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SUMMARY 
The problem of multiple comparisons is discussed in the context of medical research. The need for more 
powerful procedures than classical multiple comparison procedures is indicated. To this end some new, 
general and simple procedures are discussed and demonstrated by two examples from the medical literature: 
the neuropsychologic effects of unidentified childhood exposure to lead, and the sleep patterns of sober 
chronic alcoholics. 

1. INTRODUCTION 

The problem of multiple comparisons may be viewed as stemming from an incompatibility 
between some formal statistical methodology and existing research practice. Confirmatory 
statistical methodology is based on the premise of a separate experiment for each inference 
assumed to be stated prior to the experiment. However, often a better scientific practice is to raise 
multiple related questions within the framework of a single study (experimental or observational) 
and also formulate research questions in view of the data. The problem is described by the 
following extract from Mosteller et al.:’ 

If we are not limited in our choice of explanatory hypotheses, we often capitalize on 
some unusual features of the data. The typical clinical trial provides an enormous 
number of sub-groups (male smokers over 50 who are underweight, etc.) that can be 
compared, and many correlations and covariates. Many comparisons will seem reason- 
able under some hypotheses, and some will of course appear to be statistically signzjicant 
if tested as if they were predesignated items for assessment. 

Godfrey’ and Pocock3 show that multiple comparison problems are often not analysed by 
appropriate procedures in medical publications. According to Pocock4 the effect of multiplicity 
and selective publications is: ‘Perhaps the majority of trial reports claiming a treatment difference 
are false-positives.’ 

A simple solution of the problem is to impose stricter control on the probability of getting a 
false-positive result, or type I error rate, by requiring the use of classical multiple comparison 
procedures. One should, however, be aware of the cost: unnecessarily low type I errors without an 
increase in sample sizes imply higher type I1 error rates, that is a higher probability of not 
detecting a true positive treatment difference. This trade-off is often overlooked. 
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A similar and associated problem is that of selective publication of studies according to 
findings. Pocock4 (p. 241 ) demonstrates how the excess of false-positives in publication arises, 
assuming that small ( n  = 40) non-significant experiments are not published. In his example the 
type I error rate more than triples from 0.05 to 54/320 = 017, whereas the type I1 error rate drops 
to a third from an overall of 177/270 = 0.65 to 27/120 = 0.22. 

Obviously, the problem of multiple testing is of a higher complexity when both error rates are 
considered. The following quotation is from Meier? ‘Among the most difficult challenges to 
statistical theory arising from the field of clinical trials, are those grouped under the heading of 
multiplicity.’ The growing awareness of the cruel trade-off between type I and type I1 error rates 
associated with multiple comparison has had a strong effect on the philosophy and methodology 
of multiple comparisons procedures.6 There are researchers who advocate an across the board 
per-comparison approach, that is, they advocate no modification in significance levels in spite of 
the simultaneous consideration of multiple comparisons. They maintain that a per-comparison 
approach is legitimate whenever the researcher submits unselectively the results for all com- 
parisons which were examined. The problem however lies with the need, which often arises, to 
properly support the conchions of the study. This is not automatically satisfied by indicating 
significance or lack of significance for a collection of individual comparisons. A conclusion is often 
based on a family of comparisons, for example, recommending one treatment over another in view 
of the outcome of several end points, or several side-effects. In a large experiment one may want to 
consider several such families separately. There are situations where a careful analysis of the 
relation between a conciusion and the family of comparisons on which it is based indicates the 
need to control the familywise error rate, defined as the probability of at least one error. In such 
situations, a per-comparison approach may result in an excessive rate of false-positive conclu- 
sions. On the other hand, classical multiple comparison procedures are often too conservative 
when they properly control the familywise type I error rate. 

In this paper we assume that the control of a familywise type I error rate is required and give 
procedures which achieve that with a lower type I1 error rate than that of existing procedures. We 
focus on the Bonferroni method which is a simple yet general procedure. It does not require any 
constraining assumptions on the distributions of the individual statistics, or any knowledge of the 
dependence structure among them. All it requires are the p-values corresponding to the various 
individual hypotheses. However, the Bonferroni method is often too conservative. We are 
interested in obtaining a sharper multiple comparison procedure, that is one having lower type I1 
error rates, which can be completely specified in terms of the individual p-values. Such a 
procedure is referred to as a Bonferroni type procedure, and such are described in Sections 3 
and 4. The procedures are illustrated using two examples taken from published medical litera- 
ture, which are described in Section 2. The choice of the examples was dictated by the availability 
of appropriate information in the published analysis. We wish to emphasize that in no way does 
our choice reflect criticism of the original analysis. 

2. TWO EXAMPLES 

2.1. Example 1: Effects of exposure to lead 

Needleman et aL7 studied the neuropsychologic effects of unidentified childhood exposure to 
lead, by comparing various psychologic and classroom performances between two groups of 
children differing in the lead level observed in their shed teeth. In their Table 8 they also present 
p-values for a family of comparisons concerning verbal processing scores and reaction times. It 
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makes sense here to control the familywise error rate of this family separately from the other 
families of comparisons involving differences in intelligence and class behaviour. The ordered pti ,s  
and the hypotheses to which they refer are as follows: 

0.90 0.42 0.37 0.32 0.07 0.05 0.04 0.03 0.01 0002 0.001 0.001 
T-2 T-3 T-1 RT-1 R-C T-4 SR R-B RT-4 R-A RT-3 RT-2 

T-1 to T-4 are the four blocks of the token test; R-A to R-C are the three subtests of the seashore 
rhythm test; SR is a sentence repetition test; and RT-1 to RT-4 are reaction times at varying 
interval of delays. The authors address the problems of multiplicity in the footnote to the table 
and suggest some Bonferroni correction. 

2.2. Example 2 Sleep patterns 

The second example is from a study by Synder and Karacan* on sleep patterns of sober chronic 
alcoholics. The somnopolygraphs of 26 sober chronic alcoholics, taken after approximately 
25 days of sobriety, were compared with those of a matched control group. The comparisons 
included 22 different parameters, and the ordered P ( ~ , s  are as follows: 

0.56 0.50 0.44 0.40 0.34 0.28 0.26 024 0.18 0.18 0.16 
0.08 0.04 0.04 0.02 0.004 0.001 0.001 0.001 0.001 0.001 0.001 

These p-values refer to hypotheses on total sleep parameters such as time, sleep efficiency and 
number of awakenings, REP period parameters, sleep parameters at various stages, and latencies 
to various stages. The study concludes that the sleep efficiency index and latency to sleep stages 
were disturbed in the alcoholic subjects. There was a decrease in the number of REM episodes but 
slow-wave sleep was generally unaffected. 

Reporting their results, Synder and Karacan address the issue of multiplicity: 

A probability of 005 was the limit of statistical significance. However, because of the 
large number of factors tested (twenty-two), it is preferable to consider a inflation when 
interpreting the results . . . The usual case is that a test significant at the level of 0.001 in 
Table I would stay significant at the 0.05 level after adjusting for a inflation, whereas 
0.05 significance levels would become insignificant. It is doubtful whether significance 
levels of 001 would remain significant with the adjustment. 

3. SHARPER BONFERRONI PROCEDURES 

Consider simultaneously testing a family of m null hypotheses H , ,  . . . , H ,  in order to reach a 
conclusion. Let P I ,  . . . , P, be the individual P-values corresponding to these hypotheses, where 
upper case P is used here to denote that these are considered prior to the experimentation. 
Nothing needs to be assumed about the experiment, the nature of the hypotheses, or the 
dependence or independence among the P-values. The various P-values may correspond to 
different types of test-statistics (chi squares, t-tests and so on). Under the null hypothesis Hi, Pi  is 
equally likely to fall anywhere between 0 and 1. If H i  is wrong then P i  tends to be closer to zero. 
The test of Hi in terms of Pi is to reject Hi when P i  is small. In a per-comparison approach small 
means smaller than a pre-specified significance level considered appropriate for Hi. If however the 
fumilywise error rate needs to be controlled at a specified level, a say, then the Bonferroni 
procedure can be used. The original Bonferroni procedure amounts to using a significance level ai 
for H i  with the added requirement that the sum of the ais equals a. Often, when there is no good 
reason to use different ais, the Bonferroni method rejects H i  if pi < a / m .  Thus, in such cases, the 
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Bonferroni method amounts to using a per-comparison error rate of a/m in order to achieve a 
familywise error rate of a. This can be very conservative when m is large and for some dependence 
structures. 

In Example 1, controlling the familywise error at 0.05, the Bonferroni approach suggests using 
0.05/12 = 0.004. In this case only the three hypotheses concerning RT-2, RT-3, and R-A, 
corresponding to the p-values of 0.001 and 0002, are rejected. No hypothesis will be rejected if we 
hold the familywise error rate at 0.01, since 001/12 = 0.0008 is smaller than all p-values. 

In Example 2 the simple Bonferroni correction for the 0.05 level is to test individually at the 
0.05/22 = 0.0022 level. Thus only the six hypotheses corresponding to p-values of 0.001 are 
rejected at this level. This calculation is reflected in the statement of Synder and Karacan quoted 
above regarding the significance of a p-value of 0001. A hypothesis with corresponding p-value 
larger than 0.0022 will not be rejected using the simple Bonferroni procedure. 

Holm9 gave a sharper procedure, that is a procedure which always achieves the same type I 
familywise error rate control and lower type I1 error rates. Holm's procedure requires the 
ordering of the pis into p( l )  6 p ( z ,  6 . . . 6 p( , )  so that p ( i )  is the ith smallest p-value. The 
hypothesis corresponding to p(i) is denoted by H ( i ) .  According to Holm's procedure one rejects 
H ( i )  if, and only if, 

Thus the hypothesis H(l) will be rejected when P ( ~ ) ,  the smallest p-value, is less than a/m. The 
hypothesis H ( 2 )  is rejected when p(l)  d a / m  and p(2) d a / ( m  - l), and so on. Obviously, this 
method is identical with the original Bonferroni for H(l) but sharper for all other hypotheses. 

Using Holm's procedure in Example 1, with a = 0.05, the smallest p-value of 0001 is compared 
with 0.05/12 = 0.004 and the corresponding hypothesis is rejected. The second is compared with 
0.05/11 = 0.004 and the hypothesis is rejected. The third is 0.002 and the hypothesis is rejected 
after comparing with 005/10 = 0.005. The fourth ordered hypothesis, regarding RT-4, has a 
p-value of 0431. It is larger than 0.05/9 = 0.0057, so the procedure terminates here rejecting only 
the previous 3 hypotheses. When controlling the familywise error rate at the 0.01 level, even the 
smallest p-value does not lead to rejection of any hypothesis. 

In the sleep patterns example, since 0.05/22 = 0.0022 > 0.001, the procedure rejects the six 
hypotheses having p-value smaller than that. The next hypothesis is about a crucial parameter: 
sleep latency to any stage. The p-value is 0.004 > 0.05/16, so it is not rejected even according to 
Holm's method, and hence all the other 15 hypotheses with larger p-values are retained. 

Recently, Hochberg" derived an even sharper procedure which uses the ordered pis but in a 
different way from Holm's procedure. This procedure starts by examining the largest p-value p(,). 
If p ( , )  < CI, then H,,, and all other hypotheses are rejected. If not, H,,, is not rejected and one 
proceeds to compare p ( , -  1 )  with a/2. If the former is smaller, then H(,- and all hypotheses with 
smaller p-values are rejected. Generally, one proceeds from highest to lower p-values, retaining 
Hfi, if its p-value satisfies p(i) > a / ( m  - i + 1).  One stops the procedure at the first ordered 
hypothesis when that inequality is reversed. This hypothesis is rejected and so are all hypotheses 
with lower or equal p-values. This is always a sharper procedure than Holm's. 

In our first example we compare the largest p-value, that is p(12) = 0.9, corresponding to the 
hypothesis T-2 with 0.05; the second with 0.05/2 = 0.025; the third with 0.0166; and so on. The 
p-value for RT-4 is p(*)  = 0.01 and is compared with 0-05/9, and the corresponding hypothesis not 
rejected. However, p(3) = 0.002 < O.OS/lO = 0.005, and therefore the last three hypotheses are all 
rejected. No hypothesis is rejected if the 0.01 significance level is used. 
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In Example 2 there are twelve p-values larger than 0.05. According to Hochberg's method, the 
next p-value should be compared with 0.05/13 = 0.00385. Since P(~,, = 0.04 is not smaller, 
continue in this manner. The first hypothesis to be rejected is the seventeenth, where p ( 6 )  = 0.001, 
and therefore the other five hypotheses with this level are also rejected. For this example all three 
approaches result in the same conclusions. 

Note that both the Holm and the Hochberg procedures can be viewed as comparing 'inflated' 
p-values, defined by p ; ,  = ( m  + 1 - i ) ~ ( ~ , ,  with the desired level a. For the first example 
the inflated p-values are 0~9,084,1~11,1~28,035,0~3,0~28,024,0~09,0~02,0~011,0012, and can be 
compared sequentially to any desired significance level a. 

4. UTILIZING A SIMPLE GRAPHICAL PROCEDURE 

Let m, be the number of true (null) hypotheses among m (null) hypotheses. Schweder and 
Spjertvoll" gave a graphical method for estimating rn,. We present here a modification of their 
approach which utilizes the quantities displayed in their method. 

Set Q(i) = 1 - P(,+, - i ,  (and respectively for the observed values, q( i )  = p ( m + l - i ) )  to be the 
complement of the ith largest P-value; that is Q(l) < . . . < Q(i)  < . . . < Q(,,. If all null hypo- 
theses are true, then, m, = rn and the set of Q(, )s  behaves as an ordered sample from a uniform 
distribution over [0, 11. The expected value of Q(i ,  is approximately i/(rno + 1). 

The plot of q( i )  versus i, also called a quantile plot or a uniform probability plot, should exhibit 
a linear relationship, along a line of slope 1 / (mo + 1) passing through the origin. When rn, < m, 
the p-values corresponding to the false null hypotheses tend to be smaller than the p-values 
corresponding to the true null hypotheses, so the q( i ,s  corresponding to the false null hypotheses 
concentrate on the right side of the probability plot. The relationship over the left side of the plot 
remains approximately linear with slope l/(mo + 1). To implement the method, a straight line is 
fitted to the smallest q( , , s  using the ordinary least squares method. The estimated slope of the line 
p i s  an unbiased estimator of l/(rno + l) ,  and can be used to estimate m, by A, = 1 / p  - 1. This 
estimator of rn, is biased but the bias is upwards, leading to an estimate of m, which is possibly 
too high and thereby leaning towards a conservative procedure. Figure 1 is the quantile plot of 
the 12 q( i , s  in our Example 1. The first 4 or 5 q(,,s do seem to lie on some line through the origin. 

The remaining question is how many of the smallest q( i , s  should be used to fit the line and 
estimate its slope. If many p-values are below 0 5  then just these points can be used to estimate the 
slope. If this is not the case, then we can fit lines to a progressively larger number of the smallest 
q( , , s .  As long as all points are along the line the estimated slopes tend to vary non-systematically. 
As we leave that region of linearity the estimated slope will consistently decrease because of the 
curvature. This can serve as an indication of where to stop including additional q(i,s. Using this 
set of q ( i , s  the number of true null hypotheses is estimated by A,. This estimate can be used for 
further sharpening the procedures given in Section 3. 

Holm's procedure can be sharpened as follows. First reject any hypothesis whose p-value is less 
than or equal to a/Ao. Let m, denote the number of hypotheses with p-values greater than a/Ao. 
If rn,  2 A,, stop and retain all these m, (null) hypotheses. If m, < A, then reject any hypothesis 
with p-value less than or equal to E l m l .  Let m2 denote the number of hypotheses retained after 
this step. Now reject any hypothesis with p-value less than or equal to a/rn,; and so on. 

Hochberg's procedure can be further sharpened as follows. First, retain any hypothesis with 
p-value greater than a. Let m(') denote the number of hypotheses retained at this stage. Now, 
reject El(,,, - if N 
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Figure 1 .  Neuropsychologic effects of childhood exposure to lead: the quantile plot of q(ir = 1 - p t m + ,  - i )  versus i. The 
line through the origin is fitted by least squares to the four smallest q, , , s  

If rejected, then all hypotheses with p-values less than or equal to - m ~ l ~ )  are rejected. If 
retained, let m(’) = m(’) + 1 and examine H(m - If P(m - m ~ z ~ )  < cc/min(&,, rn(’) f 1 )  then 
reject it. If not, then retain - m ( ~ ~ )  and let d3) = m(’) + 1; and so on. With this procedure when 
one hypothesis is rejected, all hypotheses with less than or equal p-values are rejected. 

It can be judged visually from Figure 1 that, in the effects of exposure to lead example, the 
estimated slope starts to decrease consistently from the third point on. The fitted slopes based on 
4,5 or 6 first q( , , s  lead to estimated rn, of 44,4.24 and 4.6 respectively, so we can set lit, = 5. At the 
005 familywise error rate use 0.05/5 = 0.01. The hypothesis corresponding to RT-4 is now also 
significant according to both amended procedures. At the 0.01 level, using 0.01/5 = 0.002, the 
three last comparisons regarding RT-3, RT-2 and R-A are declared significant. 

Turning to the sleep patterns example, we see in Figure 2 that a line through the origin does not 
seem to fit well any number of points. This is an indication of no true null hypothesis. However, 
successive slopes estimated from Figure 2 are 0.44,0.288,0.229 and 0184, for the first 1,2,3 and 4 
q ( , ) s  respectively. The slope is decreasing right from the beginning. Using the first two points 
for the estimate gives m, = 3 after rounding upwards, and the threshold for significance is 
0.05/3 = 0.0166. Using this level, the conclusion about the significance of the individual com- 
parison at the 0.004 level should be revised. From this a significant difference in latency to 
sleep stages between the two groups is recognized. 

The advantage of Hochberg’s procedure over Holm’s procedure is reciprocal to lit,. Further- 
more, when &, is small, both amended procedures are substantially improved in terms of their 
type I1 credentials relative to their original forms and become essentially equivalent. 

If rn, was known, then the amended procedures, with m, replacing hi,, control the familywise 
type I error rate like the procedures in Section 3. The outline of the argument is as follows. For 
any subset of the hypotheses we may pose the ‘subset intersection null hypothesis’, that all 
hypotheses in this subset are true. According to the closure principle of Marcus et al.,” we 
control the probability of at least one erroneous rejection at a, by testing subset intersections in 
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Figure 2. Sleep patterns of sober alcoholics: the quantile plot of q( i )  = 1 - ptm+ - i )  versus i. The line through the origin is 
fitted by least squares to the two smallest q( i , s  

the following hierarchical way: test each subset intersection at level cx only after all intersections of 
subsets containing it were tested at level cx and rejected. 

When it is known that there are rn, true null hypotheses among those tested, all subsets 
containing more than rn, hypotheses cannot have a true subset intersection. Therefore the above 
hierarchical testing can be confined to subsets of size < rn,, leading to the amended procedures. 
Thus when hio can be considered a good estimator of m, and turns out to be non-negligibly 
smaller than rn, the amended procedures discussed here should be used instead of the procedures 
of Section 3. Situations when &, can be considered a good estimator of rn, usually involve large 
values of m and comparisons which are strongly dichotomized as either null or substantially 
different from null. Research on typologies of the quantile plots is presently being pursued. 

5. DISCUSSION 

Biomedical investigations, whether experimental or observational, may be extremely complex. 
They may involve the study of many aspects of effectiveness of a therapy at various levels, for 
different subgroups, all adjusted for yet other factors. The results of such investigations are not 
reported merely as a single conclusion or set of conclusions, but rather the individual component 
results from which the major conclusions are drawn are also presented. 

It has become accepted practice to report the individual results by giving the estimates of the 
size of any effect or comparison made in the form of means, percentages, survival rates and so on. 
These estimates are supported by evidence of their statistical significance in the form of individual 
p-values. 

The methods presented in this article require only the p-values corresponding to the various 
individual results. Therefore they enable the researchers, or a reader of their report, to assess the 
overall statistical signijcance of the conclusions. Such an ability is especially important to the 
external reader who may not possess the necessary information on the inter-relationships 
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between the individual pieces of the structure of the whole study. The reader cannot assess the 
combined significance level of the conclusions through a single precise multivariate testing 
procedure which simultaneously controls all errors, and has to rely on the reported p-values. 

For a long time the Bonferroni method for controlling the familywise type I error rate has been 
the only method which makes use of only the p-values. The Bonferroni procedure is simple and 
general, but often it is too conservative. The procedures of Holm and of Hochberg sharpen the 
Bonferroni procedure: both procedures have lower type I1 errors, while keeping the type I error 
rate at a level less than K. These procedures examine the sequential order of the (inflated) p-values. 
Hochberg’s procedure, which starts with the largest p-value and works its way down, has the 
lower type I1 error. 

We propose further modification which involves the graphical plot of the complements of the 
individual p-values versus their order. The number of the true null hypotheses may be estimated 
from the linear part of the plot at the left side, which displays the complements of the high 
p-values. This estimate is then used to amend the Holm and Hochberg procedures. It is shown 
that the amended procedures still control the type I error rate, up to the approximation involved 
in estimating - rather than knowing - the number of true null hypotheses. As the two biomedical 
examples demonstrate, the amended procedures gain from further reduction in the type I1 error 
rate. Initial results from a simulation study currently under way suggest that this is not merely 
anecdotal evidence. 

With the enhanced type I1 error rate performance, the arsenal of multiple comparisons tools 
presented in this article can serve not only the reader of the report of the investigation but the 
researchers too. In those complex situations where a single ‘overall’ test of conclusion is hard to 
arrive at, or where unrealistic additional assumptions are needed to justify the use of such a test, 
the suggested methods offer attractive alternatives. 

REFERENCES 

1. Mosteller, F. Gilbert, I. and McPeek, Q. ‘Controversies in design and analysis of clinical trials’, in 
Shapiro, S. H. and Louis, T. A. (eds) Clinical Trials: Issues and Approaches, Marcel-Dekker, 1983. 

2. Godfrey, K. ‘Comparing the means of several groups’, New England Journal of Medicine, 311,145C1456 
(1985). 

3. Pocock, S. J. ‘Statistical problems in the reporting of clinical trials’, New England Journal of Medicine, 
317,426432 (1987). 

4. Pocock, S. J. Clinical Trials - A Practical Approach, Wiley, 1983. 
5 .  Meier, P. ‘Statistical analysis of clinical trials’, in Shapiro, S. H. and Louis, T. A. (eds) Clinical Trials: 

6. Hochberg, Y. and Tamhane, A. Multiple Comparison Procedures, Wiley, 1987. 
7. Needleman, H., Gunnoe, C., Leviton, A., Reed, R., Presie, H., Maher, C. and Barret, P. ‘Deficits in 

psychologic and classroom performance of children with elevated dentine lead levels’, New England 
Journal of Medicine, 300, 689-695 (1979). 

8. Snyder, S. and Karacan, 1. ‘Sleep patterns of sober chronic alcoholics’, Neuropsychobiology, 13,97-100 
(1985). 

9. Holm, S. ‘A simple sequentially rejective multiple test procedure’, Scandinavian Journal of Statistics, 6, 

10. Hochberg, Y. ‘A sharper Bonferroni procedure for multiple tests of significance’, Biometrika, 75,80&803 

11. Schweder, T. and Spj~tvoll, E. ‘Plots of p-values to evaluate many tests simultaneously’, Biometrika, 69, 

12. Marcus, R., Peritz, E. and Gabriel, K. R. ‘On closed testing procedures with special reference to ordered 

Issues and Approaches, Marcel-Dekker, 1983. 

65-70 (1979). 

(1988). 

493-502 (1982). 

analysis of variance’, Biometrika, 63, 655-660 (1976). 




