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ABSTRACT

With the revival of neural networks, many studies try to adapt
powerful sequential neural models, i.e., Recurrent Neural Networks
(RNN), to sequential recommendation. RNN-based networks encode
historical interaction records into a hidden state vector. Although
the state vector is able to encode sequential dependency, it still has
limited representation power in capturing complicated user prefer-
ence. It is difficult to capture fine-grained user preference from the
interaction sequence. Furthermore, the latent vector representation
is usually hard to understand and explain.

To address these issues, in this paper, we propose a novel knowl-
edge enhanced sequential recommender. Our model integrates the
RNN-based networks with Key-Value Memory Network (KV-MN).
We further incorporate knowledge base (KB) information to en-
hance the semantic representation of KV-MN. RNN-based models
are good at capturing sequential user preference, while knowledge-
enhanced KV-MNs are good at capturing attribute-level user pref-
erence. By using a hybrid of RNNs and KV-MNs, it is expected to
be endowed with both benefits from these two components. The se-
quential preference representation together with the attribute-level
preference representation are combined as the final representa-
tion of user preference. With the incorporation of KB information,
our model is also highly interpretable. To our knowledge, it is the
first time that sequential recommender is integrated with external
memories by leveraging large-scale KB information.
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1 INTRODUCTION

With the rapid development of Web techniques, recommender sys-
tems (RS) play a more and more important role in matching user
needs with rich resources (called items) from various online plat-
forms. For building an effective recommender system, a key factor
is able to accurately characterize and understand users’ interests
and tastes, which are intrinsically dynamic and evolving. To achieve
this goal, the task of sequential recommendation has been proposed
to better satisfy sequential user needs [26], which aims to predict
the successive item(s) that a user is likely to interact with given her
past interaction records.

Traditional recommendation methods (e.g., standard MF [17])
can’t well solve the sequential recommendation task, since they
usually model static user-item interactions. For capturing sequen-
tial patterns, the classic FPMC model [26] has been proposed to
factorize user-specific transition matrix by considering the Markov
Chain. A major problem of FPMC is that it still adopts the stat-
ic representation for user preference. With the revival of neural
networks, many studies try to adapt powerful sequential neural
models, i.e., Recurrent Neural Networks (RNN), to sequential rec-
ommendation [35], including session-based RNN [15], user-based
RNN [5] and attention-based RNN [18]. RNN-based models have
been shown effective to improve the performance of sequential rec-
ommendation [15]. By encoding historical interaction records into
a hidden state vector (called sequential preference representation), it
is possible for these methods to capture dynamic user preference
over time and measure the likelihood of the next item. Although the
state vector is able to encode sequential dependency, it has limited
representation power in capturing complicated user preference.
Since the state vector is encoded in a highly abstractive way, it is
difficult to capture or recover fine-grained (e.g., attribute or feature
level) user preference from the interaction sequence. Furthermore,
the latent vector representation is usually hard to understand and
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explain. In recommender systems, interpretability is a very impor-
tant factor to consider [14, 30]. These issues make it challenging to
develop an effective and interpretable sequential recommender.

To enhance the capacity of modeling fine-grained user prefer-
ence in an interpretable way, our idea is to incorporate external
knowledge into the sequential recommender. The incorporated
knowledge should be rich and flexible to characterize varying con-
text information in different domains. A key problem is what kind
of knowledge we can use and how we represent it. In this paper,
we propose to link items in recommender systems with existing
knowledge base (KB) entities, and leverage structured entity in-
formation for improving sequential recommendation. KBs store
knowledge in triples of the form (head entity, relation, tail
entity), typically corresponding to attribute information of en-
tities. KBs provide a general way to flexibly characterize context
information of entities from various domains. To obtain a compact
representation for KB information, we adopt the KB embedding
approach (i.e., TransE [1]) to mapping entities and relations into
low-dimensional vectors, called KB embeddings.

The major difficulty in designing the knowledge-enhanced se-
quential recommender is RNN-based models usually have limited
short-term memories [3], which are not suitable to store external
knowledge (e.g., KB information) for long-term usage. Inspired
by recent progress on improving the memory mechanism of neu-
ral networks [19, 21, 34], we propose to augment the RNN-based
sequential recommender with external memories. By explicitly set-
ting up an external memory of storage slots, Memory Networks
(MN) manipulate the memory according to the received data signal
with a set of predefined operations, e.g., read and write. It has been
shown that MNs are effective in memorizing long-term data char-
acteristics [3], which can even evolve and update over time. We use
KB information as external knowledge. Considering the structural
organization of entity information in KBs, we propose to incor-
porate KB knowledge via Key-Value Memory Networks (KV-MN).
KV-MNs [21] decompose each memory slot into a key vector and a
value vector. A nice merit of KV-MN is that we can associate a key
vector with a value vector, which supports associative search and
read. With KV-MNs, we set a key vector to a relation embedding
learned from KB data, corresponding to an entity attribute. Fur-
thermore, given a key vector, we set up a user-specific value vector
storing the preference characteristics of a user for the corresponding
attribute. In this way, external KB knowledge is effectively incorpo-
rated into the KV-MNs. Once the knowledge-enhanced KV-MNs
have been prepared, the next question is how to integrate it with
RNN-based sequential recommender. Instead of simply merging the
output from both components, at each recommendation, we use the
sequential preference representation from RNNs as the query to
read out the associated content of user-specific KV-MNs, i.e., value
vectors. Value vectors will be combined into an attributed-based
preference representationwith attentive weights derived from the se-
quential preference representation. The attributed-based preference
representation together with sequential preference representation
are combined as the final representation of user preference. We
present the overview of the proposed model in Fig. 1.

To summarize, in this paper, we propose a novel knowledge-
enhanced sequential recommender. Our model integrates RNN-
based networks (GRU) with KV-MNs. RNN-based networks are
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Figure 1: The overview of the proposed model. The model

consists of two components, namely RNNs and KV-MNs. By

linking RS items with existing KB entities, we enhance the

semantic representation of KV-MNs. The RNN component

is used to capture sequential preference, while the KV-MN

component is used to capture attribute-based preference.

good at capturing sequential user preference, while knowledge-
enhanced KV-MNs are good at capturing attribute-based user pref-
erence. By using a hybrid of RNNs and KV-MNs, it is expected to be
endowed with the benefits of both components. Given a hidden se-
quential preference representation from RNNs, our model is able to
transform it into attentive weights over the key vectors correspond-
ing to attributes, which provides attribute-level interpretability. By
setting user-specific value vectors, our model is able to learn the
characteristics of user preference on some specific attribute, which
further provides value-level interpretability.

To our knowledge, it is the first time that sequential recom-
mender is integrated with external memories by leveraging exist-
ing KB information. For evaluating our model, we prepare four
RS datasets, and then link items of the four datasets with Free-
base entities. Extensive results on the four datasets have shown
the superiority of the proposed model in both effectiveness and
interpretability.

2 RELATEDWORK

Our work is closely related to the studies on recommender systems.

General Recommendation. Early works on recommender sys-
tems typically use collaborative filtering (CF) to make recommenda-
tions based on matching users with similar “tastes" or interests [13],
such as K-Nearest Neighbor (kNN) algorithms [27] and Matrix Fac-
torization (MF) algorithms [17]. The recommendation tasks can be
divided into explicit feedback (e.g., rating prediciton) and implicit
feedback. For implicit feedback, BPR [25] optimizes the latent fac-
tor model with a pairwise ranking loss in a Bayesian framework.
Recently, deep neural networks have also been used to enhance the
capacity of modeling user-item interaction [12].

Sequential Recommendation. Sequential recommendation pre-
dicts the successive item(s) that a user is likely to adopt given
her past adoption records. The major idea of previous methods
is to capture sequential patterns between consecutive user-item
interactions. A classic work is the FPMC model [26], which is a
hybrid model combining MC and MF for next basket recommenda-
tion. More recently, representation learning and deep learning have
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been made great progress, and many new techniques have been
adapted to sequential recommendation. As two typical applications
of representation learning, HRM [32] captures both sequential be-
havior and users’ general taste by involving transaction and user
representations in prediction, and TransRec[10] proposes that items
are embedded into a “transition space" where each user is modeled
by a translation vector. As one of the most popular neural networks,
Recurrent Neural Networks (RNN) together with its variants LSTM
and GRU have been widely applied to sequential recommendation,
including session-based GRU [15], user-based GRU [5], dynamic
recurrent model [36], recurrent recommender network [35], hierar-
chical personalized RNN model [22] and attention-based GRU [18].
RNN based methods represent users’ preference by embedding the
historical adoption records into a latent vector. To explicitly capture
item- and feature-level sequential patterns, RUM [3] proposes to
use memory network to improve sequential recommendation.

Context-aware Recommendation. With the rapid development
of recommender systems, various context information has become
available [31]. A typical approach to integrating context informa-
tion in recommendation models is the feature-based MF, such as
LibFM [24]. As several representative kinds of context, temporal
information [38], social media information [40, 41] and knowledge
information [37] have been utilized in recommendation. More re-
cently, deep learning techniques have been utilized to enhance the
modeling of context information, including multi-granularity at-
tention [2], RNN with rich features [23], RNN with video semantic
embedding [7] and RNN with adaptive context-specific transition
matrices [20]. Especially, CKE [39] also uses KB information to im-
prove the performance of collaborative filtering with deep learning.
Our work is also related to the works on interpretable recommen-
dation with context information [14, 30].

Our work is closely related to the studies on deep learning for
recommender systems. Especially, it shares the common point with
RUM [3] in that both have utilized MNs for sequential recommen-
dation. Compared with RUM, our model adopts a separate GRU
component for capturing sequential dependency and incorporates
KB information for enhancing the modeling of attribute-level user
preference. Our knowledge-enhanced memory networks further
align key vectors with entity attributes, which makes the recom-
mendation highly interpretable.

3 PROBLEM DEFINITION

We first introduce the notations used throughout the paper. In a
recommender system (RS), letU denote a set of users and I denote
a set of items. Our task focuses on the recommendation scenario
with implicit feedback [25, 26], where we only concern whether
a user u ∈ U has interacted with an item i ∈ I at time t . By
sorting the interaction records by time ascendingly, we can form
the interaction sequence for useru, namely {i (u )1 , · · · , i

(u )
t , · · · , i

(u )
nu },

where i (u )t is the item that u has interacted with at time t and nu is
the length of interaction records for user u. Following [26], we use
the relative time index instead of absolute time index for numbering
interaction records.

Besides interaction sequences, we assume that a knowledge base
(KB) is also available as the input. A KB is defined over an entity set

V and a relation set R, containing a set of KB triples. A KB triple
⟨e1, r , e2⟩ denotes there exists relation r ∈ R between two entities
e1 and e2 from V , stating a fact stored in KB. For example, a KB
triple (Avatar, directedBy, JamesCameron) describes that Avatar
is directed by James Cameron. Since we assume it is possible to link
RS items with KB entities, RS item set I can be considered as a
subset of KB entity setV , so we have I ⊂ V . By linking a RS item
with a KB entity, we can obtain all its related KB triples.

Based on these preliminaries, we are ready to define the se-
quential recommendation task. Given the interaction sequence
{i
(u )
1 , · · · , i

(u )
t , · · · , i

(u )
nu } of user u, we would like to infer the item

that user u will interact with at time nu + 1. Note that it is straight-
forward to convert the above task setting into a basket-based [26]
or session-based setting [15] by replacing each item i

(u )
t by an item

subset I (u )t ⊂ I, where I (u )t denotes the set of items that u has
interacted with at time t . For simplicity and clarity, we keep the
next-item setting as the major task setting throughout the paper.

4 THE PROPOSED APPROACH

In this section, we present the knowledge-enhanced sequential
recommender. We start with a base sequential recommender using
GRU networks, and then augment the base model with Key-Value
Memory Networks using entity attribute information from KBs.

4.1 A GRU-based Sequential Recommender

Recurrent Neural Networks (RNN) have been shown effective in
capturing and characterizing the temporal dependency in sequence
data. A major problem of RNNs is that it suffers from the prob-
lem of “vanishing gradients" in dealing with long sequences. To
alleviate this problem, two variants, namely the Long Short Term
Memory (LSTM) networks [16] and Gated Recurrent Unit (GRU)
networks [4], have been proposed. We adopt the GRU network as
the base sequential recommender in our work, since it is simpler
and contains fewer parameters than LSTM.

Given the interaction sequence {i1, · · · , it }1 of user u, our GRU-
based recommender computes the current hidden state vector hut ∈
RLH conditioned on previous hidden state vector hut−1 as below

hut = GRU(hut−1,qit ;Θ), (1)
where GRU(·) is the GRU unit [4], qit is the embedding vector for
item it , and Θ denotes all the related parameters of GRU networks.
The embedding vector qit ∈ RLH is called item embedding, which
can be fixed or learned. In this way, the predictor encodes the
interaction sequence of u into a hidden vector hut , which models
the sequential preference ofu at time t . Hence, we callhut sequential
preference representation of user u.

To generate the sequential recommendation, we rank a candidate
item i by computing the recommendation score su,i,t according to

su,i,t = д(u, i, t ) = h
u
t
⊤
· qi , (2)

where д(u, i, t ) is the ranking function implemented as the inner
product between the sequential preference representation of u and
item embedding of i at time t .

1We omit the superscript of u from the the item indices without loss of clarity.
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Once we obtain the ranking scores, we can recommend items
with high scores to a target user.

4.2 Augmenting Sequential Recommender

with Knowledge-Enhanced Memory

Networks

The GRU-based recommender encodes the user preference into a
latent vector, which is less powerful to capture fine-grained pref-
erence over attribute or feature dimensions of items. Knowing
detailed user interests in the attribute level is particularly useful to
improve the base recommender in both aspects of interpretability
and performance. To address this issue, our idea is to incorporate
entity attribute information from KB into the sequential recom-
mender. Although GRU networks incorporate additional reset and
update gates, they still have limited power to memorize and main-
tain long-term data information [34]. Inspired by recent works
which integrate neural networks with external memories [19, 21],
we propose to utilize Key-Value Memory Network (KV-MN) to
maintain the KB knowledge, and then integrate the KV-MNs with
the base sequential recommender.

4.2.1 Modeling Attribute-level User Preference with Key-Value
Memory Networks. Memory Networks (MN) use an external mem-
ory, which is can be considered as a very large array of slots, for
explicitly storing and memorizing information. With external mem-
ories, MNs are more capable of capturing and modeling long-term
data characteristics [19]. In its original form, MNs treat memory
slots functionally equal for external information storage. To further
improve the storage of structured context or knowledge informa-
tion, KV-MNs has been proposed to split a memory slot into a key
vector and a value vector, and then associate the key vector with the
value vector in a memory slot [21]. Such an architecture perfectly
matches the structure of KB triples, which typically correspond
to entity attribute information. By storing attribute information
(a.k.a., features) of items in the key vectors and attribute-specific
user preference in value vectors, we are able to model long-term
preference evolving in the attribute level.

We assume that an item set is associated with A kinds of at-
tribute information, which are shared by all the items from the
same domain. For example, in the domain of Movie, items share
the attributes of actors, directors, genres, etc. Formally, we frame
the user-specific KV-MNs as a set of vector pairs {(k1,vu1 ),· · · ,
(kA,v

u
A )}, where ka ∈ R

LK is the key vector for attribute a and
va ∈ R

LV is the value vector corresponding to attribute a for useru.
In this way, we can form a shared key memory matrix K ∈ RLK×A
(called key matrix for short) and a user-specific value memory ma-
trix Vu ∈ RLV ×A (called value matrix for short) by combining key
vectors or value vectors. It is noteworthy that the key matrix K is
shared by all the users, since the key matrix summarizes the overall
attribute-level characteristics of the item set. We leave the setting
of attribute information forK in Section 4.2.2. The value matrixVu

is set to be privately used for each user u, since users are likely to
have varying preferences over the shared attributes.

A high-level view of KV-MNs for our recommendation scenario
is described as follows. At each time t , the sequential preference rep-
resentation hut from the GRU network in Eq. 1 is taken as the query

to the KV-MNs, which is used to address and visit the memory of
key vectors in K , and then the associated value vectors are com-
bined using some strategy as the return, called the Read operation.
It is likely that hut is not directly computable with the key vectors.
Hence, we adopt a Multiple-Layer Perceptron to implement a non-
linear transformation, i.e., h̃ut = MLP(hut ). With the transformed
vector h̃ut , the Read operation can be given in an abstractive form

mu
t ← Read({(k1,vu1 ), · · · , (kA,v

u
A )}, h̃

u
t ), (3)

wheremu
t is a latent vector produced by the KV-MNs given the

query h̃ut , encoding the attribute-level preference characteristics of
useru at time t . We callmu

t attribute-based preference representation
of user u. Indeed, as will be shown later,mu

t can be roughly un-
derstood as a linear combination of the user-specific value vectors
according to the preference weights over attributes for user u. In
this way, we expect the representation of hut emphasizes more on
sequential preference, while the representation ofmu

t emphasizes
more on attribute-based preference. The two parts complement
each other, which is supposed to yield a better performance than ei-
ther. Once the KV-MNs receives a new interaction record between
user u and item i , the Write operation is run using the entity
embedding of item i as a reference vector, and then update the
associated user-specific value vectors according to some strategy

{vu1 , · · · ,v
u
A}

new ←Write({(k1,vu1 ), · · · , (kAv
u
A )}

old ,ei ), (4)

where ei is some embedding representation of item i , which will be
specified later. With the Read and Write operation, we can main-
tain and monitor the evolving process of attribute-level preferences
for users. Note the key vectors will be pre-set and not updated.

4.2.2 Enhancing KV-MVs with KB Information. A key problem
to be solved in Section 4.2.1 is how to set the key matrix K with ap-
propriate attribute information from the item side. In the literature,
various kinds of context information have been leveraged as useful
signals for improving recommendation [7, 39]. Here, we propose
to use KB information for setting the key matrix, which is able to
flexibly characterize attribute information of entities from various
domains. Many large-scale KBs have been released for public usage,
such as Freebase [8] and Yago [29]. By linking RS items with ex-
isting KB entities, we are able to obtain rich attribute information
of RS items from a variety of domains.

Given an item i , let ei denote its corresponding entity in KB. S-
ince KB is originally framed as a set of triples, we can obtain a set of
related triples where ei plays the head or tail entity. For effectively
encoding KB information, we propose to learn a distributed vector
ei ∈ RLE for entity ei and r ∈ RLE for relation r . To learn KB
embedding, we use the simple and efficient model TransE [1] to
minimize the loss of the triples

∑
{⟨e1,r,e2⟩} ∥ e1 + r − e2 ∥ under

suitable regularization constraints. The learned KB embeddings
provide a general and compact representation for entities and re-
lations, which is convenient to use and integrate for subsequent
usage.

To this end, we have obtained the embeddings for both the en-
tities and relations. KB relations usually correspond to attribute
information of entities. Hence, we fill the key matrix by the relation
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embeddings, i.e., ka = ra for each possible attribute a (correspond-
ing to a relation ra in KB).

4.2.3 Instantiating the Read and Write Operations. Now, we are
ready to instantiate the above Read and Write operations for the
knowledge-enhanced KV-MN. For the Read operation, at time t ,
we use the following attentive combination for user u

mu
t ←

A∑
a=1

wt,u,a ·v
u
a , (5)

wherewt,u,a is the attention weight of the attribute a for user u at
time t defined as

wt,u,a =
exp(γ h̃ut · ka )∑A

a′=1 exp(γ h̃
u
t · ka′ )

, (6)

where γ is a scaling factor and empirically set to 10 in our work.
For the Write operation, the case becomes a bit complicated.

Our value vectors store the characteristic representations of user
preference w.r.t some attribute. At each time of receiving a new in-
teraction with item i by u, we need to decompose its KB embedding
ei into attribute-level updates. The update from item i relative to
attribute a is computed as

eia = ei + ra , (7)

where eia ∈ RLE is the update vector of item i for attribute a. The
idea is based on theTransEmodel [1], in whichwe compute the loss
of a triple ⟨e1, r , e2⟩ by the distance ∥ e1+r−e2 ∥. Hence, we can ap-
proximate the embedding of a tail entity (i.e., attribute value) by the
summation between the embeddings of the head entity and relation.
Consider an example about the attribute of director for the movie
Avatar. In TransE, eAvatar + rdirectedby ≈ e JamesCameron , so
we can use eAvatar + rdirectedby to represent the entity of James
Cameron. Note that we don’t use the directly learned embedding
e JamesCameron for the entity “James Cameron", since there are
many one-to-multiple relations in KB, where the attribute value
can correspond to a set of entities, e.g., actors of “Avatar".2 Similar
to theWrite operation used in [34], we first compute a gate vector
z ∈ RA to determine the proportion of information that is to be
updated for each attribute in user-specific value vectors. The gate
weight za ∈ z for each attribute a is computed as

za = sigmoid(vua
⊤
· eia ). (8)

With the update weight za and update vector eia , we update each
value vector in the value matrix Vu of user u accordingly

vua ← (1 − za ) ·vua + za · e
i
a . (9)

Once the update process has been completed, the value matrix
Vu stores the user preference over explicit entity attributes. Our
update operation makes it possible to dynamically monitor and
maintain such a long-term user preference in the attribute level.

2Another alternative method is to directly integrate the embeddings of multiple
value entities. However, it is difficult to learn or set the combination weights for
different entities. We leave this part as future work.

4.3 The Complete Sequential Recommender

Our complete sequential recommender is a hybrid of GRU networks
and knowledge-enhanced KV-MNs. Given the interaction sequence
{i1, · · · , it } of user u, we first adopt the GRU network to derive
the sequential preference representation hut using Eq. 1. Then, we
use the transformed h̃ut as the query to read the KV-MN, and ob-
tain the corresponding attribute-based preference representation
mu
t using Eq. 5. We use a vector concatenation to combine both

representations into a single vector put = hut ⊕m
u
t for modeling

user preference of user u at time t . For the item side, we further
concatenate the item embedding qi in RS and the entity embedding
ei in KBs, namely q̃i = qi ⊕ ei . put and q̃i have the same size of
LH + LE . Similar to Eq. 2, we use the inner product between the
new representations for users and items as the ranking score,

su,i,t = д(u, i, t ) = MLP(put )
⊤ ·MLP(q̃i ), (10)

whereMLP (·) is a multilayer perceptron consisting of hidden layers
with tanh as the activation function.MLP (·) transforms an input
vector into an output vector, where both vectors have the same
dimension number. Here, we incorporate non-linear transformation
to map put and q̃i into the same space.

DNN

Key

Value

Write

Read

Value

Write

GRU

GRU

KB

Attention weights

Sequential preference Attribute-based preference

1

2

1

2

222

11111111
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Figure 2: The schematic illustration of the working mecha-

nism of our model.

We present a diagram sketch of our model in Fig. 2. We call our
model Knowledge-enhanced Sequential Recommender (KSR). Our
model has the following merits. First, the GRU network is able to
effectively capture temporal dependency, yielding a sequential rep-
resentation for user preference (i.e., hut ). Second, the KV-MN part is
able to characterize the detailed user interests over item attributes,
yielding an attribute-based representation for user preference (i.e.,
mu
t ). Third, the hidden sequential preference representation (i.e.,

hut ) is used to dynamically generate a set of attention weights (i.e.,
wt,u,a ) over the explicit attributes, which provides the capacity
of explaining the latent sequential preference in the attribute lev-
el. Putting all together, our model is endowed with the benefits
from both GRU and KV-MN, and further enhanced with external
structured knowledge information. Hence, our model is expected
to be more powerful in sequential recommendation, effective and
interpretable.

In our model, the parameters to learn are from both GRU and
KV-MN components. We pre-train the item embedding qi by using
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the classic BPR model [25], and fix them in the learning process. We
find that such a pre-training technique is important to improve the
performance of sequential recommendation. For entity and relation
embeddings (i.e., ei and ra ), we learn them using the classic TransE
model, and fix them in the learning process. We assume that the
key vectors are shared by all the users, and set them to the relation
embeddings and fix them in the learning process. While, for other
parameters, we adopt the pairwise loss following BPR [25]

L =
∑
u ∈U

nu∑
t=2

∑
j ∈I−u

logσ (д(u, it ) − д(u, j )), (11)

where nu is the length of interaction sequence of u in the training
set, I−u is a small set of sampled negative items that user u has
not interacted with, and σ (·) is the sigmoid function. We imple-
ment the model with the library of Theano by using AdaGrad
optimization [6] in mini batches.

5 EXPERIMENTS

In this section, we first set up the experiments, and then present
the performance comparison and analysis.

5.1 Experimental Setup

Construction of the Datasets. In our task, we need to prepare
both KB and RS data. For KB data, we adopt the one-time Free-
base [8] dump consisting of 63 million triples. For RS data, we
use four datasets from different domains, namely Last.fm mu-
sic [28],MovieLens ml-20m [9],MovieLens ml-1m [9] and Ama-
zon book [11]. The Last.fmmusic dataset is very large, and we take
the subset from the last year; for the ml-20m dataset, we take the
subset from year 2005 to 2015. Following [10, 26], we only keep the
k-core dataset, and filter unpopular items and inactive users with
fewer than k records, which is set to 3 in book dataset and 10 for the
other datasets. Then, we link filtered items with Freebase entities.
With an offline Freebase search API, we retrieve KB entities with
item title (e.g., song titles) as queries. Once mulitple entities are
returned, we further incorporate at least one attribute as the filter
to identify the only correct entity. We only keep the interactions
related to the linked items in the final datasets. We group the in-
teraction records by users, sort them according to the timestamps
ascendingly, and form the interaction sequence for each user. To
train TransE, we start with linked entities as seeds and expand the
graph with one-step search. Not all the relations in KBs are useful,
we remove unfrequent relations with fewer than 5,000 triples. We
summarize the detailed statistics of the datasets in Table 1.

Table 1: Statistics of our datasets. #Entities indicates the

number of entities that are extended by seed entities with

one-step search in KBs for training TransE.

Datasets #Interactions #LinkedItems #Users #Entities #Relations
Music 203,975 30,658 7,694 214,524 19
ml-20m 5,868,015 19,533 61,583 1,125,100 81
ml-1m 916,714 3,210 6,040 1,125,100 81
Book 828,560 69,975 65,125 313,956 49

Task Settings.We consider two task settings for evaluation, name-
ly next-item recommendation and next-session recommendation.
We fully follow the previous settings [12, 25, 26]. For next-item rec-
ommendation, we hold out the last item of the interaction sequence
as the test data; For next-session recommendation, we hold out the
items from the last session in the interaction sequence as the test
data, in which a day is considered as a session. The item or session
just before the last has been treated as the validation set. The rest
data is treated as the training data. Since our item set is large, it will
be time-consuming to enumerate all the items as candidate. Hence,
following [12], for each positive item in the test set, we pair it with
100 sampled items that the user has not interacted with, called
negative items. To make the sampling reliable and representative,
out of the 100 negative items, 50 items are sampled randomly, while
the rest 50 items are sampled according to the popularity.

EvaluationMetrics. To evaluate our approach, we adopt a variety
of evaluation metrics widely used in previous works [3, 15, 26],
including the Mean Average Precision (MAP), the Mean Recip-
rocal Rank (MRR), Hit Ratio (HR), and Normalized Discounted
cumulative gain (NDCG). Note that we don’t report the results of
Precision@k and Recall@k , since NDCG@k is an improved mea-
sure of Precision@k and HR@k is more suitable than Recall@k for
our tasks which have very few ground-truth results. We report the
average score for all test users.

Methods to Compare. We consider the following methods for
performance comparison:

• BPR [25]: It optimizes the latent factor model with implicit
feedback using a pairwise ranking loss in a Bayesian ap-
proach.
• NCF [12]: Based on MF, it replaces the inner product with a
neural architecture that can learn an arbitrary function from
data.
• CKE [39]: It first proposes to incorporate KB and other infor-
mation (i.e., image and text) to improve the recommendation
performance. For fairness, we implement a simplified ver-
sion of CKE by only using the KB information, and exclude
the image and text information.
• FPMC [26]: It is a classic hybrid model combining MC and
MF for next-basket recommendation, which can capture both
sequential effects and general interests of users.
• RUM [3]: It first proposes to utilize external memories to
improve sequential recommendation, which contains two
variants, either item-level (RUMI ) or feature-level (RUMF ).
Originally, it only characterizes latent features, and we fur-
ther incorporate KB embeddings to enhance the model.
• GRU [15]: It implements an improved version of the GRU
network for session-based recommendation, which utilizes
session-parallel mini-batch training process and also em-
ploys ranking-based loss functions for learning the model.
• GRU++: We improve the above GRU model by using the
pre-training technique for the items. We train the latent item
vectors using the BPR model [25], and use the learned item
representations to set the item embeddings in GRU++. The
item embeddings are fixed in the learning process.
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• GRUF : Quadrana et al. [23] propose to incorporate auxiliary
features into GRU networks for improving the sequential
recommendation. One of their proposals is to concatenate
both one-hot item vector and feature vector as the input
vector of GRU networks. We implement an enhanced version
by replacing one-hot item vector with pre-trained BPR item
vector. The KB embedding is taken as the feature vector.
• KSR: It is our model introduced in Section 4.

Our baselines have a comprehensive coverage of the related
models. To summarize, we categorize the baselines into eight groups
shown in Table 2, according to the task orientation, with/without
KB and with/without neural models.

Table 2: The categorization of the comparison methods.

Tasks KB Neural (No) Neural (Yes )

General Yes — CKE
No BPR NCF

Sequential Yes — RUM, GRUF , KSR
No FPMC GRU, GRU++

Parameter Setting. All the models have some parameters to tune.
We either follow the reported optimal parameter settings or opti-
mize each model separately using the validation set. For our model,
we adopt a one-layer GRU network, the hidden layer size LH is set
to 256, the item embedding size is set to 256, the KB embedding size
LE with TransE is set to 50, and the key vector size LK and the
value vector size LV are set to 50. We will discuss how parameter
setting affects the final performance in Section 5.3.

Table 4: The MAP results of the variants with shared or pri-

vate value matrices for our model.

Methods Next-Item Next-Session
Music ml-1m ml-20m Book Music ml-1m ml-20m Book

Shared 0.416 0.351 0.291 0.348 0.218 0.273 0.130 0.341
Private 0.428 0.356 0.294 0.353 0.224 0.276 0.135 0.345

5.2 Results and Analysis

The results of different methods for both sequential recommenda-
tion tasks are presented in Table 3. It can be observed that:

(1) Among non-sequential recommendation baselines, BPR per-
forms well on the two dense movie datasets, but poorly on music
and book datasets, which are more sparse. Overall, NCF and CKE
perform better BPR in more cases, since NCF incorporates a neural
architecture to characterize arbitrary user-item interactions, and
CKE utilizes the KB embedding as the additional signal to enhance
the modeling of sparse user-item interactions. Indeed, by exclud-
ing text and image components from CKE, it degenerates into an
extended BPR, where a part of the latent item representation is set
to the KB embedding of items.

(2) Among sequential recommendation baselines, the classic
model FPMC performs worst (but still better than BPR in most cas-
es). FPMC has adopted the similar optimization way as BPR, and the
major difference is FPMC further incorporates item-item sequential

relatedness in the optimization. The recently proposed RUM mod-
el yields a better performance than all the above baselines. RUM
adopts the KV-MN architecture for sequential recommendation.
For fairness we have also set the key matrix in RUM with attribute
embeddings and update the value matrix with KB embeddings of
items. We have found that item-level variant RUMI overall per-
forms better than feature-level RUMF . A possible reason is that we
set the item representations in RUMI with KB embeddings. Finally,
we examine the performance of the three GRU-based sequential
recommenders. As we can see, the GRU++ model beats all the other
baselines except GRUF in four datasets. We find that pre-training
the item embedding is particularly useful, which can significantly
boost the performance. A possible reason is that GRU can’t well
model long-term user interests. Setting parameters with BPR can
alleviate this weakness, since BPR is able to capture overall user and
item representations. By incorporating additional features, GRUF
overall works slightly better than GRU++, but the improvement is
not large. We speculate that the simple concatenation of item and
feature vectors may not be the most suitable way for incorporating
auxiliary features.

(3) Finally, we compare our proposed model KSR with all the
baselines. It is clear to see that KSR is consistently better than these
baselines by a large margin. Our base architecture is the pre-trained
GRU network [15], and then we incorporate a knowledge-enhanced
KV-MN. Roughly speaking, KSR have the merits of both GRU++ and
KV-MN: GRU++ is more capable of characterizing sequential depen-
dency and KV-MN is more capable of characterizing attribute-level
preference with KB knowledge. Our experiments indicate these two
aspects are important to improve the sequential recommendation.
Another potential benefit of KSR over all the baselines is that the
recommendation results are highly interpretable, and we will show
this in Section 5.4.

5.3 Detailed Analysis of Our Model KSR

Above, we present the main result comparisons of different models.
Our model has achieved a significant improvement over all the
baselines. In this part, we construct detailed analysis of our model
for better understanding why and how it will work. Due to space
limit, unless specified, we only report the MAP results of next-item
recommendation on the book dataset, while the results on the other
three datasets with other metrics are similar and omitted. Among
all the baselines, the pre-trained GRU++ performs very well and
stably. Hence, we incorporate GRU++ as the only reference baseline
for ease of comparison.

Personalized or Shared Value Matrix. Our KV-MNs consists of
a shared key matrix and user-specific (called private) value matrices.
Now, we study how the configuration of value matrices affects the
performance of our model. We implement another variant of KSR
with a shared value matrix by all the users in the KV-MN. Table 4
presents the MAP results of the two variants on the four datasets.
It can be observed that using private value matrices is better than
the other variant. The results confirm to our intuition that differ-
ent users may have varying preference characteristics over item
attributes. While, the improvement seems not that large. A major
reason is that at each time the sequential preference representation
will be used to generate dynamic personalized attention weights.
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Table 3: Performance comparison of different methods on next-item and next-session recommendation. “†” indicates the

improvement of the KSR over the baseline is significant at the level of 0.01. We also report the improvement ratio of our

model over the best performance of all the baselines for each dataset in parentheses.

Datasets Methods Next-Item Recommendation Next-Session Recommendation
MAP MRR Hit@10 NDCG@10 MAP MRR Hit@10 NDCG@10

ml-20m

BPR 0.128† 0.128† 0.276† 0.144† 0.086† 0.165† 0.340† 0.099†
NCF 0.094† 0.094† 0.205† 0.101† 0.083† 0.162† 0.354† 0.095†
CKE 0.178† 0.178† 0.382† 0.209† 0.087† 0.153† 0.345† 0.104†
FPMC 0.129† 0.129† 0.273† 0.144† 0.084† 0.157† 0.328† 0.096†
RUMI 0.267† 0.267† 0.523† 0.312† 0.122† 0.193† 0.399† 0.141†
RUMF 0.248† 0.248† 0.515† 0.295† 0.121† 0.197† 0.399† 0.141†
GRU 0.282† 0.282† 0.522† 0.325† 0.079† 0.121† 0.264† 0.085†
GRU++ 0.277† 0.277† 0.549† 0.327† 0.127† 0.195† 0.397† 0.145†
GRUF 0.279† 0.279† 0.550† 0.329† 0.127† 0.197† 0.397† 0.146†
KSR 0.294 (+6.1%) 0.294 (+6.1%) 0.571 (+4.0%) 0.344 (+5.2%) 0.135 (+6.3%) 0.209 (+7.2%) 0.419 (+5.5%) 0.156 (+7.6%)

ml-1m

BPR 0.178† 0.178† 0.396† 0.211† 0.171† 0.231† 0.472† 0.210†
NCF 0.163† 0.163† 0.355† 0.189† 0.141† 0.192† 0.414† 0.172†
CKE 0.158† 0.158† 0.350† 0.185† 0.134† 0.174† 0.366† 0.160†
FPMC 0.305† 0.305† 0.549† 0.349† 0.245† 0.287† 0.517† 0.282†
RUMI 0.323† 0.323† 0.627† 0.382† 0.252† 0.290† 0.560† 0.298†
RUMF 0.263† 0.263† 0.577† 0.323† 0.220† 0.265† 0.555† 0.270†
GRU 0.315† 0.315† 0.593† 0.368† 0.210† 0.222† 0.439† 0.241†
GRU++ 0.336† 0.336† 0.626† 0.393† 0.256† 0.291† 0.555† 0.304†
GRUF 0.340† 0.340† 0.636† 0.399† 0.259† 0.293† 0.559† 0.306†
KSR 0.356 (+6.0%) 0.356 (+6.0%) 0.655 (+4.6%) 0.417 (+6.1%) 0.276 (+7.8%) 0.313 (+7.6%) 0.570 (+2.7%) 0.324 (+6.6%)

Music

BPR 0.227† 0.227† 0.458† 0.265† 0.151† 0.157† 0.320† 0.163†
NCF 0.386† 0.386† 0.549† 0.413† 0.206† 0.228† 0.378† 0.224†
CKE 0.371† 0.371† 0.541† 0.399† 0.215† 0.225† 0.386† 0.233†
FPMC 0.349† 0.349† 0.489† 0.369† 0.140† 0.158† 0.290† 0.151†
RUMI 0.386† 0.386† 0.587† 0.422† 0.210† 0.220† 0.395† 0.229†
RUMF 0.332† 0.332† 0.562† 0.374† 0.201† 0.212† 0.399† 0.222†
GRU 0.420† 0.420† 0.538† 0.436† 0.104† 0.131† 0.232† 0.112†
GRU++ 0.403† 0.403† 0.595† 0.437† 0.214† 0.224† 0.397† 0.233†
GRUF 0.404† 0.404† 0.594† 0.438† 0.214† 0.225† 0.397† 0.233†
KSR 0.427 (+1.7%) 0.427 (+1.7%) 0.607 (+2.0%) 0.460 (+5.5%) 0.223 (+4.2%) 0.233 (+4.0%) 0.403 (+1.5%) 0.241 (+3.4%)

Book

BPR 0.222† 0.222† 0.505† 0.272† 0.216† 0.221† 0.505† 0.265†
NCF 0.284† 0.284† 0.513† 0.325† 0.282† 0.290† 0.534† 0.327†
CKE 0.248† 0.248† 0.494† 0.291† 0.246† 0.252† 0.512† 0.292†
FPMC 0.147† 0.147† 0.324† 0.171† 0.149† 0.153† 0.338† 0.174†
RUMI 0.292† 0.292† 0.596† 0.350† 0.282† 0.288† 0.597† 0.341†
RUMF 0.300† 0.300† 0.610† 0.360† 0.278† 0.284† 0.590† 0.335†
GRU 0.265† 0.265† 0.501† 0.305† 0.141† 0.144† 0.291† 0.157†
GRU++ 0.305† 0.305† 0.619† 0.366† 0.299† 0.305† 0.621† 0.360†
GRUF 0.306† 0.306† 0.619† 0.367† 0.299† 0.305† 0.620† 0.360†
KSR 0.353 (+15.7%) 0.353 (+15.7%) 0.653 (+5.5%) 0.413 (+12.8%) 0.345 (+15.4%) 0.353 (+15.7%) 0.661 (+6.4%) 0.407 (+13.1%)

Even the value matrix is shared, the personalized attention weights
still provide a flexible mechanism to model varying user prefer-
ences. Hence, when efficiency is more important to consider than
performance, we can adopt the variant with shared value matrix for
reducing model complexity. As will be shown in Section 5.4, using
private value matrices is also helpful to improve the interpretability.

Varying the Amount of Training Data. Since our model KSR
involves GRU networks and KV-MNs, it contains more parameters
to learn and has a higher model complexity than baselines. We
study how the performance of KSR model changes with the varying
amount of training data. To examine this, we take 20%, 40%, 60%
and 80% from the complete training data to generate four new
training sets. The test sets can be constructed accordingly. Figure 3
presents the performance tuning w.r.t. different ratios of training
data. It can be seen that KSR is consistently better than GRU++
with four training sets. Although our model has a more complicated
architecture, it is well pre-trained and many parameters related to
KB embeddings are fixed, which largely reduces the complexity in
practice.
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(b) Book dataset.

Figure 3: Performance comparison by varying the amount

of training data.

VaryingKBEmbeddings.An important data resource in ourmod-
el is the trained KB embeddings.We now study how different embed-
ding methods with varying configurations affect recommendation
performance. We adopt the open source toolkit of OpenKE3 to
implement four KB embedding methods [33], including TransD,

3http://openke.thunlp.org/
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TransE, TransH and TransR. We vary the KB embedding size
in {50, 100, 150, 200}. In Fig. 4(a), we can see that an embedding
size of 50 gives the best performance for TransE. By tuning the
embedding size on the other KB embedding methods, we also find
an embedding size of 50 overall works well. Then we fix the embed-
ding size as 50, and compare different KB embedding methods. As
shown in Fig. 4(b), TransE performs best among all the methods.
A possible explanation is that TransE is simpler than the other
variants, and its results are more stable on our tasks.
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(a) Varying the embedding size of
TransE.
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(b) Comparing different embedding meth-
ods.

Figure 4: Performance tuning with different KB embedding

methods.

5.4 Qualitative Analysis on the

Recommendation Interpretability

In the previous experiments, we have shown that our model is more
capable of generating high-quality sequential recommendations.
Another major benefit is that our recommendations are highly inter-
pretable due to the incorporation of KB information in the KV-MNs.
Recall that we use h̃ut to compute the dynamic attention weights
over the attributes using Eq. 6. Assume we haveA attributes in total,
our model can produce a distribution of attribute weights for user
u at time t , i.e., {wt,u,a }

A
a=1. The attribute weights directly provide

an attribute-level interpretation for the latent user representation
hut . Furthermore, the user-specific value vectorvua maintains the
characteristics of user preference on some attribute a, which further
provides a value-level interpretation. To see this, we present an
example from the music dataset in Fig. 5.

Attribute-level Interpretability. Fig. 5 presents an interaction
sequence of five records from a sample user. Each record consists
of two parts: the left part corresponds to the learned attention
weights and the right part corresponds to ground-truth information
of a song, including title, singer and album. First, the user started
with two songs from the same album, which followed the way of
listening by album. Then, she listened to two more songs from
another album. For the fifth song, the user switched to a third
album. The interesting point is that its singer is the same as that
of previous two songs. Hence, for the last three songs, the user
essentially followed a mixture of listening by album and listening
by singer. It is clear that our model has predicted a larger weight
on the attribute of album till the fourth record, and a larger weight
on the attribute of singer on the fifth song. This example indicates
the user preference is likely to be dynamic and evolving, and our
model is able to capture evolving preference over the attributes.

Value-level Interpretability. Suppose it is already known some
attribute (e.g., album) plays the key role in determining the interac-
tion behavior of a user, can we further predict how the user will
select among a set of entities for that attribute (e.g., the selection of
the favorite album in candidate albums)? For convenience, we call
the entities (also in KB) corresponding to the attribute value of a RS
item value entities, e.g., Deafheaven is the value entity of attribute
singer for song The Pecan Tree. Recall we have a user-specific value
matrix in KV-MNs, which maintains the preference characteristic-
s of a user on some specific attribute. We expect a value vector
can reflect user preference over value entities for some attribute.
A value vector vua corresponds to a key vector ka on attribute a.
Since the value matrix is updated with KB embeddings of items
(Eq. 7 and 9), the learned value vectorsvua can be represented in the
same space as KB embeddings. Given an attribute, we can directly
compute L1 distance between the embedding of a candidate value
entity (e.g., eDeaf heaven ) and the user-specific value vector (e.g.,
vusinдer ) from the previous timestamp. Then, we rank the candidate
value entities according to the L1 distance and form a predication
ranklist. We present the illustration of value-level interpretation
at the bottom of Fig. 5. At the beginning (t1), the value matrix is
not well learned. By training with more records, our value matrix
is able to dynamically trace the user preference on some specific
attribute. At the fifth record (t5), it correctly predicts the candidate
entities for both singer and album attributes at the first position.

6 CONCLUSIONS

In this paper, we proposed to extend the GRU-based sequential
recommender by integrating it with knowledge-enhanced KV-MNs.
Our model was endowed with the benefits of these two compo-
nents. By heuristically linking RS items with existing KB entities,
we leveraged large-scale KB information to improve sequential
recommendation. We enhanced the semantic representation in KV-
MNs with entity attribute information from KB, which made the
recommendations highly interpretable. We constructed four large
linked datasets from RS with KBs. The results showed that our
model is superior to previous methods in terms of effectiveness and
interpretability. Currently, we consider three domains with four
datasets, but we believe our approach is applicable to more domains.
We will investigate into how our models perform in other domains.
In practice, unstructured data or noisy context information is easier
to obtain than well-formatted KB information, we will consider
extending our model by utilizing such weak signals.
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