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Abstract 

This paper presents a deep neural network (DNN) approach for induction motor fault diagnosis. The 

approach utilizes sparse auto-encoder (SAE) to learn features, which belongs to unsupervised feature 

learning that only requires unlabeled measurement data. With the help of the denoising coding, partial 

corruption is added into the input of the SAE to improve robustness of feature representation. Features 

learned from the SAE are then used to train a neural network classifier for identifying induction motor 

faults. In addition, to prevent overfitting during the training process, a recently developed regularization 

method called “dropout” which has been proved to be very effective in neural network was employed. 

An experiment performed on a machine fault simulator indicates that compared with traditional neural 

network, the SAE-based DNN can achieve superior performance for feature learning and classification in 

the field of induction motor fault diagnosis. 

Keywords: Sparse auto-encoder; Deep neural network; Fault diagnosis; Denoising; Dropout 

1. INTRODUCTION 

Induction motor as one of the industrial power driving sources, occupies an important position in 

national economy and has been widely applied to driving many kinds of machinery and industrial 

equipment, such as lifting hoist equipment, mining equipment, machine tools, etc. In order to guarantee 

normal operation of induction motors with timely maintenance, and avoid unnecessary loss, fault 

diagnosis on them is necessary [1, 2]. However, due to environmental interference and inherent motor 

structure complexity, effective fault diagnosis for induction motors is challenging. Up to date, various 

sensing techniques [3-5] have been employed to measure certain physical quantities, including current, 

vibration, radial and axial flux, rotor speed, etc., for the purpose of identifying induction motor faults. 

This is based on the fact that properties of the induction motor may change when there are some 
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damages occurred in it and such property change could be reflected in the measurement data. By 

extracting features from these measurement data, a classifier can then be built to distinguish different 

faults in induction motors. Therefore, the fault diagnosis problem can be converted into a classification 

problem which can be solved by machine learning-based algorithms such as neural network [6, 7] and 

support vector machine [8, 9].  

In the field of fault diagnosis, the majority of machine learning algorithms are supervised learning which 

needs a large amount of labeled data for training. Since neural networks possess strong representation 

ability due to its stacked hidden layers, they have been widely used as classifiers for machine fault 

diagnosis [10-12]. But the training of neural networks also needs a large amount of high-quality labeled 

data, and if the training samples are limited or cannot cover the testing distribution, the neural network 

may be easily overfitted which leads to a poor generalization especially for a complex classification 

problem. The induction motor fault diagnosis belongs to such a challenging problem since the system 

itself is a complex electromechanical one. Therefore, some advanced signal processing technologies have 

been proposed for motor current or vibration signal analysis [13-15], to extract useful fault features for 

diagnosis. However, these state-of-the-art methods usually require the researchers to have a deep 

understanding on the induction motor system and the fault signals. In addition, the required expert 

knowledge is not easily obtained so that these methods are not general to address this task, which means 

these methods are not intelligent enough relative to the machine learning. In contrast, a new machine 

learning method called “deep learning” has been proposed to realize unsupervised feature learning [16, 

17]. Since a deep ‘‘auto-encoder’’ network structure was trained to learn low-dimensional codes from 

high-dimensional input vectors [18], deep learning approaches have gained great interests and achieved 

remarkable results in many fields such as image recognition [19], speech recognition [20] and others [21, 

22]. Furthermore, sparse auto-encoder (SAE) [23-25], which is one of the famous unsupervised feature 

learning methods, has been widely studied to realize deep learning, as it is highly effective for finding 

succinct and high-level representations of complex data. 

Inspired by the prior research, the purpose of this paper is to present a SAE-based deep neural network 

(DNN) approach for induction motor fault diagnosis. In this presented approach, the SAE first learns 

succinct features automatically from high-dimensional data in an unsupervised manner. To improve the 

robustness of feature learning and prevent the identity transformation, the denoising coding is embedded 

into the SAE by masking noise randomly on its input to ensure the robustness of extracted features and 

improve the performance of the SAE. After that, the DNN utilizes the SAE to extract features which are 

used to train a classifier to diagnose various induction motor faults. In order to overcome the deficiency 

of overfitting during the training process of the DNN, the “dropout” technique is introduced into the 

whole DNN by randomly dropping neurons together with their connections for preventing co-adaptation 



  

of the neurons. Rest of this paper is organized as follows. Section II introduces the algorithm of the DNN 

for induction motor fault diagnosis, including SAE and denoising auto-encoder algorithm. Then section 

III discusses the details of experiments performed on a machine fault simulator and the corresponding 

results. Finally, section IV presents some conclusions drawn from this study. 

2. DEEP NEURAL NETWORK 

Unsupervised feature learning is able to learn discriminative and effective features from a large amount 

of unlabeled data [17]. In the field of fault diagnosis, labeled vibration signals are difficult to be acquired 

which need specific and elaborate experimental setting. Therefore, unsupervised feature learning may 

provide an effective solution to fault diagnosis. Here, one of the typical unsupervised feature learning 

algorithms-SAE is investigated. In the proposed framework, the SAE combined with denoising module 

is adopted to learning features from the vibration signals. Then, the learned features are fed into a neural 

network classifier with dropout. The detail of the framework is illustrated in the following sections.  

2.1 Sparse Auto-encoder 

An auto-encoder is a symmetrical neural network that can learn the features in an unsupervised learning 

manner by minimizing reconstruction errors [21]. The basic structure of an auto-encoder is shown in 

Figure 1, where it tries to learn an approximation in the hidden layer so that the input data can be 

perfectly reconstructed at the output layer. However, the intrinsic problems of the auto-encoder, such as 

simply copying input layer to hidden layer, make it not effective to extract meaningful features even 

though its output can be a perfect recovery of the input data. SAE, as an extension of the auto-encoder, 

can learn relatively sparse features by introducing a sparse penalty term inspired by the sparse coding [26] 

into the auto-encoder. It can improve the performance of traditional auto-encoder and exhibits more 

practical application values. 
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Figure 1. The structure of an auto-encoder neural network 

From the measured vibration signals, an NM data set can be constructed as X={x(1), x(2), , . . ., x(i), . . ., 

x(N)}，       , where N is the number of data samples for each working condition, and M is the 



  

length of each data sample. This data set is used as the input matrix of the SAE. Then a three layer neural 

network similar to that in Figure 1 can be constructed, where the sigmoid function is chosen as activation 

function to the network. For the unlabeled input data matrix X, the goal is to learn and obtain a feature 

expression                               , at the hidden layer so that the output 

                   is close to or refactoring the input. In the meantime, the sparse penalty term is 

added to the objective function of the auto-encoder so that the learned features are of the constraint rather 

than simply repeating input. The sparse penalty term actually works on the hidden layer to control the 

number of “active” neurons. In practice, if the output of a neuron is close to 1, the neuron is considered 

to be “active”, otherwise it is “inactive”. It is better to keep the neurons of the hidden layer “inactive” in 

most of the time. Suppose that       denotes the activation of hidden unit j. In the forward propagation 

process, for a given input X, the activation of the hidden layer can be denoted as              

  , where W denotes the weights between the input layer and the hidden layer and b is the biases. Then 

the average activation of the hidden unit j can be given as: 

   
 

 
            

                                      (1) 

In this process, the average activation of each hidden neuron     is expected to be close to zero, namely 

the neurons of the hidden layer is mostly “inactive”. To achieve this, the sparse term is added to the 

objective function that penalizes    if it deviates significantly from  . The penalty term is expressed as: 

                 
    

                                      (2) 

where S2 is the number of neurons in the hidden layer. KL(・ ) is the Kullback-Leibler divergence  

(KL divergence) [27], which can be written as: 
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This penalty function possesses the property that        
     if     . Otherwise, it increases 

monotonically as    diverges from   , which acts as the sparsity constraint. 

The cost function of the neural network is defined as: 
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Adding the sparse penalty term to the cost function, it can be modified as: 

                             
    

                             (5) 

where   is the weight of the sparsity penalty. 

During the coding process, the optimal parameters of W and b need to be identified. Since the sparse cost 



  

function shown in equation (5) is directly related to the parameters W and b, it can be solved by 

minimizing            to obtain these two parameters. This can be realized using the back-propagation 

algorithm [28], where the stochastic gradient descent approach is used for training and the parameters W 

and b in each iteration can be updated as: 
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where   is the learning rate. A forward pass on all training examples is used to compute the average 

activation    to get the sparse error, then the back-propagation algorithm works to update the parameters. 

After that, the effective sparse feature representations can be learned by the SAE. 

2.2 Denoising Auto-encoder 

Vincent et al. [29] proposed a denoising auto-encoder learning algorithm based on the idea of making the 

learned feature representation robust by adding partial corruption to the input pattern, which can be used 

to train stacked auto-encoders to initialize the deep architectures. It has been known that this type of 

learning can help to obtain better feature representation with denoise coding, which motivates the 

introduction of denoising module into our study.  

For the input matrix X, the process of denoising auto-encoder is shown in Figure 2, where the initial 

input X is corrupted to get a partially destroyed version    by applying a stochastic mapping 

         , then   is coded to y. Here distribution       can be described as follows: for each 

input     , a fixed number of components are chosen randomly and their values are set to 0, while the 

others are kept unchanged. Then 
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Figure 2. Structure of denoising auto-encoder 

                                                           (8) 

where           is set to 0 if        .       denotes the empirical distribution associated with N 



  

training inputs. Thus y is a deterministic function of   . Let   be one parameter of the joint distribution 

         , it can be considered as a link parameter between   and y. To obtain a reconstructed 

version (denoted as X’) of the input matrix X from y, an objective function can be set as 

                                                           (9) 

where         is the reconstruction error. The reconstructed matrix X’ can be obtained by minimizing  

(9) using a stochastic gradient descent approach. 

Specifically, to implement the denoising coding, some elements of the input X are randomly set to zero 

for generating the corrupted input  . Then it is mapped with the basic auto-encoder to a hidden 

representation y, where                       with        , from which X’ can be 

reconstructed as                          . The reconstruction error         is computed 

from the difference between X’ and X, and can be minimized by solving the cost function (9).  

It should be noted that the motivation behind  the corruption of the values of some components in X 

shares the same idea of “salt noise” in image processing. Because unsupervised initialization of layers 

with an explicit denoising criterion can help to capture meaningful structure in the input distribution, the 

learned intermediate representations can contribute a lot to the subsequent learning tasks such as 

classification and clustering. Furthermore, it was indicated that denoising autoencoder can improve the 

robustness of features and the sparsity of weights, which both make the discovery of interesting and 

prominent pattern easier [30].  

2.3 Dropout 

Dropout is a technique that can help to reduce “overfitting” when training a neural network with limited 

training data set [31]. Generally, when the known training data set is small, the overfitting problem will 

occur which lead to a poor performance on the test data. In this study, the dropout technique is applied to 

training the SAE-based DNN to prevent complex co-adaptations on the training data and avoid the 

extraction of the same features repeatedly. Technically, the “dropout” can be realized by setting the 

output                of some hidden neurons to zero so that these neurons will not be 

involved in the forward propagation training process. It should be noted that there are some differences 

between the training process and testing process with dropout. The dropout is turned off during testing, 

which means the outputs of all hidden neurons will not be masked during testing. This will help to 

improve the feature extraction and classification capability of the SAE-based DNN. 

2.4 Proposed Framework 

By taking advantage of the unsupervised learning, the denoising SAE is used to learn features from 



  

unlabeled data and initialize the DNN structure. Then the learned sparse feature representation of the 

auto-encoder is utilized to train a neural network classifier with a dropout module for induction motor 

fault diagnosis. Instead of direct utilization of learning representation by denoising SAE, the parameters 

of the NN classifier with the corresponding parameters are initialized in the well-trained SAE and then 

updated further. This adaptation enables a further fine-tuning of learned parameters so that the learned 

representation can capture more discriminative components in raw vibration signals. In addition, the 

previous study [32] indicated that the number of hidden neurons in the deep model is as important as the 

choice of learning algorithm and the depth of the model for achieving high classification performance, 

which means that single-layer network in unsupervised feature learning can also perform well. Therefore, 

in this study only one-layer SAE is utilized to realize the DNN for the induction motor fault diagnosis. 

The training procedure of the DNN is shown in Figure 3 and it can be described as follows: 

The unlabeled induction motor vibration data X1 are first used to train the SAE though following steps:  

1) Set up the learning rate, sparse rate and denoising parameters, dropout rate, etc., and initialize 

the weight W and b randomly. 

2) Use the stochastic batches training method in the forward propagation algorithm to compute the 

average activation    for sparsity. 

3) Compute the sparse cost function as: 
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4) Update the parameters W and b based on Eq.(6) and Eq. (7). 

Then the labeled induction motor vibration data (X2,Y2) are used to train the DNN for classification. 

1) Use the parameters of the SAE to initialize the first layer of the DNN. 

2) Set up the training parameters and dropout rate, and conduct the forward propagation algorithm 

to extract the labeled features for classification. 

3) Compute the mean square error for the cost function of the DNN using Eq. (4). 

4) Conduct the back-propagation algorithm the same as before except for the sparse term (set 

sparse penalty term to 0) to update the weights and fine-tune the entire network.   

Finally, the test data set (X3, Y3) are used to verify the effectiveness of the presented SAE-based DNN. 
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Figure 3. Structure of the sparse auto-encoder-based deep neural network 

3. EXPERIMENTAL STUDY 

3.1 Experimental Setup 

To verify the effectiveness of the SAE-based DNN for induction motor fault diagnosis, the experiments 

have been conducted on a machine fault simulator as illustrated in Figure 4. The vibration signals can be 

acquired by an acceleration sensor when the motor operates under six different conditions. The vibration 

data of the simulator under the power supply frequency of 50 Hz is collected with the sampling 

frequency of 20 kHz. The descriptions of different motor working conditions are listed in Table 1. 

 

Figure 4. Experimental setup: (1) Tachometer, (2) Induction Motor, (3) Bearing, (4) Shaft, (5) Load Disc, (6) Belt, 

(7) Data Acquisition Board, (8) Bevel gearbox, (9) Magnetic Load, (10) Reciprocating Mechanism, (11) Variable 

Speed Controller, (12) Current Probe 

 

 



  

Table 1. Motor condition descriptions 

 Condition Description 

HEA Normal motor Healthy, no defect 

BRB Broken bar Three broken rotor bars 

BRM Bowed rotor Rotor bent in center 0.01” 

RMAM Defective bearing Inner race defect bearing in the shaft end 

SSTM Stator winding defect 3 turns shorted in stator winding 

UBM Unbalanced rotor Unbalance caused by 3 added washers on the rotor 

 

The task defined here is to classify different motor working conditions based on vibration data. In this 

study 600 data samples with 2000 features from each induction motor working condition were obtained, 

in which each feature corresponds to one sampled data point of the vibration. For each working condition, 

400 of the samples were chosen randomly for training and the rest for testing. When 2400 training 

samples and 1200 testing samples are obtained with feature dimensionality of 2000, they are all 

normalized to set the value between -1 and 1.  

3.2 Compared Approaches 

Several neural network-based methods are compared here with the proposed approach. Firstly, to verify 

the effectiveness of the SAE, normal neural networks without SAE are considered and three different 

model structures are considered. Two of them contain one hidden layer, which is the same as the 

proposed approach. Their hidden nodes are set as 100 and 600, respectively. They are denoted as NN(100) 

and NN(600). In addition, the neural network with two hidden layers, whose hidden nodes are 600 and 

100, respectively, and denoted as NN(600-100), is also considered here. Then, two classifiers built on top 

of the SAE are also considered, i.e., support vector machine (SVM) and logistic regression (LR) [33, 34]. 

The features learned by the SAE, i.e., the hidden output of the SAE, is fed into both the SVM and the LR 

classifiers. For a fair comparison, the SAE is the same as the one used in the proposed approach, but the 

features learned by the SAE cannot be fine-tuned during training for both SVM and the LR classifiers. 

In the proposed SAE-based DNN framework, the input size, hidden node and output size are set to 2000, 

600 and 2000, respectively. Considering the vibration signals represent six different working conditions, 

the layer sizes for DNN is set as [2000 600 6]. The hidden nodes of the DNN and SAE are same so that 

the features learned by the SAE can be utilized by the DNN and fine-tuned further during supervised 

training. The three hyper-parameters of the proposed SAE-based DNN including sparse parameter, 

denoted as sparse rate  , denoising rate and dropout rate are set to be 0.4, 0.1 and 0.3, respectively, via 

cross validation for comparison with other baseline methods. All parameters with their values of the 

proposed SAE-based DNN are listed in Table 2 for better understanding. 



  

 

Table 2. Parameters setting up of SAE-based DNN 

SAE DNN 

M 2000 input nodes M 2000 input nodes 

S2 600 hidden nodes S 600 hidden nodes 

out 2000 output nodes out 6 output nodes 

  0.08 sparse target dropout 0.3 dropout rate 

  0.4 sparse rate   1 learning rate 

denoise 0.1 denoising rate 
   

dropout 0.3 dropout rate 
   

  1 learning rate 
   

 

Here for all NN-based methods, the cross-entropy error is calculated based on training samples and 

back-propagated through layers to update model parameters, in which the stochastic gradient descent 

method was used. The simulation environment for all algorithms performed in the experiments is as 

follows: MATLAB R2011b software environment. 

3.3 Analysis of Denoising Coding and Dropout 

Since the level of corruption noise is a hyper-parameter in the SAE, it is meaningful to study the effect of 

corruption noise strength on the final classification performance. Here, the noise levels are changed from 

0 to 0.5 with a step size of 0.1. Figure 5(a) shows the classification performance with different corruption 

noise. It can be seen that proper denoising coding in the SAE could improve its performance, but too 

heavy corruption will degrade the input data quality, leading to a decrease of the classification 

performance. This verified that the SAE trained with appropriate noisy data can extract more robust 

features than traditional one and it is of great significance in practical complex environment.  

In addition, the effect of dropout on performance of the DNN is also studied. Here, dropout rate is 

changed from 0 to 0.5 with a step size of 0.1. Figure 5(b) shows the classification performances with 

different dropout rates. The results showed that the best classification performance was obtained at a 

dropout rate close to 0.3 and the performance would decrease when the dropout rate was more than 0.3. 

This indicated that dropout can improve the performance of the DNN, but too much dropout may loss 

some important neurons for feature representation. Based on results shown in Figure 5, it can conclude 

that the SAE-based DNN approach presented in this study can realize the induction motor fault diagnosis 

and have a good classification accuracy at about 96% at least. 
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(a) Effect of denoising coding 
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(b) Effect of dropout 

Figure 5. Studies on denoising coding and dropout 

Then to verify the performance of presented approach that combines the sparse coding with denoising 

coding in the auto-encoder to learn features for the DNN and utilizes the “dropout” technique to 

overcome overfitting during the training process, a comparison study was carried out, where traditional 

SAE is used as the baseline. The classification performance under different labeled training data set sizes 

were investigated, where the size of training data were changed from 80 to 400 with a step size of 80. 

The results are shown in Figure 6. 



  

 

Figure 6. Comparison of two methods 

It can be seen that the presented approach has shown better performance than the SAE alone. In addition, 

the performance improvement achieved by the proposed approach for a small training data size is more 

significant than the one for a large training size, which verifies the robustness of the proposed approach. 

It may be explained that corruptions of input samples can be regarded as expanding data samples 

artificially. Furthermore, dropout can improve the performance of the deep neural network by preventing 

complex co-adaptations between the hidden neurons, especially for small training data size.  

3.4 Result and Discussion 

Comprehensive comparison results of the classification performance are shown in Table 3. It is shown 

that the proposed SAE-based DNN framework achieves the best performance in all scenarios. 

For the three NN models without SAE, the best one is NN with two hidden layers. This observation can 

be explained by the fact that the increased number of layers contributes to the learning capability of the 

neural network. However, NN(600-100) still performs worse than the proposed approach with one 

hidden layer. This result verifies the effectiveness of the SAE. The robust feature learned by the SAE can 

contribute to performance improvement of the following DNN.  

Then, the proposed approach is also compared with two classifiers built on the top of the SAE. Different 

from the proposed approach, SVM and LR cannot fine-tune the features learned by the SAE. This 

difference may explain their incomparable performance. It can be seen in Table 3 that both SVM and LR 

classifiers can classify the features learned by the SAE well into the corresponding fault categories and 

classification accuracy for either of them is much high than the NN with one hidden layer. This result is 

consistent with that the SAE can learn effective features for the fault diagnosis.  
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Table 3. Comprehensive comparison of classification accuracy 

Classifier Health BRB BRM RMAM SSTM UBM Average 

NN(100) 78.00% 92.50% 70.40% 81.70% 87.40% 70.25% 80.04% 

NN(600) 74.00% 97.50% 73.50% 71.00% 95.00% 35.00% 74.33% 

NN(600-100） 88.78% 99.56% 100.00% 99.94% 92.72% 97.33% 96.39% 

SVM 92.50% 96.50% 100.00% 100.00% 91.00% 98.50% 96.42% 

LR 83.50% 94.00% 100.00% 100.00% 81.50% 97.50% 92.75% 

DNN 92.68% 99.91% 100.00% 100.00% 93.50% 99.55% 97.61% 

 

In practice, the quality of the vibration data measured from the induction motor will be affected by 

environmental factors. Thus it is necessary to perform stability analysis of the SAE-based DNN for 

dealing with data under disturbance. Partial corruption at different levels to the data was added into the 

input of both the neural networks and the SAE-based DNN, and their influence on the classification 

accuracy was shown in Figure 7. When the degree of the data corruption increased from 0 to 40%, even 

though the performance of the SAE-based DNN decreases, the overall classification accuracy is still 

larger than 90%. In comparison, the performance of the neural networks decreases significantly, i.e. from 

96.58% to 76.58% for the neural network with two hidden layers, and from 73.83% to 52.25% for the 

neural network with one hidden layer, reflecting that the SAE-based DNN possesses good stability 

against disturbance for induction motor fault diagnosis. 

 

Figure 7. Histogram of classification accuracy with “noise” in input data 
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3.5 Visualization of Learned Representation 

To demonstrate that the proposed approach is able to learn effective and discriminative representations 

for vibration signals automatically, the raw features, the features learned by the SAE and the features 

fine-tuned by the DNN are all visualized via a technique “t-SNE” [35, 36] which is an effective data 

visualization technique for high-dimensional data. Here, the principal component analysis (PCA) is used 

to reduce the dimensionality of the feature data to 50. This can speed up the computation of pairwise 

distances between the data points and suppresses some noise without severely distorting the interpoint 

distances. Then the dimensionality reduction technique “t-SNE” is used to convert the 50-dimensional 

representation to a two-dimensional map and the resulting maps as a scatterplot have been shown in 

Figures 8(a), 8(b) and 8(c), respectively. It can be seen that the SAE features fine-tuned by the DNN 

cluster the best where data points of different conditions are separated well. It presents the good 

separability of the features extracted by the SAE-based DNN in this study. The results also indicates that 

the features of the SSTM is the most similar with the features of the Health and they are hard to be 

separated well as others. This is also reflected as the classification accuracy of Health and SSTM in 

Table 3.  
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(a) Raw features 
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Figure 8. Feature Visualization Maps 



  

From the trend of the three maps (from Fig. 8a to Fig. 8c), it can be known that the SAE itself is an 

effective feature learning method for induction motor vibration signals and the SAE-based DNN 

approach that fine-tunes the features learned by the SAE can improve the learned representations of the 

SAE further. It also verifies the superior classification performance of the SAE-based DNN approach 

compared to other base-line methods. Therefore, the SAE-based DNN is an effective approach for 

induction motor feature learning and fault diagnosis.  

4. CONCLUSIONS 

A SAE-based DNN approach has been developed for induction motor fault diagnosis. This approach can 

learn features directly from raw data, which are discriminative over different working conditions of the 

induction motors. When the denoising coding is integrated with the SAE, it improves the robustness of 

the learned feature and the stability of the DNN against disturbance. The dropout technique integrated in 

the neural network classifier design reduces the overfitting in the training process and improves the 

performance of the DNN for induction motor fault classification. Experimental study and a detailed 

analysis has verified the effectiveness of the SAE-based DNN for induction motor fault diagnosis.  
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HIGHLIGHTS 

1) A sparse auto-encoder-based deep neural network is investigated for induction motor fault diagnosis 

2) The deep neural network is of good stability against disturbance for fault diagnosis. 

3) Denoising coding is added into the sparse auto-encoder for performance improvement. 

4) Dropout technique is utilized to reduce data overfitting and generate good feature representations.  

 

 


