Table 2 shows the
performance of the methods on BCSS-WSSS. Since Han
et al. has trained a fully-supervised segmentation network
with pixel-level annotations (Han et al. 2022a), we adopt its
results denoted as “Fully-Supervised” (we do not train the
model ourselves because the annotations of BCSS-WSSS
are slightly different from the original BCSS dataset and
are not publicly available). The PistoSeg achieves the best
or second best performance in all types of IoU. Specifically,
the PistoSeg can outperform the fully-supervised model, pri-
marily for LYM and NEC IoU. We argue that the superior
performance of PistoSeg for LYM and NEC is because these
two tissue types are relatively rare in breast cancer, which
causes a long-tail distribution problem. However, since our
model utilizes a synthesized dataset, where the proportion
of each tissue category can be manually adjusted with re-
sampling, the long-tail distribution problem is alleviated.
This gives us an insight that the synthesized dataset genera-
tion module can be viewed as a form of data augmentation
for the segmentation task.

Ablation Studies
We conduct various ablation studies on WSSS4LUAD, as
described in the following sections. More ablation studies

TUM STR NOM mIoU fwIoU
CAM 0.7878 0.6875 0.6597 0.7117 0.7430
Refine 0.8119 0.7173 0.7246 0.7513 0.7707
GCAM 0.7998 0.7204 0.6329 0.7177 0.7624
Refine 0.8063 0.7053 0.7510 0.7542 0.7634

GCAM++ 0.7576 0.6841 0.7392 0.7270 0.7270
Refine 0.8029 0.7130 0.6477 0.7212 0.7615

SC-CAM 0.7982 0.7268 0.6529 0.7260 0.7647
Refine 0.8045 0.6988 0.6762 0.7265 0.7575

Table 4: Performance of applying the refining module on dif-
ferent CAM-based methods. GCAM is short for GradCAM.

are in the Supplemental Materials.

Ablations on Losses of the Refining Module In the
pseudo-mask refining module, three different losses, i.e.,
Lcls, Lcons, and Lcross are utilized. Ablation experiments are
performed on the three losses to validate their necessity as
listed in Table 3. The first two results show that simply
applying Lcons will lead to performance degradation, prov-
ing that utilizing Lcons alone will deviate the feature repre-
sentations from the input space of images. Similar conclu-
sions can be drawn from experiments 3 and 5. Results of
experiments 2 and 5 illustrate that bringing supervision to
the image-level labels can enhance the segmentation perfor-
mance. In addition, not utilizing Lcons results in a decrease of
mIoU, validating that effective supervision is brought by the
consistency of refined logits and CAMs. Generally, the test
result achieves the best when all three losses are adopted,
demonstrating the reasonability of the loss design.

Applying Pseudo-Mask Refining Module to Different
CAMs To verify the effectiveness of our proposed pseudo-
mask refining module, we applied it to CAM, GradCAM,
GradCAM++, and SC-CAM. Table 4 shows the results. It
can be seen that the pseudo-mask refining module can im-
prove the segmentation performance to some extent for dif-
ferent CAM generation methods. For example, all types of
IoU can be improved significantly for CAM with pseudo-
mask refining. For GradCAM, the mIoU increases by around
0.04 as well. Concerning GradCAM++, although utilizing
the module slightly reduces mIoU (less than 0.01), it signif-
icantly improves the tumor IoU and stroma IoU, which is
also reflected by the improvement of fwIoU. As tumor and
stroma appear more frequently in TME, accurate segmenta-
tion of them is important. For SC-CAM, adding the mask
refining module results in a slight improvement in mIoU, tu-
mor IoU and normal IoU as well. In summary, our proposed
pseudo-mask refining module can improve the segmentation
performance of existing CAM-based methods.

Ablations on Precise Segmentation Inputs As is stated
in the Methodology section, M̂pseudo, M̂CAM, and CNN (ab-
breviation for the refined CAMs generated from the CNN-
extracted features) can be utilized as the input to train the
precise segmentation model. The performance of each input
is listed in Table 5. The results illustrate that using the last
as the input (i.e., the refined CAM generated by CNN) out-
performs the others. We argue that it is because the CAM
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Figure 3: Visualization of segmentation masks on the WSSS4LUAD test dataset of PistoSeg and comparison methods. Blue,
green, and yellow represent tumor, stroma, and normal tissue. The black and white masks represent the differences between the
ground truth and the predicted mask. Black stands for the same label and white represents difference. Ground truth masks are
denoted with red borders.

TUM STR NOM mIoU fwIoU
M̂pseudo 0.6913 0.4085 0.5627 0.5542 0.5719
M̂CAM 0.7980 0.6998 0.6915 0.7298 0.7547
CNN 0.8119 0.7173 0.7246 0.7513 0.7707

Table 5: Performance of the precise segmentation model
with different refined pseudo-mask inputs.

generated by the CNN backbone is supervised not only by
the image-level labels but also by the attention-based fea-
ture consistency between the logits and the CAMs, which
pushes the CNN to focus on not only discriminative regions
but also boundaries. In addition, as the values of the logits
and CAMs are determined mainly by the preliminary seg-
mentation model and the CAM generation model, refining
them is more challenging than generating the refined CAM
from scratch with the trained CNN.

Qualitative Results
To better understand the merits and drawbacks of PistoSeg
and other methods, predicted masks for the test dataset of
WSSS4LUAD are shown in Figure 3. As shown in the fig-
ure, HistoSegNet tends to misclassify stroma as tumor pix-
els. In SEAM, the ambiguous boundary phenomenon is se-
vere. As shown in the last image, SC-CAM also faces fuzzy
boundaries as the tumor erodes the stroma regions. C-CAM

often wrongly predicts stroma tissues as tumors, as shown
in the first and the last images. This phenomenon shows
the irrationality of C-CAM adopting anatomy casualty for
histopathology images. Besides, WSSS-Tissue tends to pre-
dict noise normal pixels in tumor and stroma tissues, as
shown in the last two images. OEEM usually misclassifies
stroma regions and tumor regions as well. Overall, the seg-
mentation masks predicted by PistoSeg are closest to the
ground truth annotations.

Conclusion
In this paper, we propose a novel WSSS framework for
histopathology images named PistoSeg, which generates
pseudo-masks by training a preliminary segmentation model
using a synthesized dataset obtained by Mosaic transforma-
tion on images with a single tissue type. This approach can
avoid the problem of ambiguous boundaries in mainstream
CAM-based models of WSSS, giving new insights to the re-
search community of WSSS for histopathology images. Be-
sides, to fully exploit the advantages of existing CAM-based
WSSS methods, this paper proposes a pseudo-mask refining
module with an attention-based feature consistency. In the
future, a potential research direction is to utilize image com-
position methods or generative models to generate a more
true-to-life synthesized dataset, which may push the perfor-
mance of synthesized dataset training to the same or beyond
the CAM-based methods without refining.
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