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A B S T R A C T   

Non-point source (NPS) pollution is an important factor affecting the quality of water environment. In recent 
years, a large number of online water quality monitoring stations have been used to obtain continuous time series 
water quality monitoring data. These data provide the necessary basis for the application of deep learning 
methods in water quality prediction. However, the prediction accuracy of traditional deep learning methods is 
low, especially in predicting the water quality with NPS pollution. Aiming to address this limitation, a novel deep 
learning model named SOD-VGG-LSTM with the simulation-observation difference (SOD) modular based on 
physical process, the visual geometry (VGG) modular reflecting spatial characteristics, and the long short-term 
memory (LSTM) modular based on deep learning method was developed to improve the accuracy of the 
water quality prediction with NPS pollution. The established model can overcome the problem that mechanism 
models can not predict the changes of water quality on the hourly or minute time scale. The model was applied in 
Lijiang River watershed. Experimental results indicated that the proposed model had the highest accuracy in the 
extreme value prediction compared with the mechanism model and LSTM model. The maximum relative errors 
between the predicted and observed results for DO, CODMn, NH3-N, and TP were 8.47%, 19.76%, 24.1%, and 
35.4%, respectively. The model evaluation demonstrated that the established SOD-VGG-LSTM model achieved 
superior computational performance compared to Auto Regression Integreate Moving Average model (ARIMA), 
Support Vector Regression model (SVR), and Recurrent Neural Network model (RNN). The evaluation results 
showed that SOD-VGG-LSTM achieved 3.2–39.3% higher R2 than ARIMA, SVR and RNN. The proposed model 
can provide a new method for water quality prediction with NPS pollution.   

1. Introduction 

Non-point source (NPS) pollution is one of the important factors 
causing water quality deterioration (Dong et al., 2018; Xie et al., 2018). 
Accurate prediction of water quality changes caused by NPS pollution is 
of great significance to regional water environment protection. How-
ever, NPS pollution is characterized by randomness and uncertainty 
with complex transport process and mechanism (Huang et al., 2016; Zuo 
et al., 2021), which lead to inconvenience in simulating and predicting 
water quality changes caused by NPS pollution. Therefore, it is imper-
ative to develop an effective and accurate water quality prediction 
model to simulate and predict the change of water quality caused by NPS 

pollution. 
Mechanism models based on physical process have been developed 

and used to predict water quality changes caused by NPS pollution for 
many years (Paparrizos and Maris, 2017), such as SWAT (Soil & Water 
Assessment Tool), HSPF (Hydrological Simulation Program - FORTRAN) 
and MIKE SHE (MIKE System Hydrological European) models. Among 
them, SWAT model might be the most popular and concerned model for 
water quality prediction with NPS pollution at present, but problems of 
complex structures, redundant parameters and uncertain assumptions 
are difficult to ignore (Bahman et al., 2018). HSPF model required high- 
precision data. For areas with low-precision data, the error of prediction 
results was large (Liu and Tong, 2015). As a commercial software, 
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MIKESHE did not support secondary development. The assumptions in 
the model might have inestimable differences for different regions and 
were difficult to correct (Wan et al., 2021a). Mechanism models for 
water quality prediction are usually constructed based on understanding 
the physical processes and factors. The advantage of mechanism models 
is that parameters of those models have strict physical interpretation 
(Zhou et al., 2021), but problems of difficulties in parameter calibration, 
complex modeling structures, uncertain model parameters and high 
calculation cost also limit their application in watershed water quality 
prediction. Additionally, mechanism models are difficult to calibrate, 
and often require high levels of expertise to implement. Moreover, 
typical applications of mechanism models for close to real time or short 
time in water quality caused by NPS pollution are limited (Sen-
ent-Aparicio et al., 2019). 

Compared with mechanism models, deep learning models may be 
effective tools to overcome those limitations (Cui et al., 2016; Tiyasha 
et al., 2020; Zhang et al., 2021a). Deep learning models can handle 
nonlinear and highly stochastic predictions through dynamically and 
adaptively correcting model elements, which can effectively reduce the 
workload of modelers. And, different from mechanism models, deep 
learning models just focus on the input–output relationship without 
considering the causal relationship between parameters, which can 
bring convenience to the modeling process for environmental managers. 
Therefore, deep learning models may replace mechanism models to 
some extent and become effective tools for water quality prediction in 
the future. Methods based on the back propagation (BP) network and 
radial basis function (RBF) neural network could provide certain 
applicability in water quality prediction (Wang et al., 2013), but the 
problem of insufficient training could not be ignored (Deng et al., 2021). 
The hybrid model combined with mechanism model and artificial neural 
network (ANN) was developed to improve the accuracy of water quality 
prediction, but the model could not learn the state characteristics be-
tween time series data, which could result in large errors in extreme 
value prediction (Navideh et al., 2020). Recently, a new type neural 
network namely long short-term memory (LSTM) neural network that 
considered the long-term dependence in time series data has been 
introduced into the field of water quality prediction to improve the ac-
curacy of extreme value prediction (Nitzan et al., 2021; Jiang et al., 
2021). Previous studies have shown that compared with traditional 
neural network models, LSTM model is more accurate and suitable for 
time series data prediction (Nitzan et al., 2021; Wan et al., 2021b; Xu 
et al., 2021). However, LSTM model cannot reflect the impact of spatial 
characteristics on NPS pollution in study area. Fortunately, the con-
volutional neural network (CNN) was developed and applied to extract 
spatial characteristics due to its strong image recognition performance 
(Krizhevsky et al., 2017; Shelhamer et al., 2017), which can reflect the 
impact of spatial characteristics on NPS prediction (Chen et al., 2016; 
Baek et al., 2020). As a representative of CNN model, the visual geom-
etry group (VGG) model has stable performance and concise structure 
(Mcilwaine and Rivas, 2020), which can be an effective method to 
reflect the impact of spatial characteristics on NPS pollution with deep 
learning methods. These studies show the potential application of the 
hybrid model that couples mechanism model, VGG model and LSTM 
model in water quality prediction caused by NPS pollution. 

In the paper, a hybrid deep learning model with the simulation- 
observation difference (SOD) modular, the VGG modular and the 
LSTM modular was developed to predict the water quality changes 
caused by NPS pollution in watershed. The developed model has the 
following innovations (a) a intelligent model coupling with deep 
learning and feature extraction methods was developed to reflect the 
impact of spatial features on water quality in the study area, (b) a 
method to estimate the hourly water quality, obtained by combining 
mechanism model and intelligent model, was proposed and then verified 
by comparison with observation results in Lijiang River watershed, (c) 
the established method can improve the prediction accuracy of extreme 
value for water quality with coupling mechanism method and deep 

learning methods, (d) the developed model was applied to Lijiang River 
watershed and performed very well in water quality prediction. 

2. Problem definition 

The change of water quality in watershed is the result of compre-
hensive actions of multiple factors, such as spatial factors and meteo-
rological factors (Wijesiri et al., 2015; Hu et al., 2020). However, 
traditional LSTM models cannot reflect the impacts of spatial factors on 
water quality in watershed. Because LSTM models do not have the 
ability to identify and extract spatial features of the watershed. The 
research on coupling spatial features into deep learning models to pre-
dict water quality changes caused by NPS pollution has not been carried 
out, and faces some challenges (Huang and Simon, 2002; Bahaa et al., 
2012; Wan et al., 2021b). Fortunately, VGG methods can extract spatial 
features and reduce data dimension through convolution processes, 
which brings opportunities to predict water quality changes caused by 
NPS pollution by coupling spatial features into deep learning method. 
Hence, a novel intelligent model based on LSTM and VGG methods was 
developed to overcome those limitations for water quality prediction 
caused by NPS pollution. 

3. Research area and data collection 

The rapid development of planting industry and urbanization in the 
study area has affected the water quality of Lijiang River. Research have 
shown that the total amount of COD and NH3-N entering Lijiang River 
through runoff in Yangshuo County alone has reached 12766 t/a and 
2553 t/a (Xu et al., 2010). The concentrations of NO3

− at the source of 
Lijiang River was between 2.16 and 3.32 mg/L, while that of Guilin 
raised to 14.35 mg/L (Li et al., 2019). The locations of study area and 
Stations’ distribution along the Lijiang River are shown in Fig. 1. The 
hybrid deep learning model coupling SOD modular, VGG modular and 
LSTM modular was established to improve the accuracy of water quality 
prediction with NPS pollutants in the paper. 

There are 16 hydrometeorology and water quality monitoring sta-
tions in the study area. Data collected from monitoring stations include 
the hydrometeorology data and pollutant data. Hydrometeorology data 
include conductivity (EC), Potential of hydrogen (PH), turbidity (TB), 
flow rate (Q), water temperature (WT), and rainfall (PCP); pollutant 
data include total phosphorus (TP), chemical oxygen demand (CODMn), 
ammonia nitrogen (NH3-N), and dissolved oxygen (DO). Spatial data 
includes land-use, vegetation, and slope. Details are shown in Table 1. 
The water quality of Yangshuo Station for next time steps was predicted 
based on the antecedent meteorological, hydrological, water quality 
data at neighboring 15 stations and spatial data in the study area. The 
locations of these stations were shown in Fig. 1. These hourly data 
comprising 4 years from 2016.04 to 2019.12 were divided into training 
and testing sets chronological order, each accounting for 80% and 20% 
of the total data respectively. The training set was used to train the 
model parameters and testing set was employed to evaluate the model 
performance. 

4. Methods 

4.1. Framework 

A hybrid deep learning model coupling with SOD modular, VGG 
modular and LSTM modular was developed in the paper. The model 
frame is shown in Fig. 2, including data collection part, VGG feature 
extraction part, pollutant transport and diffusion simulation part, error 
correction part, and result analysis part. Firstly, the research data, 
including spatial information, hydrometeorology parameters, and 
pollutant parameters, were collected and pre-processed. Secondly, the 
VGG model was adopted to extract the spatial features of the watershed 
to generate the multi-dimensional time-series data with spatial features. 
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Thirdly, the spatial correlation of water quality monitoring stations was 
studied, and multi-source water diffusion model was built. The differ-
ence between the simulated and observed results was used to construct 
the error sequence. Fourthly, a hybrid deep learning model was devel-
oped to predict water quality changes caused by NPS pollution. Finally, 
using the root-mean-square error (RMSE), mean absolute error (MAE), 
and symmetric mean absolute percentage error (SMAPE) as the evalu-
ation parameters, the model parameters are optimized through experi-
ments. The accuracy of the proposed model is verified through 
comparison with state-of-the-art prediction models. 

4.2. Feature extraction through VGG 

Water quality changes are affected by spatial factors, such as 
topography, vegetation, and slope, and have a nonlinear trend. The 
watershed considered in this study is dominated by planting and has 
high vegetation coverage, river channels, and distinct geographical 
features of the sub-watershed. The middle and northeastern regions of 
the watershed are flat; the north and northwest regions are the origins of 
the main river channels, which have alpine forest topography; the other 

regions have typical karst topography. In this study. VGG model was 
used to determine the influence of spatial features on water quality 
through convolution processes. The model includes 13 convolutional 
layers, 3 fully connected layers and 5 pooling layers. A 3*3 Convolution 
Kernel was adopted to extract image features by scanning the image 
matrix. As shown in Fig. 3, the original matrix data (image) can be 
scanned through a fixed matrix (Convolution Kernel) to obtain image 
features (Simonyan and Zisserman, 2004). Results in Fig. 3 indicated 
that the features of the original image could be extracted and the 
dimension of the image could be reduced by the convolution processes. 
The general law can be summarized that the matrix dimension after 
convolution process is equal to the difference between the matrix 
dimension of image and the matrix dimension of convolution kernel plus 
1. 

The convolution layer has a continuous 3 × 3 convolution kernel and 
a maximum pooling size of 2× 2. In the convolutional layer, the input of 
each layer denotes a small part of the output of the previous layer, and 
the size of this small part is the same as the size of the convolution 
kernel. The convolutional layer was used to analyze the small part of 
each upper layer to obtain more abstract spatial features. The con-
volutional layer is defined by Eq. (1). The ReLU function is used as an 
activation function of this layer because it can effectively avoid the 
problem of gradient disappearance and accelerate the training process. 
The ReLU function is defined by Eq. (2). 

xl
j = f

(
∑

i=Mj

x(l− 1)
j ∙kijl + bl

j

⎞

⎠ (1)  

f (x) = max(0, x) (2) 

In Eqs. (1) and (2), l represent the l th network layer; Mj represents the 
receptive field output by the previous layer; b denotes the bias; k is the 
convolutional layer; and f(∙) is the nonlinear activation function. 

In VGG model, the pooling layers can reduce the size of the input 
feature to simplify the computational complexity of the neural network 
model. The max-pooling layer outputs the maximum value of the input 
features, and it can be defined as. 

Fig. 1. Overview of the study area.  

Table 1 
Pollution, hydrometeorology, and spatial data parameters.  

Data category Parameter Resolution Unit Source 

Hydrometeorology 
(2016–2019) 

EC Hourly μs/cm Guilin 
Ecological 
environment 
Bureau 

PH Hourly Dimensionless 
TB Hourly NTU 
Q Hourly m3/s 
WT Hourly ◦C 
PCP Hourly mm 

Water quality 
(2016–2019) 

TP Hourly mg/L Guilin 
Ecological 
environment 
Bureau 

TN Hourly mg/L 
CODMn Hourly mg/L 
NH3-N Hourly mg/L 
DO Hourly mg/L 

Vegetation 
(2016–2019) 

NDVI 16-day Dimensionless Earth Explorer  
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xl
j = f

(
βI

j p
(

xI− 1
j

)
+ bl

j

)
(3)  

where p(∙) is the pooling function, and β is the weight. 
The spatial remote sensing image can provide rich land attribute 

information, as shown in Fig. 4. Firstly, the remote sensing data, 
including land-use, vegetation, and slope, was collected from web. 
Secondly, images of spatial features were converted into an image 
format of224× 224× 3, and then, features were extracted by VGG 
model. Finally, the time-series high-dimensional features of spatial im-
ages were obtained. In order to eliminate the influence of noise caused 
by high-dimensional redundant features, the principal component 
analysis was used to reduce the dimensions of high-dimensional features 
to obtain multi-dimensional spatial feature time-series data. Combining 
these data with hydrometeorology data, pollutant data, and target 
pollutant error, the input and output dataset of the hybrid deep learning 
model can be constructed. 

Hydrology Meteorological Pollutant

Data Collection

Water quality dataSpatial data

Multi-dimensional time series data

VGG

Simulated Value Observed Value

Calculate RMS of pollutant
to get error series

Multi-source Water
Diffusion Model

Results Analysis

Model assessment based on validation measurement and comparison with ARIMA,SVR,RNN

Hydrology and meteorological

Pollutant data

Multi-dimensional time series data

LSTM Error of pollutant

Feature Extraction Diffusion Mechanism of Pollutants

Error Correction Model

Water quality data

+

Fig. 2. Framework of the proposed model.  

Image

Dimension reduction and
feature extraction

Convolution Kernel

Fig. 3. Feature extraction process.  
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4.3. Simulation-observation difference for pollutant 

In the paper, the mechanism model based on physical process was 
adopted to simulate the transport and diffusion process of pollutants in 
the watershed. The physical-based model is a modular structure model, 
which consists of hydrological process sub-module, soil erosion sub- 
module and pollution load sub-module. The model is mainly driven by 
the water balance equation, which can be expressed as. 

SWt = SW0 +
∑t

i=1
(Rd − Qsurf − Ea − Wseep − Qgw) (4)  

where, SWt represents the soil water content; SW0 represents the initial 
soil water content; T is the time; Rd, Qsurf , Ea, Wseep and Qgw represent 
precipitation, surface runoff, evaporation, permeation, and under-
ground water content, respectively. 

The study area was divided into 8 sub-basins based on DEM and 
measured river network. The calibration and validation of the model 
followed the principle of first runoff followed by nutrients. The runoff 
was calibrated and validated by the flow data of Yangshuo Hydrological 
Monitoring Station, and the trend validation was carried out by the daily 
measured water quality data of the river in Yangshuo. Some key pa-
rameters and processes of the mechanism model were not calibrated and 
corrected, which could only ensure the accuracy of the model prediction 
trends. The purpose of model calibration only needs to ensure the ac-
curacy of model prediction trend. Based on the predicted results, the 
simulation-observation difference was used to stabilize the water quality 
time series to reduce the prediction error of extreme value. 

XDiff = St − Vt, t = 1,…,N (5)  

where, N is the length of data series; St and Vt are the data record at time 
t for the simulation results and the observation results, respectively; XDiff 

is the first-order difference based on St and Vt and will be used as the 
output for the established model. The error time series of the pollutant at 
the target station is obtained through XDiff . 

4.4. Error correlation through LSTM 

Long Short-Term Memory model was used to predict the pollutant 
error at the next moment based on hydrometeorology indexes, pollut-
ants indexes, spatial features indexes, and target pollutant errors in the 
past few moments. The rolling prediction scheme was used in this 
scheme. All indexes in the prediction window were used to predict 
pollutant error in the next moment. This process was repeated until the 
error prediction of the target pollutant is complete. In the simulation, 
the target pollutant error sequence was assumed to be E. The hydro-
meteorology parameters were H

{
H1,H2,⋯,Hn}. Other pollutant in-

dexes were P
{
P1,P2,⋯,Pn}, and the spatial feature indexed were set as 

S
{
S1, S2,⋯, Sn}. In the proposed model, the input matrix was X{x1, x2,

⋯, xn}, as shown in Eq. (6). The target sequence was E′
{
e′

1, e
′

2,⋯, e′

n
}
, as 

shown in Eq. (7), where f(X) denoted the training function of the LSTM 
neural network. The training process of LSTM model was defined by 
Eqs. (6) and (7). In the model, the size of the rolling window was l. The 
input and output of the model were respectively defined by Eqs. (8) and 
(9). 

X =

⎡

⎢
⎣

x1

x2

⋮

xn

⎤

⎥
⎦ =

⎡

⎢
⎣

E1

E2

⋮

En

H1

H2

⋮

Hn

P1S1

P2S2

⋮

PnSn

⎤

⎥
⎦ (6)  

E′

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e
′

1

e′

2
⋮
e′

n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= f (X) = f

⎛

⎜
⎝

⎡

⎢
⎣

x1 x2

x2 x3
⋯

xl

xl+1

⋮ ⋱ ⋮

xn− l+1 xn− l+2 ⋯ xn

⎤

⎥
⎦

⎞

⎟
⎠ (7)  

Xt = [xt, xt+1,⋯, xt+l− 1]
T
, t ∈ 1, 2,⋯, n − l+ 1, (8)  

e
′

t = f ([xt, xt+1,⋯, xt+l− 1] ), t ∈ 1, 2,⋯, n − l+ 1. (9) 

The error series of water quality between simulated and monitored 
values based on mechanism model, the time series of spatial features 
extracted by VGG model, and hydrological and water quality data of 
upstream monitoring stations were used as the output or input of LSTM 
model to predict the pollutant concentration error of the river. Finally, 
the actual water quality of the river was inversed by error series of 
pollutant concentration predict by LSTM model and estimated values 
simulated by mechanism model. The final model structure was shown in 
Fig. 5. 

4.5. Model performance evaluation 

The accuracy and performance of the established SOD-VGG-LSTM 
model have been evaluated by a series of numerical tests in the paper. 
Firstly, it was examined whether the proposed SOD-VGG-LSTM model 
could overcome the extreme value problem of deviating data effectively. 
Then, the proposed model was compared with LSTM model without 
considering the spatial watershed features. Finally, the proposed 
method was compared with several state-of-the-art prediction models, 
namely the autoregressive moving average model (ARIMA) based on 
statistical theory, the support vector regression model (SVR) based on 
traditional machine learning, and the traditional Neural Network model 
(RNN) model based on deep learning. 

The evaluation indexes included RMSE, MAE, and SMAPE, which 
indicated the deviation of the model prediction results from the true 
values. The evaluation indexes RMSE, MAE, and SMAPE were expressed 
as follows. 

Convolution Maxpooling Full Connected

3X3
2X2

Spatial data

. . .

VGG

Input

Output

Output

. . .

. . .. . .

. . .. . .

Fig. 4. Architecture of the constructed VGG model.  
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RMSE(y′ ,y) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(y′

i − yi)
2

√

(10)  

MAE(y′ ,y) =
1
n
∑n

i=1

⃒
⃒y

′

i − yi
⃒
⃒ (11)  

SMAPE(y′ ,y) =
1
n

∑n

i=1

⃒
⃒y′

i − yi
⃒
⃒

(y′

i + yi)/2
, (12)  

where n denotes the total number of samples, yi is the observed value, 
and y′

i is the corresponding predicted value. 

5. Results and analysis 

5.1. Network parameters 

Super parameters control the network structure of the LSTM model 
(Yan et al., 2019), which determines the simulation results. In this 
paper, super parameters mainly included time step and neurons. Time 
step represents the length of the past data used in the prediction. As the 
prediction process progresses, these time step values slide along the time 
axis in the sliding window finally reaching the end of the dataset (Xu 
et al., 2022). Neurons in LSTM model represent the complexity and 
learning ability of the established model. In water quality prediction, 
values of super parameters affect the performance and accuracy of the 
established model. Therefore, the sensitivity analysis (setting of supper 
parameters) needs to be evaluated by changing values of super 
parameters. 

The performance of the model was optimized by setting super pa-
rameters. As shown in Table 2, the number of neurons was selected from 
the set of {16, 32, 64, 128, 256}. The test results showed that the per-
formance of the model increased firstly and then decreased with the 
increase of the number of neurons. The test results indicated that the 
model accuracy was the highest, when the number of hidden neurons 

was 64. The time step values, which denoted the length of the time series 
required for prediction, was selected from the set of {4, 8, 12, 16, 20}. 
The model achieved the best prediction performance for the time step of 
12. Thus, the data of the past 12 h were used to predict the concentration 
of pollutants at the next moment in the paper. 

5.2. Spatial feature extraction 

Visual Geometry Group method was adopt to extract the spatial 
feature and reduce the dimension of the input remote sensing image. In 
this way, the high-dimensional data could be characterized as multi- 
dimensional spatial feature time-series data, which would be used as 
the feature expression vectors of image data. Remote sensing data from 
January 2018, July 2018 and January 2019 were used to demonstrate 
the effectiveness of the established VGG model in this part. The data 
before and after dimensionality reduction were shown in Fig. 6. It could 
be observed that before dimensionality reduction, the original data 
including land-use, vegetation and slope was scattered and complex, and 
the amount of data was large. After dimensionality reduction, the spatial 
features of remote sensing image could be extracted, and the extracted 
data were separated, which greatly reduced the complexity of 

Multi-source
Water body Diffusion

Water quality data

Stations data
Simulated value

Predicted pollutant

The error value

Spatial data VGG

... x1

x2

x3

xt

Preprocessing

EC
PH

TP...

Error of pollutant
CODMn

...

...

... ... ......

Input layerHidden layerOutput layer
Dense

Error of pollutant

Simulated value

Error of pollutant

Calculate

Multi-dimensional data

Multi-dimensional data

+

t

O
ut

pu
t

Input

Fig. 5. Architecture of the proposed SOD-VGG-LSTM model.  

Table 2 
Optimal parameters of the SOD-VGG-LSTM model.  

Parameter Set of feasible values Optimal value RMSE MAE 

Neuron number {16, 32, 64, 128, 256} 16  1.241  0.758  
32  0.972  0.514  
64  0.573  0.361  
128  0.859  0.498  
256  1.176  0.712 

Time step {4, 8,12,16,20} 4  0.833  0.587  
8  0.602  0.412  
12  0.468  0.279  
16  0.704  0.306  
20  0.935  0.458  
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Land-use
Vegetation

Slope

Land-use
Vegetation

Slope

Land-use
Vegetation

Slope

Land-use
Vegetation

Slope

Land-use
Vegetation

Slope

Land-use
Vegetation

Slope

Spatial features after using PCA

Origin spatial features(2018/7)Origin spatial features(2019/1) Origin spatial features(2018/1)

Spatial features after using PCASpatial features after using PCA

Fig. 6. Data dimensionality reduction and feature extraction.  

Fig. 7. The comparison of the prediction results of the SOD-VGG-LSTM model and observed values during the period from May 1, 2019 to May 12, 2019.  
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calculation and the identification error caused by redundant informa-
tion. More importantly, through dimensionality reduction, complex 
remote sensing images could be transformed into simple multi- 
dimensional vectors, which could be directly coupled with deep 
learning method to realize water quality prediction with considering 
spatial feature. 

5.3. Prediction performance for water quality 

The indicators of water quality, DO, CODMn, NH3-N, and TP, were 
selected as performance evaluation indicators of the established SOD- 
VGG-LSTM model in this part. The online monitoring data from April 
2016 to March 2019 were used to train the model, and the hourly values 
of DO, CODMn, NH3-N, and TP concentration from April 2019 to 
December 2019 were predicted. The input data were preprocessed 
before being put into the model. The preprocessing included deleting the 
wrong and missing data and replacing those with the average daily 
values; the 3σ principle was used to analyze and eliminate abnormal 
data. In addition, to improve the training speed and prediction accuracy 
of the model, the Z-score standardization method was used to normalize 
the input dataset. 

After training and convergence, the optimal SOD-VGG-LSTM model 
was obtained. To verify the prediction performance of the optimal 
model, the test dataset was used for model evaluation. The comparison 
between the predicted values obtained by the model and the corre-
sponding observed values during the period from May 1, 2019 to May 
12, 2019 was shown in Fig. 7. The maximum relative error of DO, 
CODMn, NH3-N, and TP were 8.47%, 19.76%, 24.1%, and 35.4%, 
respectively. The reason for the large prediction error of TP might be 
that some enterprises secretly emissions, leakage emissions were not 
considered in the established model, resulting in the sudden change of 
water quality. 

5.4. Extreme values prediction 

When NPS pollutants changes sharply under extreme meteorological 
conditions, traditional deep learning methods are limited by historical 
data and cannot effectively predict extreme values, while physical 
models can ensure that the predictions are within a controllable range. 
To evaluate the prediction performance of the proposed model for 
extreme values, SOD-VGG-LSTM was tested on the data that did not 
appear in the training dataset. The prediction results were shown in 
Fig. 8, which showed the comparison of the predicted, observed, and 
calculated results of the extreme values for DO, CODMn, NH3-N, and TP 

concentration within 30 d. The prediction results showed that the 
maximum relative error between the predicted value and observed value 
were 6.07%, 11.6%, 22.1%, and 23.9%. Obviously, the established SOD- 
VGG-LSTM model achieved good prediction accuracy after coupling 
mechanism model in predicting the extreme values on a day scale. 

Previous studies have indicated that spatial characteristics influ-
enced the transport and diffusion process of NPS pollution in watershed. 
But traditional deep learning methods neglected the influence of spatial 
characteristics on the transport-diffusion process of NPS pollution. In 
this paper, VGG method in the established SOD-VGG-LSTM model was 
used to extract spatial features of the study area to improve the pre-
diction accuracy of the model. Fig. 9 showed the comparison of the 
predication results for DO, CODMn, NH3-N, and TP with 60 h obtained 
from SOD-VGG-LSTM model with spatial information and LSTM model 
without spatial information. The results of the maximum relative error 
between the predicted value and observed value for two models were 
presented in Fig. 9. The results showed that the predication accuracy of 
LSTM model without considering spatial characteristics is lower than 
that of SOD-VGG-LSTM model. 

5.5. Comparison with other models 

Traditional models including ARIMA, SVR, RNN were used to verify 
the superiority and advancement of the established SOD-VGG-LSTM 
model in this part. Among them, ARIMA based on statistical theory is 
often used to predict time series, which is a short-term prediction 
method with high prediction accuracy. An ARIMA model is character-
ized by 3 terms, p, d, q. where, p is the order of the AR term; q is the order 
of the MA term; d is the number of differencing required to make the 
time series stationary. ACF (autocorrelation) and PACF (partial auto-
correlation) were adopted to determine the optimal parameters for 
models in the paper, expressed as ARIMA（2 1 2)for DO, ARIMA (2, 1, 2) 
for CODMn, ARIMA (5, 1, 5) for NH3-N, and ARIMA (5, 1, 2) for TP. 

SVR is a non-linear regression approach that is based on statistical 
learning theory (Smola and Schölkopf, 2004). The foundation of this 
strategy is to transfer the original input space into a new hyperspace 
using a non-linear transformation approach (kernel functions). Penalty 
parameter C, Kernel function and Kernel parameter σ are the main 
factors that affect the prediction accuracy of the SVR model. Radial Basis 
Function (RBF) may be the best performing algorithm for SVR models 
(Kooh et al., 2022). Penalty factors and kernel function parameters in 
the established SVR models were 2.4 and 8 for DO, 1.2 and 3 for CODMn, 
NH3-N and TP, respectively. 

RNN is a feedforward neural network that can store past information 

Fig. 8. The prediction performance of the SOD-VGG-LSTM model for extreme values.  
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in time series data by introducing state variables (Zhang et al., 2021b). 
The input of the hidden layer for RNN consists of two parts, including 
the output of the network layer at a given time and the output of the 
hidden layer at the previous time. The nodes of the hidden layer are 
connected to each other. This can ensured that the output of the current 
hidden layer can be affected by the output of the previous layers. 
Therefore, RNN model can deal with time series data well. The optimal 
structure of RNN adopted in this study had three hidden layers with 30 
neurons in each layer. 

The results of RMSE, MAE, and SMAPE for four models were pre-
sented in Table 3. According to the statistics, the proposed SOD-VGG- 
LSTM model achieved the best prediction results compared with other 
models. Among four state-of-the-art prediction models, ARIMA was the 
worst based on all statistics. Compared with ARIMA model, SVR model 
had a higher accuracy in water quality prediction, but the prediction 
accuracy was still lower. Neural networks for processing sequence data 
including RNN and SOD-VGG-LSTM could help in improving the model 
performance. Results in Table 3 reflected the stability and robustness of 
the established models. 

The DO, CODMn, NH3-N, and TP concentration predicted by different 

models including ARIMA, SVR, RNN, and SOD-VGG-LSTM were showed 
in Fig. 10. Among them, ARIMA and SVR models could reflect the time- 
varying trend of pollutants concentration in river, but neither model had 
some shortcomings in extreme value predict. This might be because 
ARIMA model was based on sliding average and autoregression. The 
predicted results of ARIMA model were close to historical average. 
ARIMA might be more appropriate when the true value did not fluctuate 
very strongly. SVR model failed to consider the impact of time series 
data on prediction results (the impact of the previous time on the next 
time), which might result in a reduction in the accuracy of extreme value 
predicting. In contrast, RNN and SOD-VGG-LSTM models achieved good 
performance in water quality prediction. SOD-VGG-LSTM model that 
coupled mechanistic model and spatial data had higher water quality 
prediction accuracy than RNN model. The evaluation results showed 
that SOD-VGG-LSTM achieved 3.2% − 39.3% higher R2 than ARIMA, 
SVR and RNN. The established SOD-VGG-LSTM model in the paper 
could provide a new method for water quality prediction, especially for 
water quality prediction affected by NPS pollution. 

6. Conclusions 

A hybrid deep learning model coupling with SOD, VGG, and LSTM 
modular was developed in the paper. The training dataset was con-
structed by a set of time-series data, including hydrometeorological 
parameters, pollutant parameters, error sequence, and spatial feature 
sequences. The error sequence was calculated by the SOD modular, and 
the spatial feature was extracted by the VGG modular. The error 
sequence of pollutant concentration was used as output of LSTM for 
error and water quality prediction. The established model could not only 
overcome the problem of extreme value prediction, but also reflect the 
impact of spatial characteristics at different times or regions on water 
quality. 

The performance of the established model was evaluated and 
compared with three state-of-the-art prediction models: ARIMA, SVR, 
and RNN models. The indicators of DO, CODMn, NH3-N, and TP were 
selected as performance evaluation indicators, the RMSE index of the 
established model were 0.261, 0.088, 0.017, and 0.005, respectively. 
The results showed that the established SOD-VGG-LSTM model could 
predict the water quality change caused by NPS pollution well. SOD- 

Fig. 9. Comparison of the predicted results between LSTM and SOD-VGG-LSTM.  

Table 3 
Prediction performance of four compared models.  

Indicator Method RMSE MAE SMAPE(%) 

DO ARIMA  0.424  0.368  0.055  
SVR  0.350  0.319  0.032  
RNN  0.292  0.243  0.022  
SOD-VGG-LSTM  0.261  0.225  0.014 

CODMn ARIMA  0.252  0.204  0.180  
SVR  0.189  0.141  0.120  
RNN  0.140  0.091  0.081  
SOD-VGG-LSTM  0.088  0.051  0.046 

NH3-N ARIMA  0.063  0.048  0.284  
SVR  0.056  0.032  0.188  
RNN  0.043  0.022  0.132  
SOD-VGG-LSTM  0.017  0.012  0.078 

TP ARIMA  0.021  0.016  0.621  
SVR  0.010  0.007  0.223  
RNN  0.007  0.005  0.155  
SOD-VGG-LSTM  0.005  0.004  0.132  
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VGG-LSTM model had higher accuracy than ARIMA, SVR, and RNN 
model in water quality prediction. The evaluation results also showed 
that the established model could improve the prediction accuracy of the 
extreme value for water quality with coupling mechanism method and 
deep learning method. 

The model framework proposed in this study can not only effectively 
solve the defect that traditional deep learning methods can not couple 
point and surface data, but also overcome the problem that mechanism 
models can not predict the changes of hydrology or water quality on the 
hourly or minute time scale. The model proposed in the study is an 
intelligent watershed water quality prediction model, which can be the 
key link to solve the non point source pollution in the development stage 
of intelligent water conservancy. Also, the proposed model can provide 
effective decision support for the control and risk management of the 
basin flood forecast in the future. Because the established model can 
provide timely and efficient early warning of the hydrological process. 
The model proposed in this study has great application potential. 
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Velázquez, D., 2019. Coupling machine-learning techniques with SWAT model for 
instantaneous peak flow prediction. Biosyst. Eng. 177, 67–77. 

Jiang, Y.Q., Li, C.L., Sun, L., Guo, D., Zhang, Y.T., Wang, W.H., 2021. A deep learning 
algorithm for multi-source data fusion to predict water quality of urban sewer 
networks. J. Cleaner Prod. 318 (8), 128533. 

Kooh, M.R.R., Thotagamuge, R., Chou Chau, Y.-F., Mahadi, A.H., Lim, C.M., 2022. 
Machine learning approaches to predict adsorption capacity of Azolla pinnata in the 
removal of methylene blue. J. Taiwan Inst. Chem. Eng. 132, 104134. 

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. ImageNet classification with deep 
convolutional neural networks. Commun. ACM 60 (6), 84–90. 

Li, C., Li, S.-L., Yue, F.-J., Liu, J., Zhong, J., Yan, Z.-F., Zhang, R.-C., Wang, Z.-J., Xu, S., 
2019. Identification of sources and transformations of nitrate in the Xijiang River 
using nitrate isotopes and Bayesian model. Sci. Total Environ. 646, 801–810. 

Liu, Z., Tong, S.T.Y., 2015. Using HSPF to model the hydrologic and water quality 
impacts of riparian land-use change in a small watershed. J. Environ. Inform. 17 (1), 
15–24. 

Mcilwaine, B., Rivas, C.M., 2020. JellyNet: The convolutional neural network jellyfish 
bloom detector. Int. J. Appl. Earth Obs. Geoinf. 97, 102279. 

Navideh, N., Latif, K., Sabahattin, I., 2020. Water quality prediction using SWAT-ANN 
coupled approach. J. Hydrol. 590, 125220. 

Nitzan, F., Efrat, K., Hadas, M., Yuval, S., 2021. Prediction of wastewater treatment 
quality using LSTM neural network. Environ. Technol. Innovation 23, 101632. 

Paparrizos, S., Maris, F., 2017. Hydrological simulation of Sperchios river basin in 
central Greece using the MIKE SHE model and geographic information systems. 
Appl. Water Sci. 7 (2), 591–599. 

Shelhamer, E., Long, J., Darrell, T., 2017. Fully convolutional networks for semantic 
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39 (4), 640–651. 

Simonyan, K., Zisserman, A., 2004. Very deep convolutional networks for large-scale 
image recognition. In: The 3rd International Conference on Learning 
Representations, San Diego, Canada. 

Smola, A.J., Schölkopf, B., 2004. A tutorial on support vector regression. Stat. Comput. 
14 (3), 199–222. 

Tiyasha, Tung, T.M., Yaseen, Z.M., 2020. A survey on river water quality modelling using 
artificial intelligence models: 2000–2020. J. Hydrol. 585, 124670. 

Wan, H., Mao, Y., Cai, Y., Li, R., Feng, J., Yang, H., 2021a. An SPH-based mass transfer 
model for simulating hydraulic characteristics and mass transfer process of dammed 
rivers. Eng. Comput. https://doi.org/10.1007/s00366-021-01354-2. 

Wan, H., Tan, Q., Li, R., Cai, Y., Shen, X., Yang, Z., Shen, X., 2021b. Incorporating fish 
tolerance to supersaturated total dissolved gas for generating flood pulse discharge 
patterns based on a simulation optimization approach. Water Resour. Res., 57, 
e2021WR030167. 

Wang, F., Wang, X., Chen, B., Zhao, Y., Yang, Z., 2013. Chlorophyll a Simulation in a 
Lake Ecosystem Using a Model with Wavelet Analysis and Artificial Neural Network. 
Environ. Manage. 51 (5), 1044–1054. 

Wijesiri, B., Egodawatta, P., McGree, J., Goonetilleke, A., 2015. Influence of pollutant 
build-up on variability in wash-off from urban road surfaces. Sci. Total Environ. 
527–528, 334–350. 

Xie, Y.L., Xia, D.X., Ji, L., Huang, G.H., 2018. An inexact stochastic-fuzzy optimization 
model for agricultural water allocation and land resources utilization management 
under considering effective rainfall. Ecol. Ind. 92, 301–311. 

Xu, R., Deng, X., Wan, H., Cai, Y., Pan, X., 2021. A deep learning method to repair 
atmospheric environmental quality data based on Gaussian diffusion. J. Cleaner 
Prod. 308, 127446. 

Xu, Y., Hu, C., Wu, Q., Jian, S., Li, Z., Chen, Y., Zhang, G., Zhang, Z., Wang, S., 2022. 
Research on particle swarm optimization in LSTM neural networks for rainfall-runoff 
simulation. J. Hydrol. 608, 127553. 

Xu, Z.F., Li, J.C., Mo, D.Q., et al., 2010. Study on the Present State of Rural Water 
Pollution in Li River Valley and Comprehensive Treatment. Environ. Sci. Technol. 33 
(12F), 644–650. 

Yan, J., Chen, X., Yu, Y., Zhang, X., 2019. Application of a parallel particle swarm 
optimization-long short term memory model to improve water quality data. Water 
11 (7), 1317. 

Zhang, Q., Li, Z., Zhu, L.u., Zhang, F., Sekerinski, E., Han, J.-C., Zhou, Y., 2021a. Real- 
time prediction of river chloride concentration using ensemble learning. Environ. 
Pollut. 291, 118116. 

Zhang, X., Liu, L.u., Long, G., Jiang, J., Liu, S., 2021b. Episodic memory governs choices: 
an RNN-based reinforcement learning model for decision-making task. Neural 
Network 134, 1–10. 

Zhou, W., Zhu, Z., Xie, Y., Cai, Y., 2021. Impacts of rainfall spatial and temporal 
variabilities on runoff quality and quantity at the watershed scale. J. Hydrol. 603, 
127057. 

Zuo, Q., Wu, Q., Yu, L., Li, Y., Fan, Y., 2021. Optimization of uncertain agricultural 
management considering the framework of water, energy and food. Agric. Water 
Manag. 253 (1), 106907. 

H. Wan et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0022-1694(22)00656-4/h0010
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0010
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0010
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0015
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0015
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0015
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0020
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0020
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0020
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0025
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0025
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0025
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0030
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0030
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0030
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0030
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0035
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0035
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0035
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0040
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0040
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0040
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0040
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0045
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0045
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0050
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0050
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0050
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0055
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0055
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0055
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0060
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0060
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0060
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0065
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0065
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0065
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0070
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0070
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0075
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0075
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0075
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0080
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0080
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0080
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0085
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0085
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0090
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0090
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0095
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0095
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0100
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0100
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0100
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0105
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0105
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0115
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0115
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0120
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0120
https://doi.org/10.1007/s00366-021-01354-2
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0135
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0135
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0135
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0140
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0140
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0140
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0145
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0145
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0145
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0150
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0150
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0150
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0155
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0155
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0155
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0160
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0160
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0160
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0165
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0165
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0165
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0170
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0170
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0170
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0175
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0175
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0175
http://refhub.elsevier.com/S0022-1694(22)00656-4/opt9o58y0TF54
http://refhub.elsevier.com/S0022-1694(22)00656-4/opt9o58y0TF54
http://refhub.elsevier.com/S0022-1694(22)00656-4/opt9o58y0TF54
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0180
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0180
http://refhub.elsevier.com/S0022-1694(22)00656-4/h0180

	A novel model for water quality prediction caused by non-point sources pollution based on deep learning and feature extract ...
	1 Introduction
	2 Problem definition
	3 Research area and data collection
	4 Methods
	4.1 Framework
	4.2 Feature extraction through VGG
	4.3 Simulation-observation difference for pollutant
	4.4 Error correlation through LSTM
	4.5 Model performance evaluation

	5 Results and analysis
	5.1 Network parameters
	5.2 Spatial feature extraction
	5.3 Prediction performance for water quality
	5.4 Extreme values prediction
	5.5 Comparison with other models

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


