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Abstract—Computation offloading is a promising solution to ex-
tend the capacity of robot swarms for computation-intensive ap-
plications because it allows robot swarms to benefit from the pow-
erful computing resources of modern data centers. However, the
existing computation-offloading approaches still face challenges:
1) multi-hop cooperative computation offloading, 2) joint compu-
tation offloading and routing, and 3) task slicing. In this paper, we
propose a quality of service (QoS)-aware cooperative computation-
offloading scheme for robot swarms using game theory. We analyze
the multi-hop cooperative communication model in robot swarms
and investigate the computation offloading and routing decision-
making problems with the goals of both latency minimization and
energy efficiency. We formulate the joint optimization problem as
a multi-hop cooperative computation-offloading game and show
the existence of a Nash equilibrium (NE) of the game for both
unsliceable and sliceable tasks. We further propose a QoS-aware
distributed algorithm to attain an NE and provide an upper bound
on the price of anarchy in the game. Finally, our simulated results
show that our algorithm scales well as the swarm size increases and
it has a stable performance gain in various parameter settings.

Index Terms—Computation offloading, QoS, robot swarms,
cloud robotics, game theory.

I. INTRODUCTION

TO SATISFY the needs of some sophisticated missions that
one single powerful robot cannot accomplish alone, robot

swarms, e.g., unmanned aerial vehicle (UAV) swarms, have at-
tracted increasing research attention in recent years [1]–[4]. For
example, companies such as Facebook and Google are planning
to integrate UAV swarms as low-altitude platforms into a cellu-
lar network to provide broadband connectivity and compensate
for cell overload or site outages. As another example, a robot
swarm was used to remove debris from the interior and exterior
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areas of the nuclear reactor buildings, and to monitor radiation
levels at the Fukushima Daiichi nuclear power plant [5]. How-
ever, because of the limited on-board computational resources
in robot swarms, it is still a challenging task for such swarms
to conduct computation-intensive applications, which usually
generate large amounts of data and demand huge processing
power. Performing such applications with robot swarms would
cause poor quality of service (QoS), such as high latency and
high energy consumption, which are critical in these applica-
tions. Therefore, it is important to study computation offload-
ing, which allows robot swarms to benefit from the abundant
computing power of cloud data centers.

Many efforts have been made in computation offloading and
can be classified into three main categories. 1) Computation
offloading for computational tasks (e.g., simultaneous localiza-
tion and mapping (SLAM), and object recognition). Garca [6]
demonstrated the viability of cloud-based computation offload-
ing for a vision-based navigation assistance task. 2) Centralized
QoS-aware computation offloading. Barbarossa et al. [7] pro-
posed a centralized computation-offloading strategy to minimize
the energy expenditure under a delay constraint. 3) Distributed
QoS-aware computation offloading in a single-layer structure.
Chen et al. [8] proposed a distributed single-layer computation-
offloading scheme based on game theory. However, the above
three categories of existing methods do not achieve QoS-aware
computation offloading for robot swarms because of the follow-
ing challenges.

1) Multi-Hop Cooperative Computation Offloading: This ap-
proach has been considered only by few scholars in previous
studies. Most existing offloading approaches [7]–[11] assume
that all edge devices can connect to cloud data centers directly
via wired or wireless networks, called here single-hop computa-
tion offloading. However, a mobile robot may experience poor
or even intermittent connectivity and may be unable to connect
to a cloud access point directly (e.g., robots in a tunnel or in an
areas of damage after a disaster). Robots must then collaborate
with each other to forward transmitted messages to the remote
cloud via neighboring robots for computation offloading, called
here multi-hop computation offloading. A robot node must con-
sider not only its own tasks but also relay tasks from neighboring
robots, which makes the computation-offloading problem more
complex. Hence, the multi-hop computation-offloading problem
should be investigated carefully.

2) Joint Computation Offloading and Routing: Furthermore,
because the above existing studies [7]–[11] only consider
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single-hop communication, routing strategies for data transfer
for cost minimization have been ignored. However, because of
limited communication resources in robot swarms and large
data volumes from multiple sources (e.g., sensors or cameras
on robots), the data transfer cost (e.g., communication latency
or energy consumption) may become a bottleneck of the whole
cloud robotic system, and thus efficient routing strategies are
required to reduce the data transfer cost.

3) Task Slicing: Most of existing studies [8]–[11] that apply
game theory to computation offloading only consider unslice-
able tasks; i.e., each task can only be executed as a whole by a
computing node in the cloud or locally. However, computation
tasks can often be sliced into several subtasks using mechanisms
like the framework proposed in [12], which allows more flexible
system design and achieves maximum speed in data processing.
In this paper, we consider both unsliceable and sliceable tasks
for efficient task processing.

To deal with the first challenge, we formulate the multi-hop
cooperative communication model (MCCM) as a multi-hop co-
operative computation-offloading game (MCCG) and show the
existence of a Nash equilibrium (NE). For the joint compu-
tation offloading and routing issue, we propose a QoS-aware
distributed algorithm that can reach an NE. Finally, for the
task-slicing issue, we extend the base model using continu-
ous potential theory. To the best of our knowledge, this is the
first attempt to study the QoS-aware distributed computation-
offloading problem considering multi-hop cooperative offload-
ing and joint computation offloading and routing.

Our main contributions can be summarized as follows.
1) We first study the multi-hop cooperative computation of-

floading and routing problems jointly for QoS improve-
ment. Aiming for latency minimization and energy effi-
ciency, we then formulate the MCCM as an MCCG using
game theory.

2) We propose a locked–free mechanism and a QoS-aware
distributed algorithm for MCCG. Based on the locked–
free mechanism, potential game theory and congestion
game theory, we solve the MCCG problem and show the
existence of an NE. Furthermore, we propose a multi-hop
cooperative messaging mechanism for our algorithm, so
that each robot can gain enough information to obtain its
real-time cost function and make decisions.

3) We consider both sliceable and unsliceable tasks for com-
putation offloading. We first extend our model to address
the offloading problem for sliceable tasks. We then use the
continuous potential game theory to analyze the extended
model and prove that the sliceable task can be reduced to
an unsliceable task in MCCM.

4) We also describe extensive simulations to evaluate our
algorithm. The numerical results demonstrate that our al-
gorithm scales well as the swarm size increases and is
more efficient than existing algorithms. We also show that
our algorithm achieves stable performance gain for vari-
ous parameter settings.

The remainder of this paper is structured as follows. In
Section II, we discuss related research. In Section III, we in-
troduce our MCCM. In Section V, we design the MCCG bases
on our system model. In Section VI, we propose a QoS-aware

distributed algorithm. In Section VII, we evaluate our proposed
solution, and Section VIII concludes the paper.

II. RELATED WORK

The computation-offloading problem has been widely studied
for cloud and edge computing [13], [14]. Kehoe et al. [15] stud-
ied the computation-offloading problem in the cloud to facilitate
computing of optimal 3D robot grasping. He et al. [16] proposed
a novel cloud-based computation framework for real-time mul-
tirobot collision avoidance. Mohanarajah et al. [17] presented
some techniques for parallelizing the computationally expensive
operations of map optimization and map merging in a commer-
cial data center for collaborative 3D mapping. However, these
solutions do not consider QoS optimization for computation
offloading.

The QoS-aware computation-offloading problem has also
been studied for cloud robotics systems [18], [19]. Rahman
et al. [20] proposed a genetic algorithm-based computation-
offloading scheme considering QoS guarantees. Li et al. [21]
proposed a centralized architecture to extend the capability of
robots by leveraging the rich services provided in the cloud with-
out sacrificing QoS. Ko et al. [22] proposed a spatial and tempo-
ral offloading algorithm considering transmission cost and en-
ergy efficiency. However, these centralized offloading schemes
require all the UAVs to submit their personal information (e.g.,
resource and network status, data size, and the complexity of
tasks) to a centralized computing node (e.g., the remote cloud)
for offloading decisions, which will increase the controlling and
signaling overhead of the computing node.

To our knowledge, only a few studies have addressed the
QoS-aware distributed computation-offloading problem. Those
most related to our work are [8]–[11], because they all use game
theory to solve the computation-offloading problem. Chen et al.
[8] constructed a single-channel wireless model in which each
mobile device user has a binary decision variable: offload com-
putation or compute locally. Based on that work, Chen et al. [9]
proposed a multi-channel wireless model and presented a dis-
tributed algorithm to compute an NE. Ma et al. [10] considered
a multi-channel, fair bandwidth sharing, and nonelastic cloud
model, and prove that the game has an exact potential. Josilo
et al. [11] also considered fair bandwidth and a nonelastic cloud.
But in her model, the computation capability of the cloud is a
nonincreasing function of the number of members offloading,
which is closer to real situations.

In this paper, we also combine potential game theory and con-
gestion game theory to solve our problem. However, we extend
the range of application to multi-hop computation offloading,
where there are multiple layers in our model instead of the single
layer in the traditional model presented in [8]–[11]. The most
important contribution of our work is that we further extend the
feasible decision range for robot swarms so that game theory
can be applied to more computation-offloading scenarios such
as multi-hop communication.

III. SYSTEM MODEL

In MCCM, we consider that a set of robots P = {1, 2, . . . ,
N} equipped with different wireless communication and
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TABLE I
NOTATION DEFINITIONS

onboard computation capabilities and a set of base stations (BSs)
B = {1, 2, . . . , b} are distributed in the space. Both robot-to-
base station (R2B) communications and robot-to-robot (R2R)
communications are based on LTE Direct technology [23]. In
order to facilitate the communication and computation resource
sharing among heterogeneous robots, the Software-Defined Net-
working (SDN) based control management frameworks [24]–
[26] can be adopted in practice.

Similar to other works in computation offloading (e.g. [8]–
[11]), MCCM is quasi-static, which means each robot moves
slowly or keeps unchanged during a computation offloading
period. Each robot i ∈ P has a computation task Mi = (Si, Li)
to complete, where Si is the size of computation input data and
Li is the total number of CPU cycles required to accomplish
the task. If a robot decides to offload its computation task to
the cloud, the data of its task needs to be transferred to one of
the BSs. As shown in Fig. 1, the task is computed locally if the
color of its name is black, such as M4, M6, M7. If the color of
the task’s name is not black, it means the task is offloaded to the
cloud through the path with the same color, such as M1, M2,
M3 and M5.

Fig. 1. System model for robot swarm.

Fig. 2. Members in different layers according to sm ax.

However, in reality, some robots may be located far away
from the BSs or be blocked by obstacles, so they can not offload
their tasks to the cloud directly. In order to give them a chance
to offload and to improve the overall performance of the robots,
MCCM allows them to offload their tasks to the BSs via some
other robots. For example in Fig. 1, the robot located in Layer2

can offload its task via one robot to the BS and the robot located
in Layer3 offloads its task via two robots.

In this paper, we use the term member to refer to
communication-capable members such as robots or BSs, and
we denote by smax the maximum range over which a member
can transfer data to other members. For example, in Fig. 2, a
member (robot or BS) is located at the center of a circle and its
communication range covers the area of the circle with radius
smax and any other members within that circle can communicate
directly with the member at the center. In contrast, two members
in different circles cannot communicate with each other directly;
they need the help of one or more relays for communication.

According to the value of smax and the distance between each
pair of robots, we can classify every robot into different layers;
by definition, only members in adjacent layers can communicate
directly. We assume all BSs belong to layer 0, which is denoted
by B = P0. Then, the robots that can communicate with BSs
belong to layer 1, and so forth for the remainder of the swarm.
The most remote layer in the swarm is layer L. Thus, we can
deduce that the robots in set Pl that have the same hop count
hi = l ∈ [1, L] to the BS lie in the same layer l, where Pl :=
{i ∈ P|hi = l}.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on November 27,2020 at 02:04:35 UTC from IEEE Xplore.  Restrictions apply. 



4030 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 4, APRIL 2019

We define the following three roles for members in a robot
swarm for a clear exposition in later sections:

1) Relay: The members that help others transmit data indi-
rectly or directly are collectively called relays.

2) Parent: The relay i that helps another member j transmit
directly is the parent of j.

3) Child: The member i that transmits its data to another
member j directly is the child of j.

Each robot i in Pl will choose one and only one member
in the Pl−1 as its parent p(i). If robot i decides to offload a
task, it will transmit both its own task and relay tasks to its
parent. Otherwise, if it decides to compute locally, it will only
transmit its relay tasks to the parent. Thus, each robot i has a path
ri = {i, p(i), p(p(i)), . . . , b}, where b ∈ B and p(b) = cloud.
In addition, we define the notation k(i), which refers to all
children of i, where ∀j ∈ k(i), p(j) = i.

IV. PROBLEM STATEMENT AND FORMULATIONS

Based on the system model introduced above, we propose
a decision-based description of the multi-hop computation-
offloading and routing problem, with joint consideration of la-
tency minimization and energy efficiency.

A. Decision-Based Description

We first define Di to be the decision set (transferable mem-
bers) for i, where robot i’s decision di ∈ Di is a tuple (a, ri)
with a ∈ {0, 1}. Accordingly, di = (0, ri) means computing
locally, di = (1, ri) means using the path ri to offload. We use
an operator [ ] to index the decision; thus, di [0] = a ∈ {0, 1}
and di [1] = ri .

Then, we refer to the collection d = {d1,d2, . . . ,dn} as a
decision profile consisting of all robots’ decisions. The set of all
possible decision profiles is D = D1 × D2 × · · · × DN , thus
we get d ∈ D.

Using the above notation, the set of tasks which are in the
charge of player i denotes:

Mof f
i (d) = {Mj |dj = (1, rj ) and i ∈ rj}, (1)

and the number of tasks in the charge of player i is nof f
i (d) =

|Mof f
i (d)| includes all tasks that require the help of i.

We denote d−i = d\di = {d1, . . . ,di−1,di+1, . . . ,dN }
which consists of all decisions in the decision profile d except
the i’s decision.

If one relay robot i decides to change its parent from p(i)
to p′(i) to gain some benefit, its path will change to r′i = {i, p′
(i), p(p′(i)), . . . , b} and the path rj for robot j, which includes
i, i.e., i ∈ rj will also change to r′j = {j, . . . , i, p′(i), p(p′(i)),
. . . , b}. Note that although i decides to change its parent, robot
p′(i) is not affected, which means that the parent of p′(i) remains
p′(p′(i)) = p(p′(i)).

Based on the fact that path ri is composed of several commu-
nication links between members, we propose a function f(ri),
which can be used to transfer path ri into a different expression
which is about a set of communication links. For example, if ri

= {i, p(i), p(p(i)), . . . , b}, f(ri) = {(i, p(i)), (p(i), p(p(i))),
. . . , (p−1(b), b)}, where each communication link is denoted
by a tuple in parentheses.

B. Local Computing Cost

For local computing, robots perform the calculation task lo-
cally using its own CPU or GPU. We set Fi as robot i’s com-
puting capacity (i.e., CPU cycles per second) and we assume
that different robots may have different computing capabilities.
Thus, the time cost of task Mi is T 0

i = Li

Fi
and the energy cost of

task Mi is E0
i = μiLi , where μi denotes the energy consumed

per CPU cycle for robot i. The cost when task Mi is computed
locally by robot i can, therefore, be expressed as:

C0
i = γT

i T 0
i + γE

i E0
i = γT

i

Li

Fi
+ γE

i μiLi, (2)

where γE
i and γT

i denote the weights of computation energy
and time, respectively, for robot i’s decision-making. Based on
the related studies [8], [9], and [11], we propose a novel method
of weight calculation for more accurate description of such
weights, which takes the difference between the units of energy
and time into account. We set γT

i = δT
i /T 0

i and γE
i = δE

i /E0
i ,

where 0 ≤ δT
i and δE

i ≤ 1 denote the importance of compu-
tational energy and time, respectively. If a robot has limited
battery capacity, we can set δE

i > δT
i , thus making energy cost

more important. If a robot is doing some latency-sensitive tasks,
we can set δE

i < δT
i to make latency play a predominant role.

C. Computation-Offloading Cost

When computation is offloaded, the robot must first transfer
its data to the cloud. If the robot is located in a distant layer,
it requires some support from intermediate robots. Thus, we
define the capacity in bits/second R(i,j ) of the communication
link (i, j) between sender i and receiver j and the bandwidth is
divided equally for each relay task in robot i. Given the number
of relay tasks transferred between i and j in decision profile d
as nof f

(i,j )(d), we can compute the channel capacity for each task
from i to j in decision profile d as:

ω(i,j )(d) =
R(i,j )

nof f
(i,j )(d)

. (3)

Therefore, using the channel capacity for each task ω(i,j )(d)
and the size Sk of computation task Mk , we can compute the
transfer time for task Mk from i to j as

T of f
(i,j )(d,Mk ) =

Sk

ω(i,j )(d)
. (4)

Similar to other studies [9], [10], we do not consider the time
required to transmit the computing results because the results
data are usually much smaller than the origin data.

In the related studies [8], [11], the transmission energy cost
is defined as the product of transfer time and the transmit power
for each robot. Using the same calculation, in our model, the
energy cost for transferring Mk from i to j is depicted as:

Eof f
(i,j )(d,Mk ) = WiT

of f
(i,j )(d,Mk ) =

SkWi

ω(i,j )(d)
, (5)

where Wi denotes the transmit power of i while sending data.
The computing time for task Mi in the cloud is:

T comp
cloud (d,Mi) =

Li

F comp
cloud (d)

, (6)
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where Fcomp
cloud (d) is a function of the number of robots which de-

cide to offload computation in decision profile d. In our model,
we assume that the cloud is an elastic cloud, which means that
the cloud infrastructure is large and the cloud computing re-
sources are sufficient. Then, Fcomp

cloud (d) = Fcloud , where Fcloud

is a constant.
Using Eq. (4), the total time for transferring Mi from player

i to the cloud is:

T of f
(i,cloud)(d,Mi) =

∑

j∈f (ri )

T of f
j (d,Mi) = Si

∑

j∈f (ri)

nof f
j (d)
Rj

.

(7)
Using Eq. (5), the transfer energy cost for Mi from player i

to its parent is:

Eof f
(i,p(i))(d,Mi) =

Sin
of f
(i,p(i))(d)Wi

R(i,p(i))
. (8)

According to Eq. (6), Eq. (7), and Eq. (8), we can compute
the computation offload cost for player i with task Mi as:

Cof f
i (d) = γE

i Eof f
(i,p(i))(d,Mi) + γT

i (T comp
cloud (d,Mi)

+ T of f
(i,cloud)(d,Mi)),

(9)

where γT
i = δT

i /T 0
i , γE

i = δE
i /E0

i , and 0 ≤ δT
i and δE

i ≤ 1
likewise. We can see that the equation does not include the
energy cost for the intermediates, only consisting of the cost
for i. Because we assume that every robot is selfish and has
benefit-oriented mechanisms, they will only consider their own
interests and will not care about other robots.

D. Relay Cost

The robots may need to help other robots offload as a relay.
In this paper, the social responsibility of the relay is to transmit
the relay task to its parent and the return data of the task are
not considered. Thus, robots only consider the energy cost of
the relay tasks but do not care how long the relay tasks take to
arrive at the destination. Thus, the cost of i as a relay is:

Crelay
i (d) = γE

i

∑

Mk ∈M o f f
i (d)\Mi

Eof f
(i,p(i))(d,Mk ). (10)

E. Total Cost

In order to define robot i’s cost in the decision profile d, we
set an indicator function for robot i:

I(di , j) =

{
1, if di [0] = j

0, otherwise,
(11)

where j is a binary integer.
The cost for robot i of task Mi in the decision profile d is:

Ci(d) = Cof f
i (d)I(di , 1) + C0

i I(di , 0) + Crelay
i (d). (12)

Finally, Eq. (12) gives us the total cost in the system:

C(d) =
∑

i∈P
Ci(d). (13)

V. GAME FORMULATION FOR MULTI-HOP COOPERATIVE

COMPUTATION-OFFLOADING

When solving the proposed problem, the centralized algo-
rithms (such as the heuristic algorithm presented in [18]) face
two challenges.

1) Because of the complexity of the model, the problem of
finding the best decision to minimize the total cost can be
extremely hard.

2) Due to commercial competitions between different coun-
terparties, the production information with respect to hard-
ware parameters of their robots are possibly confidential.
Thus, the information isolation makes a centralized algo-
rithm that operates over multiple robot platforms impos-
sible in practice.

Therefore, we attempt to solve our problem using game the-
ory, which is a useful tool for decision-making. For our problem,
it can leverage the intelligence and computing capacity of each
robot, which can ease the heavy burden of computing and man-
agement at the center. It also allows the privacy of information
and individual interests of each robot to be maintained while
also guaranteeing collective interests.

A. Definition of the Game

We consider that each robot is rational and the goal of each
robot is to adapt its decision to minimize its cost Ci(d), i.e.,
d∗

i ∈ argmind i ∈D i
Ci(di ,d−i). Then, we can formulate the

above problem as a non-cooperative game G = 〈P, (Di)i∈P ,
(Ci)i∈P〉, where P is the set of robot players, Di is the deci-
sion space of player i, and Ci : Di → R is the payoff function
associated with player i. We define the game as a multi-hop co-
operative computation-offloading game (MCCG) and our goal
is to find an NE in which each player cannot decrease its cost by
unilaterally changing its own decision. We define NE as follows:

Definition 1: An NE of G = 〈P, (Di)i∈P , (Ci)i∈P〉 is a de-
cision profile d∗ with the property that for ∀i ∈ P:

Ci(d∗
i ,d

∗
−i) ≤ Ci(di ,d∗

−i),∀di ∈ Di . (14)

The NE can be interpreted as a self-stability property by which
all robots can achieve a mutually satisfactory state in which no
robot wants to change its decision. However, if one robot is
willing to make a sacrifice, others may be able to make better
decisions. Otherwise, if no one changes its own decision first,
there will be no better decision for every player; thus, no one
has an incentive to deviate.

B. Definition of the Better Decision

In MCCG, every rational player (or robot) has an incentive
to choose a decision that benefits itself, so we next define the
“better decision” for players in different states, which is helpful
for us to construct the following proofs.

Definition 2: If a player i chooses another player p′(i) as its
parent and Ci(d−i , (1, r′i)) < Ci(d−i , (1, ri)), then using the
path r′i = {i, p′(i), . . . , b′} is a better decision than using the
path ri = {i, p(i), . . . , b}.

Definition 3: For a player i, if d′
i = (0, ri) and di = (1, ri)

and Ci(d−i ,d′
i) < Ci(d−i ,di), where r′i and ri can be the same
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Fig. 3. The status of each robot is either locked or free.

or different, then local computing is a better decision than offload
computing.

Definition 4: For a player i, if d′
i = (1, ri) and di = (0, ri)

and Ci(d−i ,d′
i) < Ci(d−i ,di), where r′i and ri can be the same

or different, then computing offload through path r′i is a better
decision than computing locally.

C. Locked–Free Mechanism

To ensure an NE in MCCG, we then introduce a control
mechanism, which we call the locked–free mechanism. We will
show that MCCG can only attain an NE using our algorithm
with the mechanism in Section VII.

The locked–free mechanism means that a relay robot in
charge of other robots’ tasks is forbidden to change its deci-
sion (e.g., from computation offloading to local computation, or
from one parent to another parent). Only robots with no relay
tasks can change their decisions freely. For example in Fig. 3,
robot M1 decides to offload and robot M4 is the parent of robot
M1, thus we say M4 is locked. Because robot M1 doesn’t have
any relay tasks, robot M1 is free. In the same way, we get robot
M5 is locked and robot M2 and M3 is free.

D. Unsliceable Tasks

In this section, to analyze the core of our problem, we first
ignore any communication delays in the robot swarms and as-
sume all robots know the global congestion information in the
system, which will be discussed again in Section VI.

Based on the locked–free mechanism in Section V-C and the
finite-improvement property (FIP) for potential game proposed
in [27], we propose a theoretic algorithm in Algorithm 1 and a
theorem about it as follows:

Theorem 1: For an unsliceable task, given an arbitrary state
in MCCG, the free robots can reach to an NE through a finite
number of steps by using the ImproveRobot algorithm.

Proof: See Appendix A. �

E. Sliceable Tasks

We now extend the range of decision by allowing all robots to
partition their tasks into two arbitrary parts. For example, a robot
might choose to compute 40% of its task in the cloud and 60%
locally. We believe that this extension can benefit our multi-hop
computation-offloading system and achieve maximum speed in
processing the data.

We refer to the weight αi as the proposition of task Mi to
offload computing and weight (1 − αi) as the proposition of
the task to compute locally, where ∀i ∈ P, αi ∈ [0, 1]. For a
better description of player i’s decision, we use a new notation:
yi = (αi, ri) ∈ Yi , where ri is the path for robot i and Yi is
the decision set for player i. We can then redefine the cost of
player i in this case as:

Ui(y) = αiC
of f
i (d) + (1 − αi)C0

i + Urelay
i (y), (15)

where di [1] = yi [1] = ri , which is consistent when each d and
y and Ui(y) is continuously differentiable.
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In contrast to the relay cost for an inseparable task, here we
adjust Urelay

i (y) as:

Urelay
i (y) =

∑

Mk ∈M o f f
i \Mi

γE
i αkEof f

(i,p(i))(d,Mk ). (16)

Similarly, we obtain the total cost to the system as U(d) =∑
i∈P Ui(d) and thus construct the MCCG in a new way as

H = 〈P, (Yi)i∈P , (Ui)i∈P〉. As with the goal for unsliceable
tasks, our objective is to find a decision profile y∗ in NE that
satisfies the following condition:

Ui(y∗
i ,y

∗
−i) ≤ Ui(yi ,y∗

−i),∀yi ∈ Yi ,∀i ∈ P. (17)

To attain the NE in H , we propose the following theorem:
Theorem 2: For an sliceable task, given an arbitrary state in

MCCG, the free robots can reach to an NE through a finite
number of steps by using the ImproveRobot algorithm.

Proof: See Appendix B. �

VI. QOS-AWARE DISTRIBUTED ALGORITHM

In this section, to enable each robot to gather enough infor-
mation to obtain its own real-time cost function for the Im-
proveRobot algorithm (Algorithm 1), we propose a QoS-aware
distributed algorithm to reach an NE in a realistic multi-hop
cooperative communication system.

A. Distributed Algorithm Design

In the ImproveRobot algorithm, we assume that every robot
knows the real-time congestion of the whole system, so every
robot can predict the future condition and change its decision ac-
cording to the latest communication flow information. However,
in realistic systems, it will be very difficult to realize.

The traditional method lets all robots transmit their condition
information to the cloud and the cloud can aggregate all this
information into a global database and send it to every robot,
but this will also be very expensive.

Therefore, we construct a multi-hop cooperative messaging
mechanism and we first introduce some message types for com-
munication between the cloud and the robots.

� Begin Message (BM): Initially, the cloud will send a Be-
gin Message that includes the condition of the cloud and
instructs each robot to collect Conditional Messages.

� Conditional Message (CM): The message includes infor-
mation about the uplink rates to the parent and the number
of relay tasks for a robot.

� Keep Message (KM): If a free robot does not have a better
decision or it is locked, it will generate a KM to tell the
cloud it does not want to change.

� Request Message (RM): If a free robot has a better decision,
it will generate an RM to request an update from the cloud.

� Allow Message (AM): After receiving the RM from a robot,
the cloud will send an AM to that robot to update the current
decision of the robot.

All communications between any pair of robots are based on
the above five kinds of messages, so the information in these
messages should be shared among different organizations. Using
only these five kinds of messages can substantially protect the

privacy of each robot because the hardware parameters of robots
are isolated with each other.

Then, we can construct a communication mechanism to solve
the above problem as follows. The cloud first sends a BM to
begin the game. The BM is transferred to the robots in P1 and
they will, in turn, transfer the BM to P2 and so forth until it is
delivered to every robot in the swarm and they will all know
that they are players in MCCG. Some robots’ positions may
be too distant to communicate with anyone, so they will not
be included in the game. After receiving the BM, each robot
will begin to collect a CM about itself; for example, its current
decision and uplink rates to transferring robots. This massive
information collection is distributed to all the robots so it can
both reduce the burden of the center and protect each robot’s
privacy. In some scenarios, the robots can be owned by different
individuals and they may cooperate to finish some tasks, but
they do not want to leak their respective private information.

Next, at the same time as BM is sent, the center will also send
a CM containing the computation capacity of the cloud to the
robots in the same way as BM is sent. Every robot will thus
know the computation capacity of the cloud. Before each robot
transfers the cloud’s CM to the robots in its next layer, it will
also pack its own CM and all CMs it received to the next layer
within the range of smax .

After receiving CMs from all robots within the range of smax ,
a robot can compute its set of feasible decision profiles and then
choose a better decision from the set. If the set of better decisions
remains empty, the current decision is the best option, so it keeps
its decision unchanged and sends KM to the cloud. However, if
there exists a better decision, it will have an incentive to choose
a new decision for its own benefit and send RM to the cloud.

From Algorithm 1, we know that if in every step we let only
one free robot improve its decision, the MCCG can reach an NE
within a finite number of improvement steps. To utilize this, we
set the cloud as a judge that can select one robot to change its
decision. There are many possible selection approaches. In our
mechanism, the cloud selects the first RM it receives. If the cloud
doesn’t receive any RM and the number of KMs received equals
the total number of robots, we know the system has reached an
NE and the game is finished.

If a free robot improves its decision and stops offloading
computing or changes the offload to a new path, it will inform
the robots in the original path and the new path. Each locked
robot in these paths will check whether it still has any relay
tasks. Those without any relay tasks will change their state from
locked to free.

B. Performance Analysis

We introduce a metric named “price of anarchy” (PoA), which
is used to measure the damage suffered by a robot swarm or
the inefficiency of the equilibrium caused by the absence of a
central authority. It is defined as the ratio between the worst
social cost of an NE in our game and of the optimal result [28].
In this paper, we consider the social cost as the sum of all costs
C(d) =

∑
i∈P Ci(d). Hence for our game, the PoA is equal to

the social cost of the worst decision profile d∗ in NE over the
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optimum social cost:

PoA =
maxd∗

∑
i∈P Ci(d∗)

mind∈D
∑

i∈P Ci(d)
(18)

Theorem 3: The PoA for the multi-hop cooperative
computation-offloading game has the upper bound:∑

i∈PL
C0

i +
∑

i∈P\PL
Vi∑

i∈P Ki

which can be calculated by three different constants for each
UAV i ∈ P: Vi = max{C0

i ,maxd∈D{Cof f
i (d)}} + maxd∈D

Crelay
i (d), Ki = min{C0

i ,mind∈D{Cof f
i (d)}} and C0

i = the
local computing cost.

Proof: See Appendix C. �

VII. EVALUATION

A. Simulation Design

Evaluation Metrics: In this section, all algorithms will be
evaluated based on the following two metrics:

1) Similar to the approach presented in [29], we use perfor-
mance gain to evaluate the overall performance of the sys-
tem. The performance gain of an algorithm is calculated
as the ratio between the system cost of local computing of
all tasks and the system cost of the algorithm. The bigger
performance gain indicates a higher overall performance
of the player set.

2) Similar to the approach presented in [9], we also consider
how many robots become more efficient when adopting
the proposed algorithm. Thus, in this paper, we compute
a profit ratio, which is the proportion of robots that gain
profit. The bigger profit ratio means more players experi-
ence improvement.

Comparing Approaches: From an optimization perspective,
the recent related work solving the distributed computation of-
floading problem can be generally classified into three cate-
gories: 1) latency-minimization algorithms, 2) energy-efficient
algorithms, and 3) joint latency- and energy-aware algorithms.
Therefore, the following four algorithms are used as compared
algorithms:

1) Latency-Dominant Algorithm: The latency-dominant dis-
tributed algorithm is developed by modifying the weight
parameters of our QoS-aware distributed algorithm, i.e.
δT
i = 1 and δE

i = 0. Based on this setting, the energy cost
is ignored and only the latency is minimized.

2) Energy-Dominant Algorithm: The energy-dominant dis-
tributed algorithm is proposed by modifying the weight
parameters of our QoS-aware distributed algorithm, i.e.
δT
i = 0 and δE

i = 1. Based on this setting, the latency is
ignored and only the energy cost is minimized.

3) Single-Hop Offloading Algorithm: A distributed single-
hop computation offloading algorithm [9] is used, which
considers both latency and energy optimization. In this
algorithm, the robots located far away from the BSs or
blocked by obstacles can’t offload their tasks to the BSs.
Only the robots located around the BSs are allowed to
perform task offloading.

4) Greedy Algorithm: In addition, we also implement a cen-
tralized algorithm which picks the best solution from 500

Fig. 4. Simulation map for UAVs and BSs.

iterations using randomized decision profiles to compare
with the proposed algorithm.

B. Simulation Settings

Following the system model described in Section III, we first
study some UAV swarms that are randomly located over an
800 m × 800 m plane, which is much bigger than the range
of mobile users modeled in [8], [9], and [11]. For wireless
access, we set the bandwidth as B = 10 MHz and the trans-
mitting power of each UAV i, Pi , as 5 W. We assume that
σ2 = −120 dBm denotes the noise power and β0 = −50 dB de-
notes the channel power at unit distance d(i,j ) = 1 m, as in [30]
and [31]. According to the expression in [31], we find that the
capacity of the communication channel between sender i and re-
ceiver j is R(i,j ) = Blog2(1 + λ0

i /d2
(i,j )) where λ0

i = β0Pi/σ2

denotes the reference of i’s received signal-to-noise ratio at
d(i,j ) = 1 m and d(i,j ) denotes the distance between i and j.

For the communication between members, we set the max-
imum communication range between them as smax = 60 m.
For the computation task, we consider the visual track applica-
tion of UAV swarms such as [32] where the data size of each
computation task is uniformly distributed on [200, 250] K and
is about the size of a picture. The total number of CPU cycles
for each task is uniformly distributed in [1.5, 2] Gcycles. For the
computation capacity, we selected the computation capacity Fi

of UAV i from a continuous uniform distribution on [1, 2] GHz
and the computation capacity of the cloud is set to 100 GHz,
which is 100 times the capacity of a UAV, according to [33].

C. Simulation Methodology

Using the above data, we first simulated a scenario with 150
UAVs and 10 BSs and then let the system reach an NE as shown
in Fig. 4. In the figure, the lines denote the communication
paths between members. A darker line means more data are
transferred through the path. The green pentagons identify the
BSs and the circles refer to UAVs; the color of a circle depends
on both its layer number and the color bar. For example, dark
red UAVs are located in layer 1 and dark blue UAVs are located
in layer 8. From the distribution and darkness of all lines, we
can see intuitively that the lines close to a BS are darker and
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Fig. 5. Time-varying cost of each UAV yielded by our distributed algorithm.

Fig. 6. Offloading ratio vs. layer number.

denser. In summary, we assume that the UAVs close to a BS are
more likely to offload their tasks because it costs less to transmit
their data to the cloud.

Next, to confirm our assumption, we show the offloading
ratio in different layers for three algorithms in Fig. 6. We can
see that the offloading ratio for the energy-dominant distributed
algorithm is nearly 90% for all layers. This is because, in this
algorithm, each UAV only considers the energy used to transmit
data to its parent, so the offloading ratio will not differ greatly
in the different layers. In addition, we can see the offloading
ratio of the outmost layer is extremely high, because there are
few UAVs in the outmost layer and it will cause large error.
However, the latency-dominant distributed algorithm considers
the total time from the UAV to the cloud, so the close UAVs
are more likely to offload computation and the distant UAVs are
more likely to compute locally. Then, because the QoS-aware
distributed algorithm considers both, the offloading ratio lies
between the other two. In summary, we can confirm the above
assumption from Fig. 6.

Theorem 1 states that only one robot can choose better deci-
sion in each time slot so that the ImproveRobot algorithm can
finish in a finite number of steps. Fig. 5 illustrates the change
in each UAV’s cost over time. We can see that our algorithm
allows only one UAV to choose a better decision in a time slot
and all UAVs finally reach a stable state.

Fig. 7. Dynamics of system cost with locked-free mechanism and without
locked-free mechanism.

Fig. 8. Dynamics of potential function with locked-free mechanism and with-
out locked-free mechanism.

In Fig. 7, we can see that the system cost with locked–free
mechanism has a faster descent trend than it does without the
mechanism. In Fig. 8, we can see that the locked–free mecha-
nism also make the potential function be able to decrease faster
in each step. Furthermore, from Theorem 1, we know that the
locked–free mechanism can guarantee that MCCG converges
to an equilibrium. Without the locked–free mechanism, MCCG
will not converge fast and can’t guarantee to reach an NE. In
summary, the locked–free mechanism not only guarantees an
NE in theory but also has a beneficial effect on our algorithm in
practice.

D. Topology Varying Adaption

In the real scenarios, the topology in mobile environment
usually is time-varying. Therefore, our algorithm needs to run
continuously. In order to study the performance of our algorithm
when the topology changes, we conduct a simulation to evaluate
how our algorithm adapts to the varying topology.

In Fig. 9, we firstly let the robot swarms reach an NE by our
QoS-aware distributed algorithm with the locked–free mecha-
nism as we have done in the simulation shown in Fig. 7. After 80
time slots, the robots reach a stable state (denoted by the most
left-hand-side green circle), i.e. NE. Then, each robot is allowed
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Fig. 9. QoS-aware distributed algorithm quickly adapts to multiple-time
topology changing.

Fig. 10. Performance gain vs. number of UAVs.

to move freely in the speed 20 m/s heading any direction for 2
seconds [34]. When the topology of the robot swarms changes,
the system cost increases (denoted by the most left-hand-side
blue star) shown in Fig. 9. To our surprise, we observe that the
system cost only increases to 130, which is much lower than
the original system cost 300. Besides, the swarms can converge
to a new NE again only using 30 time slots (denoted by the
second green circle), which is much faster than the first time.
Similarly, we observe other 4 times topology changing. Each
time, the system cost can be controlled within a small range and
our algorithm can converge quickly to a new NE.

In summary, our QoS-aware distributed algorithm is capable
to quickly adapt to the topology changing in the practical mobile
environment and keep the system cost in a relative stable state.

E. Performance Comparison

To benchmark the performance of our QoS-aware distributed
algorithm, we compare it with the latency-dominant algorithm,
the energy-dominant distributed algorithms, the greedy algo-
rithm and the single-hop offloading algorithm. We ran our sim-
ulation with N = 10, . . . , 190, 200 UAVs and for each case, we
performed each simulation 1000 times. We show the average
performance gain by each algorithm in Fig. 10 and the average
profit ratio by each algorithm in Fig. 11.

Fig. 11. Profit ratio vs. number of UAVs.

Fig. 10 shows that the performance gain of our algorithm
is approximated by that of the latency-dominant algorithm but
much better than the performance gain of any other algorithms.
According to Eq. (7), Eq. (8) and Eq. (9), we can see that the
latency cost takes the total transmission time of path f(ri) into
account but the energy cost for i doesn’t include the energy cost
for the intermediate nodes in path f(ri). In other words, each
robot will experience the latency cost for the whole path and the
energy cost for only a small part of the whole path. Therefore,
the latency will dominate the system cost, which makes our
QoS-aware algorithm have similar performance gain with the
latency-dominant algorithm. No matter how many UAVs there
are, the performance gain of our algorithm is about 1.5, which
means it performs 1.5 times better than the situation that all
UAVs compute locally performs. All of the greedy algorithm,
the single-hop offloading algorithm and the energy-dominant
distributed algorithm perform worse as the number of UAVs
increases. For the greedy algorithm, this is because there will
be more possible situations with more UAVs, and the greedy
algorithm will gain less during 500 random iterations. For the
energy-dominant distributed algorithm, there will be more UAVs
located in the distant layer when the number increases. For the
single-hop offloading algorithm, if there are more UAVs existing
in the system, more of them are possibly located far away from
the BSs and unable to offload their tasks due to the constraint of
the single-hop offloading.

Fig. 11 shows that our QoS-aware distributed algorithm out-
performs any other algorithms in terms of profit ratio. This im-
plies that our QoS-aware algorithm enables more players gain
profit. To illustrate the importance of profit ratio, we can draw an
analogy with realistic social phenomena. If two different poli-
cies can deliver the same social economic benefits, then the one
that can allow more persons to gain benefit will be a better pol-
icy. In summary, although the performance gain in our algorithm
and the latency-dominant algorithm is similar, the profit ratio
of our algorithm is much bigger, which means our algorithm
outperforms any other algorithms.

F. Computation Complexity

In addition to the above optimization results, the time required
for each algorithm should also be considered. For our algorithm,
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Fig. 12. Offloading ratio vs. number of UAVs.

Fig. 13. Performance gain vs. CPU cycles of computation task.

we recorded the average number of iterations to NE with dif-
ferent number of UAVs and show them in Fig. 15. We can see
that the average convergence time increases linearly with the
number of UAVs from 10 to 200, where RMSE(0) = 6.398147
and R2

(0) = 0.980456, almost one. We observe that the rela-
tionship between time and number of UAVs is not linear with
fewer UAVs. As the number increases, the relationship becomes
more linear, where RMSE(100) < RMSE(40) < RMSE(0)
and R2

(100) > R2
(40) > R2

(0) .
We see that this is because the distances between members

are large and the number of relays are limited when there are few
UAVs, and it may be expensive for each locked UAV to offload
its computing to the cloud. However, when the number of UAVs
is large enough for the space, the communication distances be-
come shorter and there are more relay UAVs, so the cost will
reduce slowly as the number of UAVs increases. We can offer a
definition: If R2

(n) is bigger than 0.999, we can assume that the
number n of UAVs is enough to perform tasks in such a space.
We now use the offloading ratio to validate the assumption in
Section VII-G as follows.

G. Offloading Ratio

The offloading ratio equals to the number of offloading UAVs
divided by the number of all UAVs. In Fig. 12, we can again
validate the conclusion from Fig. 6 because the offloading ratio

Fig. 14. Performance gain vs. data size of computation task.

Fig. 15. Average number of iterations vs. number of UAVs.

for the energy-dominant distributed algorithm is higher than that
for the other distributed algorithms. One cause is the selfishness
of the UAVs.

We can also validate the summary in Section VII-F from 11
and Fig. 12. In both figures, we can see that the ratio for our
distributed algorithm clearly increases as the number of UAVs
ranges from 0 to 100. When the number is more than 100,
the offloading and profit ratios begin to stabilize. This is also
because at that time the number of UAVs is enough for the space
and the impact of more UAVs will be small.

H. Impact of Computation Amount and Data Size

To study the impact of computation amount on MCCG, we
compare the performance gain of different CPU cycles for the
computation task in Fig. 13. We can see that our distributed
algorithm works better than any other distributed algorithm.
The performance gain of both our algorithm and the latency-
dominant distributed algorithm are greater than 1 for any com-
putation amount. When the CPU cycles for a task exceed
1.5 Gcycles, the energy-dominant algorithm can gain a better
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result than local computing. This is because if the computation
amount is huge, it will be expensive to compute locally because
of the limited computation resources in each UAV. In summary,
we can make more profit with our algorithm if the amount of
computation per task increases.

Next, we evaluate the impact of the input data size of compu-
tation tasks. In Fig. 14, we assumed that all UAVs must offload
tasks that require a computation amount of [1.5, 2] Gcycles, and
record the performance gain for different data sizes of tasks
(0, 1000] KB by the different algorithms. We can see that the
performance gains of these three algorithms decrease as the data
size increases. For large data sizes, each offloading UAV may
spend more time and energy in offloading its task to the cloud and
the offloading UAV will gain less from the choice of offloading.

VIII. CONCLUSION

In this paper, we studied multi-hop computation offloading
jointly with the routing problem and proposed a QoS-aware
distributed algorithm using game theory for robot swarms in
cloud robotics. We first studied the MCCM for robot swarms and
formulated the QoS-aware computation-offloading and routing
problem as a MCCG using game theory. To solve the problem,
we then introduced a locked–free mechanism to constrain the
relay robots and used potential game theory to prove the game
has an NE with unsliceable tasks. We proved that sliceable tasks
can be treated the same as unsliceable tasks in our model. We
designed a QoS-aware distributed algorithm that can reach the
NE and proved the convergence of the algorithm. Finally, our
simulated results show the efficiency of our algorithm, which
scales well as the swarm size increases and has more stable
and better performance than other algorithms under a variety of
parameter settings.

In future work, we plan to study our MCCM in a nonelas-
tic cloud or edge-cloud scenario. We also hope to adopt an
on-demand bandwidth-sharing model, which would allow the
bandwidth of relay robots to be divided depending on the data
size or urgency of the relay tasks.

APPENDIX A
PROOF OF THEOREM 1

Before proving the theorem, we give the definition about the
ω-potential game and its properties according to [27]:

Definition 5: Let ω = (ωi)i∈P be a vector of positive num-
bers as weights. A game with payoff function (Ci)i∈P is
called an ω-potential game if it admits an ω-potential that
is a function Φ : D → R such that for every i ∈ P , d−i ∈
D−i , it satisfies Ci(d−i ,d′

i) − Ci(d−i ,di) = ωi(Φ(d−i ,d′
i) −

Φ(d−i ,di)) for every di ,d′
i ∈ Di .

The ω-potential game has FIP property which can be ex-
plained in simple terms: if we let only one player choose a
better decision in each time slot and then finally the system can
achieve an NE after a finite number of steps. So if our game is
an ω-potential game, we can get an NE by only allowing one
and only one player to choose a better decision in each time slot
as shown in ImproveRobot algorithm. After a finite number of
steps, no free player can decrease its cost further by unilaterally
changing its own decision, i.e., an NE.

First, to show that our game is an ω-potential game, we use
an idea from a congestion model according to [27]. We first
define the set of path segments L, where each path segment
j ∈ L can be expressed as the communication link between
member j[0] = a and member j[1] = b, i.e., j = (a, b). Then,
for j ∈ L, cj ∈ RN denotes the vector of congested levels for
path segment j, where cj (k) = k/Rj is the congested level
related to each user of segment j if there are exactly k players
using j to transfer their tasks. Using the notation cj , we can
simplify the cost expression Eq. (12) for player i to:

Ci(d) = Cof f
i (d)I(di , 1) + C0

i I(di , 0) + Crelay
i (d)

= (γT
i (T comp

cloud (d,Mi) + T of f
(i,cloud)(d,Mi))

+γE
i Eof f

(i,p(i))(d,Mi))I(di , 1) +
(

γT
i

Li

Fi
+ γE

i μiLi

)

×I(di , 0) +
∑

Mk ∈M o f f
i (d)\Mi

γE
i Eof f

(i,p(i))(d,Mk )

= γT
i (T comp

cloud (d,Mi) + Si

∑

j∈f (ri )

cj (n
of f
j (d)))I(di , 1)

+
(

γT
i

Li

Fi
+ γE

i μiLi

)
I(di , 0)

+γE
i Wic(i,p(i))(n

of f
(i,p(i))(d))

∑

Mk ∈M o f f
i (d)

Sk .

(19)

To map each payoff of the individual robot to a global func-
tion, we define a potential function Φ : D → R as:

Φ(d) =
∑

i∈L

no f f
i (d)∑

j=0

ci(j) −
∑

i∈P
QiI(di , 0)

+
∑

i∈P

γE
i Wi

γT
i

c(i,p(i))(1)I(di , 1),

(20)

where Qi = Li

Si
( 1

Fc
− 1

Fi
− γ E

i μi

γ T
i

). Then, we can prove that
MCCOG is an ω-potential game by Eq. (19), Eq. (20), and Def.
5. The proof includes the three following cases, corresponding
to the three kinds of better decisions defined in Sec. V-B.

Case 1: If player i chooses originally to compute locally but
then finds that there is a better decision d′

i to offload computing.
We find the variation of the potential function:

ΔΦ = Φ(d−i ,d′
i) − Φ(d−i ,di)

= Qi +
∑

j∈f (ri )

cj (n
of f
j (d) + 1) +

γE
i Wi

γT
i

c(i,p(i))(1).

(21)

The above variation of potential function can be interpreted
as the scenario that only robot i changes its decision in the robot
swarm while other robots don’t change. The congestion level of
path ri increases by one due to robot i’s offloading:

ΔCi = Ci(d−i ,d′
i) − Ci(d−i ,di)

= (γE
i Wic(i,p(i))(n

of f
(i,p(i))(d

′))Si + γT
i

Li

Fc
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+γT
i Si

∑

j∈f (ri )

cj (n
of f
j (d′))) −

(
γT

i

Li

Fi
+ γE

i μiLi

)

=
(
γT

i

Li

Fc
− γT

i

Li

Fi
− γE

i μiLi

)
+ γT

i Si

∑

j∈f (ri)

cj (n
of f
j (d′))

+γE
i Wic(i,p(i))(n

of f
(i,p(i))(d

′))Si

= γT
i Si

⎛

⎝Qi +
∑

j∈f (ri )

cj (n
of f
j (d) + 1)

+
γE

i Wi

γT
i

c(i,p(i))(1)
)

= γT
i SiΔΦ. (22)

Case 2: We can prove similarly as Case 1 that if di = (1, ri)
and d′

i = (0, ri), ΔCi = γT
i SiΔΦ.

Case 3: For a free robot i, if it is a better decision to use
another path r′i to offload than the original path ri :

ΔΦ = Φ(d−i ,d′
i) − Φ(d−i ,di)

=
∑

j∈f (r ′i )−f (ri )

cj (n
of f
j (d) + 1) −

∑

j∈f (ri )−f (r ′i )

cj (n
of f
j (d)) +

γE
i Wi

γT
i

(c(i,p ′(i))(1) − c(i,p(i))(1)),

(23)

where we can use f(r′i) − f(ri) to find the set of links in path
r′i but not in path ri .

ΔCi = (γE
i Eof f

i,p ′(i)((d−i ,d′
i),Mi) + γT

i T comp
cloud ((d−i ,d′

i),Mi)

+γT
i Si

∑

j∈f (r ′i)

cj (n
of f
j (d−i ,d′

i))) − (γE
i Eof f

i,p(i)((d−i ,di),Mi)

+γT
i T comp

cloud ((d−i ,di),Mi) + γT
i Si

∑

j∈f (ri )

cj (n
of f
j (d−i ,di)))

=
(
γE

i Wic(i,p ′(i))(n
of f
(i,p ′(i))(d))Si

+γT
i Si

∑

j∈f (r ′i )−f (ri )

cj (n
of f
j (d) + 1)

⎞

⎠

−
(
γE

i Wic(i,p(i))(n
of f
(i,p(i))(d))Si

+γT
i Si

∑

j∈f (ri )−f (r ′i )

cj (n
of f
j (d))

⎞

⎠

= γT
i Si

⎛

⎝
∑

j∈f (r ′i )−f (ri )

cj (n
of f
j (d) + 1) −

∑

j∈f (ri )−f (r ′i )

cj (n
of f
j (d)) +

γE
i Wi

γT
i

(c(i,p ′(i))(1) − c(i,p(i))(1))
)

= γT
i SiΔΦ.

(24)

The above analysis shows that ΔCi = γT
i SiΔΦ holds in

all cases, so G is an ω-potential game with the weight ω =
{γT

i Si}i∈P . Furthermore because the number of decision pro-

files is finite, Φ(d) cannot decrease indefinitely and the above
algorithm must terminate after a finite number of improvement
steps. We can conclude that the game has an NE, so Theorem 1
is proven, so the ImproveRobot algorithm can apply to the sce-
nario of robot swarms in the case of an unsliceable task.

APPENDIX B
PROOF OF THEOREM 2

According to the characteristics of game H , we define a
potential function Ω : Y → R as:

Ω(y) =
∑

i∈L

ni (d)∑

j=0

ci(j) −
∑

i∈P
Qi(1 − αi)

+
∑

i∈P

γE
i Wi

γT
i

c(i,p(i))(1)αi, (25)

where Qi = Li

Si
( 1

Fc
− 1

Fi
− γ E

i μi

γ T
i

) and Ω is continuously differ-
entiable.

Therefore, we get:

∂Ui(y)
∂αi

= Cof f
i (d) − C0

i (26)

∂Ω(y)
∂αi

= Qi +
γE

i Wi

γT
i

c(i,p(i))(1)

=
1

γT
i Si

(
γT

i

Li

Fc
+ γE

i WiSic(i,p(i))(1) − γT
i

Li

Fi
− γE

i μiSi

)

=
1

γT
i Si

(Cof f
i (d) − C0

i ) =
1

γT
i Si

∂Ui(y)
∂αi

(27)

From the above, we can see that ∂Ui (y)
∂αi

is equal to Cof f
i (d) −

C0
i ; therefore, if Cof f

i (d) > C0
i , then ∂Ui (y)

∂αi
is positive and

Ui(y) does not reach its maximum value until αi = 1. Other-
wise, if Cof f

i (d) < C0
i , then Ui(y) does not reach its maximum

value until αi = 0. Furthermore, if Cof f
i (d) = C0

i , Ui(d) re-
mains constant for any αi and we can assume αi = 1 in this
case. In conclusion, sliceable tasks can be reduced to unslice-
able tasks because every robot only has two conditions, i.e.,
αi = 1 or αi = 0, and there are no intermediate states.

For the free player i who offloads all computing, i.e., αi = 1,
keeping αi unchanged, then if it is a better decision to use the
path of r′i to transfer its task than to use ri , so that y′

i = (αi, r′i)
is a better decision than yi = (αi, ri), then:

ΔΩ = Ω(y−i ,y′
i) − Ω(y−i ,yi)

=
∑

j∈f (r ′i )−f (ri )

cj (n
of f
j (d) + 1)

−
∑

j∈f (ri )−f (r ′i )

cj (n
of f
j (d))

+αi
γE

i Wi

γT
i

(c(i,p ′(i))(1) − c(i,p(i))(1)) (28)

ΔUi = αi((γE
i Eof f

i,p ′(i)((d−i ,d′
i),Mi)

+γT
i T comp

cloud ((d−i ,d′
i),Mi)
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+γT
i Si

∑

j∈f (r ′i )

cj (n
of f
j (d−i ,d′

i)))

−(γE
i Eof f

i,p(i)((d−i ,di),Mi)

+γT
i T comp

cloud ((d−i ,di),Mi)

+γT
i Si

∑

j∈f (ri )

cj (n
of f
j (d−i ,di))))

= αiγ
T
i Si

⎛

⎝
∑

j∈f (r ′i )−f (ri )

cj (n
of f
j (d) + 1)

−
∑

j∈f (ri )−f (r ′i )

cj (n
of f
j (d))

+
γE

i Wi

γT
i

(c(i,p ′(i))(1) − c(i,p(i))(1))
)

= αiγ
T
i SiΔΩ (29)

Therefore, according to Eq. (29), sliceable tasks can be re-
duced to unsliceable tasks. We can still use ImproveRobot Al-
gorithm to solve MCCM in the case of sliceable tasks.

APPENDIX C
PROOF OF THEOREM 3

To compute a worst social cost of NE, we set d∗ as an ar-
bitrary NE and divide all robots into two groups such that one
group contains the robots in the outermost layer PL while the
other group contains the remaining robots. For the robots in the
outermost layer, PL , Ci(d∗

i ,d
∗
−i) ≤ C0

i holds for every robot i,
and the worst case for them is that they all perform local com-
putations. Because robots in the outermost layer have no relay
tasks, they can change their decisions freely according to their
respective interests. Thus, if ∃i ∈ PL , Ci(d∗

i ,d
∗
−i) > C0

i , robot
i can change its decision to compute locally, which contradicts
our assumption that d∗ is an NE. For the other part i ∈ P\PL ,
robots may be locked. To find the worst condition, we assume
not only that all of them are locked but also that they choose
the worst action. Furthermore, if computation is offloaded and
robot i ∈ P\PL chooses the path ri to perform the offload, we
can consider the worst case is that all the robots use ri to offload,
which make the congestion of ri the most serious. Robot i must
then be the relay for each robot in the outer layer. In addition,
to create the worst case, we can assume ri is also the slowest
path for i, i.e.,

∑
j∈f (ri ) Rj = minri ∈Li

∑
j∈f (ri ) Rj where Li

is the feasible set of paths for i. For local computation, their cost
equals C0

i . Thus, in any NE, we have maxd∗
∑

i∈P\PL
Ci(d∗) ≤

max{C0
i ,maxd∈D{Cof f

i (d)}} + maxd∈DCrelay
i (d).

We now derive a lower bound for the optimum social cost in
the MCCG. First, we set doptimal ∈ D as the optimal decision in
the game. For robot i, if ∀d ∈ D, C0

i ≤ Ci(d), then the best de-
cision for i is to compute locally, i.e., Ci(doptimal) = C0

i . Other-
wise, if offloading the computation through ri is a better decision
for i and we know that in the best case no others compute offload
through r∗i , i.e., ∀j ∈ f(r∗i ), n

of f
j (d) = 1, and r∗i is also the

fastest path for i, i.e.,
∑

j∈f (r∗i )
Rj = maxri ∈Li

∑
j∈f (ri ) Rj .

For each robot i, if it has no relay tasks, i.e., Crelay
i (d) =

0, its total cost will be less. Thus, mind∈D
∑

i∈P Ci(d) ≥∑
i∈P min{C0

i ,mind∈D{Cof f
i (d)}}.

Hence, we can prove the above theorem using the upper bound
for the arbitrary NE and the lower bound for the optimal deci-
sion:

PoA =
maxd∗

∑
i∈P Ci(d∗)

mind∈D
∑

i∈P Ci(d)

≤
∑

i∈PL
C0

i +
∑

i∈P\PL
maxd∈DCi(d)

∑
i∈P min{C0

i ,mind∈D{Cof f
i (d)}}

=

∑
i∈PL

C0
i +

∑
i∈P\PL

Vi∑
i∈P Ki
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