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lteration for Retinal Vessel and Coronary
Angiograph Segmentation
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Abstraci—Vessel segmentation is critical for disease di-
agnosis and surgical planning. Recently, the vessel seg-
mentation method based on deep learning has achieved
outstanding performance. However, vessel segmentation
remains challenging due to thin vessels with low contrast
that easily lose spatial information in the traditional U-
shaped segmentation network. To alleviate this problem,
we propose a novel and straightforward full-resolution net-
work (FR-UNet) that expands horizontally and vertically
through a multiresolution convolution interactive mecha-
nism while retaining full image resolution. In FR-UNet, the
feature aggregation module integrates multiscale feature
maps from adjacent stages to supplement high-level con-
textual information. The modified residual blocks contin-
uously learn multiresolution representations to obtain a
pixel-level accuracy prediction map. Moreover, we propose
the dual-threshold iterative algorithm (DTI) to extract weak
vessel pixels for improving vessel connectivity. The pro-
posed method was evaluated on retinal vessel datasets
(DRIVE, CHASE_DB1, and STARE) and coronary angiog-
raphy datasets (DCA1 and CHUAC). The results demon-
strate that FR-UNet outperforms state-of-the-art methods
by achieving the highest Sen, AUC, F1, and IOU on most of
the above-mentioned datasets with fewer parameters, and

Manuscript received 9 September 2021; revised 4 April 2022 and 6
June 2022; accepted 28 June 2022. Date of publication 5 July 2022; date
of current version 9 September 2022. This work was supported in part by
the National Key Research and Development Program of China under
Grant 2018AAA0102600 and in part by the National Natural Science
Foundation of China under Grant 62002082.

Wentao Liu, Zhiwei Cao, Weijin Xu, and Yang Jin are with the
School of Atrtificial Intelligence, Beijing University of Posts and Telecom-
munications, Beijing 100876, China (e-mail: liuwentao@bupt.edu.cn;
czw@bupt.edu.cn; xwj1994@bupt.edu.cn; jinyangmail@bupt.edu.cn).

Huihua Yang is with the School of Artificial Intelligence, Beijing Uni-
versity of Posts and Telecommunications, Beijing 100876, China, and
also with the School of Computer Science and Information Security,
Guilin University of Electronic Technology, Guilin 541004, China (e-mail:
yhh@bupt.edu.cn).

Tong Tian is with the State Key Laboratory of Structural Analy-
sis for Industrial Equipment, School of Aeronautics and Astronau-
tics, Dalian University of Technology, Dalian 116024, China (e-mail:
tiantong@mail.dlut.edu.cn).

Xipeng Pan is with the Department of Radiology, Guangdong Provin-
cial People’s Hospital, Guangdong Academy of Medical Sciences,
Guangzhou 510080, China, and also with the School of Computer
Science and Information Security, Guilin University of Electronic Tech-
nology, Guilin 541004, China (e-mail: pxp201@guet.edu.cn).

Feng Gao is with the Department of Interventional Neuroradiology,
Beijing Tiantan Hospital, Capital Medical University, Beijing 100070,
China (e-mail: 13910172189@163.com).

Digital Object Identifier 10.1109/JBHI.2022.3188710

, Graduate Student Member, IEEE, Huihua Yang
, Xipeng Pan, Weijin Xu

, Member, IEEE, Tong Tian,
, Yang Jin, and Feng Gao

that DTl enhances vessel connectivity while greatly improv-
ing sensitivity. The code is available at: https:/github.com/
Iseventeen/FR-UNet.

Index Terms—Vessel segmentation, full-resolution
network, dual threshold iteration, model pruning.

[. INTRODUCTION

LOOQOD vessels are a crucial part of the circulatory system
B that keeps the human body running normally. In clinical
practice, doctors diagnose diseases (e.g., diabetic retinopathy,
macular edema, and arteriosclerosis) using the morphology of
vessels and perform surgical planning and navigation depending
on the structure and location of vessels [1], [2]. For example, the
geometric characteristics of retinal vessels, such as the vessel
diameter, branch angle, and branch length, can be utilized for
early diagnosis and effective monitoring of retinal pathology [3].
In addition, vessel paths in the digital subtraction image are
regarded as an indicator of guidewire movement when doctors
perform vascular interventional treatment [4]. Due to imaging
equipment limitations and inherent characteristics of biological
tissues, the obtained initial medical images of vessels cannot
intuitively reflect accurate structural information, necessitat-
ing a specialist to manually segment vessel images, which is
time-consuming and subjective. As a result, automated vessel
segmentation technology is essential and has recently become a
hot topic in computer-aided medical diagnosis.

Early studies on vessel segmentation focused on hand-crafted
features [5], [6], filtering-based models [7], and statistical mod-
els [8]. These methods aim to enhance the boundary gradient, re-
move undesired background information, and filter image noise,
thereby simplifying the segmentation problem into a mathe-
matical optimization problem with a fixed pattern. Benefiting
from the influence of data-driven and innovation in comput-
ing equipment, deep learning has been widely researched and
applied in the medical image analysis field due to its excellent
representation learning ability. Extensive research [9] has shown
that the vessel segmentation performance of deep learning-based
methods is superior to the other approaches mentioned above.
In particular, after the milestone network, U-Net [10], was
proposed, all sorts of outstanding variant models for vessel seg-
mentation emerged. Despite the fact that these works achieved
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Fig. 1. Vessel images and the corresponding ground truths in the
public datasets. The first and second columns are retinal vessel images
from the DRIVE dataset, and the third and fourth columns are coro-
nary angiography images from the DCA1 dataset. The second row is
enlarged detailed views of the first row.

impressive segmentation results according to evaluation metrics,
there are still undetected vessel pixels in segmentation maps,
resulting in poor vessel connectedness visually.

Traditionally, a segmentation network based on the encoder-
decoder architecture obtains high-level feature representations
by stacked convolution and down-sampling and utilizes mirrored
operations with skip-connections to recover the original resolu-
tion feature maps for pixel-level supervised learning. Although
the down-sampling shrinks the feature map to increase the re-
ceptive field and decrease the amount of calculation, it sacrifices
high-resolution spatial information, which is terrible for vessel
segmentation. Vessel images are different from other medical
images such as the heart and cells, where vessels are relatively
thin with low pixel proportion and contrast, especially in capil-
laries (see Fig. 1 for further details). It’s difficult for networks to
learn the semantic information of small-scale vessels since the
valuable spatial information is diminished after down-sampling.

Motivated by the above issues, we recommend a full-
resolution UNet (FR-UNet) with a multiresolution convolution
interactive mechanism, in which the stacked convolution at
the image resolution continuously learns full-resolution rep-
resentations for pixel-accurate segmentation. Simultaneously,
the feature aggregation module fuses the feature maps from
the up-sampling and down-sampling from the adjacent stages,
and the results are finally aggregated into the full-resolution
stage to increase the receptive field and supplement the high-
level contextual information. The full-resolution feature maps
were maintained throughout the entire process to alleviate the
loss of spatial information. Furthermore, many works have
concentrated on designing network architecture while ignoring
how to accurately produce binary segmentation results from
prediction probability maps. In this context, by taking into
account the neighborhood relationships between the pixels in
prediction maps, we utilize a dual-threshold iterative algo-
rithm to extract more vessel pixels and enhance the vascular
connectivity.

There are three main contributions of this article:

e We propose a novel full-resolution UNet (FR-UNet)
for vessel segmentation, which consists of interactive

multiresolution convolution layers and continuously
learns full-resolution representations to alleviate the loss
of spatial information.

® We propose a feature aggregation module and embed it in
FR-UNet before each convolution block to aggregate fea-
ture maps from up-sampling and down-sampling, which
can effectively extract multiscale contextual information.

e We propose a dual-threshold iterative algorithm to im-
prove the connectivity of vessels that gradually extracts
weak vessel pixels from the probability map and innova-
tively introduces a quantitative evaluation method for ves-
sel connectivity by calculating the number of connected
components.

The rest of this article is organized as follows. Section II
reviews existing vessel segmentation methods based on deep
learning and high/full-resolution network models. In Section I,
we elaborate on the proposed FR-UNet and dual-threshold iter-
ation method. Section IV introduces the datasets, the evaluation
metrics, and the implementation details of the experiments.
In Section V, we analyze the comprehensive performance of
FR-UNet through comparison with state-of-the-art methods,
ablation studies, and model pruning. Moreover, we verify the
effectiveness of dual-threshold iteration in optimizing vessel
connectivity. Finally, Section VI concludes this article.

Il. RELATED WORK
A. Vessel Segmentation Based on Deep Learning

Early image segmentation methods based on deep learning
divided an image into patches and predict the center pixel of
the patches using a network composed of convolutional layers
and fully connected layers. The same was true for vessel seg-
mentation [11]. However, this approach requires considerable
calculations, and the size of the patches limits the receptive
field of representation learning for the center pixel. Afterwards,
the fully convolutional network, FCN [12], was proposed to
solve this problem. In particular, U-Net [ 10], which is composed
of a symmetrical encoder-decoder with skip-connections, was
proposed and became a landmark network in the field of medical
image segmentation. Inspired by U-Net, a variety of variant
network models for vessel segmentation have been proposed.
Reza et al. [13] takes full advantage of U-Net, bi-directional
ConvLSTM, and the mechanism of dense convolutions to pro-
pose Bi-directional ConvLSTM U-Net for medical image seg-
mentation. To further integrate local features of vessel image
with global dependencies adaptively, Mou ef al. [14] added a
dual self-attention mechanism consisting of spatial attention
and channel attention between the encoder and decoder. Wu
et al. [15] proposed SCS-Net to capture multiscale contextual
information and promote feature fusion at different levels to
obtain more semantic representations. Although these networks
achieve excellent vessel segmentation performance, they only
apply additional modules at the lowest scale stages, neglecting
high-resolution detailed information.

Besides the typical U-shaped architecture, several noval neu-
ral network architectures have also achieved success in vessel

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on December 06,2022 at 13:04:45 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: FR-UNET AND DUAL-THRESHOLD ITERATION FOR RETINAL VESSEL AND CORONARY ANGIOGRAPH SEGMENTATION

4625

segmentation. Pearl et al. [16] proposed VSSC Net that uses
two-vessel extraction layers with added supervision on top of
the base VGG-16 network to improve segmentation accuracy
for retinal vessel and coronary angiogram segmentation. The
architecture does not adopt a conventional symmetrical design,
and the overall results are not competitive in evaluation met-
rics. Kamran et al. [17] proposed RV-GAN, a new multiscale
generative architecture for accurate retinal vessel segmentation,
which uses two generators and two multiscale autoencoding
discriminators for better microvessel localization and segmen-
tation. RV-GAN exhibits strong vessel segmentation ability, but
the low sensitivity in the literature implies that it can’t extract
thin vessels well enough. In addition, there are several works
devoted to vessel segmentation research beyond the network
architecture. Zhou et al. [18] designed the pipeline of synthesiz-
ing noisy labels and proposed a Study Group Learning (SGL)
scheme to boost the performance of model trained with imper-
fect labels. However, these strategies greatly increase training
time. In FR-UNet, inspired by these works, we employ efficient
network architecture designs such as multiscale fusion and deep
supervision.

B. High/full-Resolution Network

High/full-resolution representation learning can extract more
detailed information with greater accuracy, which plays an es-
sential role in semantic segmentation. Pohlen et al. [19] pro-
posed full-resolution residual networks for semantic segmen-
tation in street scenes, which combined the multiscale context
with pixel-level precision by coupling the convolution of the
image resolution. Sun et al. [20], [21], [22] proposed multiple
high-resolution networks (HRNet) for pose estimation, detec-
tion, and segmentation. The HRNet maintains high-resolution
representations throughout the process by connecting high-to-
low-resolution convolutions in parallel and has become one of
the popular backbones of network architecture design due to its
powerful high-resolution feature learning ability. UNet++[23],
[24] redesigns with rich skip connections to aggregate features
of varying semantic scales at the decoder subnetworks, leading
to a highly flexible feature fusion scheme. The first stage of the
network, composing multiple full-resolution dense convolution
blocks, efficiently integrates semantic representations of differ-
ent depths using deep supervision. Previous research has shown
that full- or high-resolution convolutional networks perform
exceptionally well on a variety of image analysis tasks. However,
there are still problems such as redundant skip connections,
simple feature aggregation patterns, and heavy computational
burden in those networks. We focus on solving these problems
for better vessel segmentation performance.

Ill. METHODOLOGY

In this section, we propose a simple but powerful CNN archi-
tecture, FR-UNet, which produces precise predicted probability
maps for vessel segmentation. Besides, the dual-threshold iter-
ative algorithm is introduced to determine whether the pixels of
the probability maps belong to a vessel. The details are described
below.

A. Full Resolution UNet

1) Multiresolution  Convolution Interactive Mechanism:
Fig. 2(a) shows the architecture of FR-UNet. The network
expands horizontally and vertically by up-sampling,
down-sampling, and convolution, similar to the structure
of UNet++. However, we removed the dense connections
at each stage and introduced a multiresolution convolution
interactive mechanism to achieve information interaction
between adjacent stages. The shallow stage can provide more
refined semantic information. On the other hand, the deep stages
supplement high-level contextual information and increase the
local receptive field of the feature maps. In order to reduce
the parameters, we merge only the feature maps of adjacent
stages compared to HRNet’s full parallel connection, which
increases the diversity and effectiveness of feature aggregation
using multiple kernel sizes and atrous convolutions. Each
stage aggregates the feature maps of adjacent locations in
parallel expansions and learns hierarchical representations.
Unlike the network based on the traditional encoder-decoder
architecture, the first stage of FR-UNet continuously integrates
high-level contextual information while maintaining the original
resolution. In view of the above-mentioned characteristics
of architecture, FR-UNet is suitable for dense prediction,
especially for small targets that easily lose spatial information
in down-sampling layers, i.e., thin vessels a few pixels in width.

The composition of FR-UNet is straightforward, mainly in-
cluding the feature aggregation modules, residual blocks [25],
up-sampling, and down-sampling. The essence of up-sampling
and down-sampling is a convolution block consisting of a con-
volution (Conv) layer, a batch normalization (BN) layer [26],
and a LeakyReLU activation function with a negative slope of
0.1 in sequence. In detail, the down-sampling is a 2 x 2 Conv
with a stride of 2, where the number of channels is halved and the
spatial size is doubled. The Conv layer in the up-sampling is a
2 x 2 deconvolution with a stride of 2, which doubles the number
of feature map channels and halves the spatial size. Starting at
32, the number of channels of FR-UNet is gradually doubled
from top to bottom.

2) Feature Aggregation Module: The feature aggregation
module concatenates feature maps from the previous residual
block as well as up-sampling and down-sampling of adjacent
stages. The operation is defined as:

[D( L(i-1,j— 1)) U (x(i+1,j 1)) ) (x(i,jfl))} , casel

Cij = [D (x(z 1,5 1)) ) (»T(m 1))] case 2
[Z/{( (i+1,5— 1)) ) (fC(w 1 )] case 3

(h

where D() and U() denote down-sampling and up-sampling,
respectively. [] denotes the concatenation operation. As shown
in Fig. 3, x; ; is a stacked feature map node, where 7 and j are
defined as the rows and columns of the network, respectively.
According to the node location, the feature fusion methods are
divided into three cases. The nodes x; ;1 are combined with the
up-sampling output of z;_; ;1 and the down-sampling output
of x;11 -1 respectively, or both. This is followed a 1 x 1
convolution, a3 x 3 convolution, and a 3 x 3 atrous convolution
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with a dilated rate of 2. The output channel of each convolution
is reduced to the current stage, the feature maps are obtained by
adding the outputs of three different convolution modes, and a
BN layer follows (see Fig. 2(b)), which is given as follows:

fij = B(Cix1(cij) + Cax3(cij) + Caxaaz(cij)),  (2)

where B() and C() denote a BN layer and a Conv operation
respectively. The modified residual block which adds a dropout
layer with a dropout rate of 20% after each BN layer to reduce
overfitting, is used for representation learning (see Fig. 2(c)).
3) Deep Supervision: Owing to stacked convolution and
feature aggregation, FR-UNet can learn deep representation
information. However, shallow full-resolution feature maps can
provide fine low-level spatial representations, which should not
be overlooked. As a result, we recommend using deep super-
vision at multiple semantic levels [23] in the first stage of the
network. As depicted in Fig. 2(a), the feature maps of the last few

convolution blocks in the first stage generate a probability map
using a I x 1 Conv, respectively, i.e., outputs I-VI. The predicted
probability result is the weighted sum of these probability maps.
The calculation is:

M
Y= WUk, 3

where M is the number of outputs for deep supervision. vy de-
notes output weight in different semantic levels and 22/[:1 Vi =
1. Moreover, the binary cross-entropy is introduced as the loss
function on the probability map, which is calculated as:

N
" 1 . .
L(y.9) = =5 D lwilog i + (1= yi)log(L — 4], (4)
i=1
where y and g indicate predicted probability and ground truth
of i'" image, respectively; N denotes the batch size.

B. Dual-Threshold Iteration

The network predicts the probability that each pixel belongs
to a vessel. Generally, for two classes of segmentation prob-
lems, the segmentation result is determined by the threshold of
the predicted probability map p € (0, 1), which is commonly
0.5 [27]. Nevertheless, there are inevitably some weak vessel
pixels whose scores are slightly smaller than the threshold on the
probability map. To address this issue, considering the neighbor-
hood relationship between pixels, we propose a dual-threshold
iterative algorithm to extract these pixels effectively. First of all,
we set a high threshold 7, and a low threshold ~;. The probability
map produces a strong segmentation map [ using 7, in which
U > yn pixels are set as 1, and the others are reserved. Then,
each pixel in the strong segmentation map is traversed to check
whether it is between high and low thresholds (v, > § > /),
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Algorithm 1: Dual-threshold Iteration.

Input: Probability map ¢ with H x W, high threshold
Yn, and low threshold ~,
Output: Binary map p
1fori=0to H—1do

2 for j =0to W —1 do

3 if gimj Z Yh then

4 ‘ yi,j =1

5 end

6 end

7 end

8 do

S | P=1;

10 for:=0to H—1 do

11 for j=0to W —1 do

12 if Yh > g}i_j >M and (gjiilﬁjil ==1or
Ji+1,; == 1 or §; j+1 == 1) then

13 ‘ gi,j =1

14 end

15 end

16 end

17 while § # p;

18 for i =0to H — 1 do

19 for j=0to W —1 do

20 if p; ; <, then

21 ‘ pi; =0

22 end

23 end

24 end

and there is a 1-value in the neighborhood. If the conditions are
satisfied, the pixel is set as 1. The strong segmentation map is
continuously iterated in this way until there is no change after
the iteration. Finally, the remaining non-1 pixels are set as O
to obtain the final result. We summarize the procedure of our
proposed approach in Algorithm 1.

IV. EXPERIMENTS
A. Database

The DRIVE [28] dataset was obtained from a diabetic
retinopathy screening program in the Netherlands. It contains
40 retinal images with segmentation annotations, 33 of which
show no signs of diabetic retinopathy and 7 of which show mild
early diabetic retinopathy. Each image was captured using 8 bits
per color plane at 565 x 584 pixels. These retinal images are
officially divided into a training set and a test set, each containing
20 images.

The CHASE_DB1 [29] is a dataset for retinal vessel seg-
mentation that contains 28 999 x 960 pixel color retina images
that were collected from 14 school children’s left and right eyes.
Each image is manually annotated by two independent experts
for segmentation, and the first is usually used as the ground truth.
Following the previous work [30], [31], the first 20 images are
used for training, and the remaining 8 images are used for testing.

The STARE [32] comprises 20 retinal fundus images, half of
which contain signs of pathologies. Since there is no uniform
division for the STARE dataset, it was experimented with a
10-fold cross-validation method [15], i.e., taking 18 images
as the training samples and the remaining images as the test
samples. Specifically, we repeat this process 10 times until the
entire dataset is covered, which can reduce the deviation as much
as possible and ensure the reliability of the experimental results.

The DCA1 [33] dataset consists of 134 X-ray coronary an-
giograms and their corresponding ground-truth images outlined
by an expert cardiologist. The entire image database is provided
by the Mexican Social Security Institute, UMAE T1-Le6n. Each
angiogram is a 300 x 300 pixel gray-scale image in PGM
format. The database was divided into two subsets: the training
set consists of 100 images, and the remaining 34 angiograms
compose the test set.

The CHUAC [29] dataset is composed of 30 189 x 189 pixel
coronary angiography images taken by the CHUAC Haemody-
namics Unit. For each image, a 512 x 512 pixel ground truth
was determined by the doctors at the hospital using a manual
image editing tool. In order to make the size of the image and
ground truth consistent, we enlarged the angiography images
to 512 x 512 pixels using bilinear interpolation. Following
previous work, the first 20 images are used for training and the
remaining 10 images are used for testing [16].

B. Evaluation Metrics

We calculated the area under the receiver operating char-
acteristic curve (AUC) by comparing the segmentation results
predicted with the corresponding ground truths and we eval-
uated the accuracy (Acc), sensitivity (Sen), specificity (Spe),
F1 score (F1), and intersection over union (IOU) on the binary
segmentation maps obtained by the threshold. They are defined
as follows:

oo — TP +TN | )
TP+TN + FP+FN
Sen = TPT+PFN’ ©
Spe = %a (7
9T P
= Py FP+ PN ®)
TP
10U =75 Fps 7N’ ©)

where true positives (TP) and true negatives (TN) denote the
numbers of correctly segmented vascular pixels and nonvascular
pixels, respectively; false positives (FP) and false negatives (FN)
denote the numbers of incorrectly segmented vascular pixels and
nonvascular pixels, respectively.

C. Implementation Details

We implemented the proposed FR-UNet with PyTorch and
conducted experiments with a single GeForce RTX 3090 GPU.
The Adam [34] algorithm with a weight decay of le-5 and
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TABLE |
COMPARISON OF FR-UNET WITH THE STATE-OF-THE-ART METHODS ON DRIVE AND CHASE_DB1
Methods Time Param (M) DRIVE CHASE-DB1
Acc Sen Spe AUC F1 10U Acc Sen Spe AUC F1 10U
U-Net [10] 2015 7.76 0.9678 0.8057 0.9833 0.9825 0.8141 0.6864 | 0.9743 0.7650 0.9884 0.9836 0.7898 0.6526
UNet++ [23] 2018 9.05 0.9679 0.7891 0.9850 0.9825 0.8114 0.6827 [ 0.9739 0.8357 0.9832 0.9881 0.8015 0.6688
Attention U-Net [35] 2018 8.73 0.9662 0.7906 0.9831 0.9774 0.8039 0.6721 | 0.9730 0.8384 0.9820 0.9848 0.7964 0.6617
HRNet [20] 2019 9.64 0.9704 0.8040 0.9864 0.9869 0.8265 0.7043 | 0.9758 0.8443 0.9847 0.9902 0.8148 0.6875
CS-Net [14] 2019 8.40 0.9632 0.8170 0.9854 0.9798 0.8039 0.7017 | 0.9742 0.8400 0.9832 0.9881 0.8042 0.6725
AG-Net [30] 2019 - 0.9692 0.8100 0.9848 0.9856 - 0.6965 | 0.9743 0.8186 0.9848 0.9863 - 0.6669
RVSeg-Net [31] 2020 5.20 0.9681 0.8107 0.9845 0.9817 - - 0.9726 0.8069 0.9836 0.9833 - -
SCS-Net [15] 2021 - 0.9697 0.8289 0.9838 0.9837 - - 109744 0.8365 0.9839 0.9867 - -
VSSC Net [16] 2021 8.05 0.9627 0.7827 0.9821 0.9789 - - 0.9633 0.7233 0.9865 0.9706 - -
SGL [18] 2021 15.53 0.9705 0.8380 0.9834 0.9886 0.8316 - 0.9771 0.8690 0.9843 0.9920 0.8271 -
RV-GAN [17] 2021 14.81 0.9790 0.7927 0.9969 0.9887 0.8690 - 0.9697 0.8199 0.9806 0.9914 0.8957 -
FR-UNet 2021 5.72 0.9705 0.8356 0.9837 0.9889 0.8316 0.7120 | 0.9748 0.8798 0.9814 0.9913 0.8151 0.6882
TABLE Il
COMPARISON OF FR-UNET WITH THE STATE-OF-THE-ART METHODS ON DCA1 AND CHUAC
Methods Time Param (M) DCAL CHUAC
Acc Sen Spe AUC F1 10U Acc Sen Spe AUC F1 10U
U-Net [10] 2015 7.76 0.9758 0.7816 0.9866 0.9879 0.7735 0.6307 | 0.9784 0.5881 0.9940 0.9614 0.6768 0.5115
Unet++ [23] 2018 9.05 0.9761 0.7954 0.9862 0.9884 0.7786 0.6375 | 0.9812 0.6687 0.9937 0.9707 0.7323 0.5777
Attention U-Net [35] 2018 8.73 0.9755 0.7986 0.9853 0.9855 0.7748 0.6324 | 0.9800 0.6526 0.9913 0.9506 0.7154 0.5569
HRNet [20] 2019 9.64 0.9777 0.8007 0.9876 0.9899 0.7919 0.6554 [ 0.9811 0.7456 0.9906 0.9870 0.7526 0.6033
CS-Net [14] 2019 8.40 0.9763 0.7895 0.9867 0.9889 0.7790 0.6380 | 0.9796 0.6735 0.9918 0.9747 0.7171 0.5589
VSSC Net [16] 2021 8.05 ]0.9700 0.7728 0.9809 0.9831 - - 109721 07892 09797 09757 - -
FR-UNet 2021 5.72 0.9788 0.8248 0.9875 0.9924 0.8022 0.6708 | 0.9803 0.8171 0.9868 0.9908 0.7601 0.6151
an initial learning rate of le-4 is used to optimize the model TABLE I
parameters. The learning rate is gradually reduced by the co- COMPARISON OF FR-UNET W'THS.T.XERETATE'OF'THE'ART METHODS ON
sine annealing algorithm over 40 epochs, and we use the last
epoch of results for testing. Moreover, we set empirically the Methods Acc  Sem  Spe AUC FI  IOU
weight parameters 7 to 0.2. In the training phase, the image is U-Net [10] 09730 07850 0.9884 0.9875 08118 06856
preprocessed as follows: UNet++ [23] 09734 0.7909 0.9883 0.9884 0.8150 0.6902
1) We convert the color retinal images in the DRIVE, . ion UNet [35] 09730 0.7804 0.9887 09878 0.8106 0.6839
CHASE_DBI, and STARE datasets to grayscale images.  ppne; 1o 09745 0.8127 09878 0.9893 0.8278 0.7088
2) The images in all datasets are normalized uniformly. CS-Net [14] 09735 0.7926 09882 0.9885 0.8159 0.6912
3) A 48 x 48 sliding window w1th a stride (?f 6 is used SCS-Net [15] 09736 0.8207 09839 00877 - i
to extract patches from vessel images to increase the FR.UNet 09752 0.8327 09869 09914 0.8330 0.7156

quantity of training data.

4) We performed data augmentation by horizontal flipping,
vertical flipping, and [90,180,270] degree rotation ran-
domly in the training phase to increase the diversity of
the data and reduce overfitting.

However, the input is a full-size image in the testing phase
without patch extraction.

V. RESULTS
A. Comparisons With the State-of-The-Art Methods

We conducted vessel segmentation experiments on the most
popular networks, including U-Net [10], UNet++[23], Attention
U-Net [35], CS-Net [14], and HRNet [20]. In order to overcome

the limitations of the number of down-samplings using a 48 x 48
patch, we removed the one-quarter down-samplings at the be-
ginning of HRNet. The full resolution was maintained, similar
to FR-UNet, while other structures remained unchanged. In
addition, we also compared the segmentation results of state-of-
the-art vessel segmentation methods in the literature, including
AG-Net [30], RVSeg-Net [31], SCS-Net [15], VSSC Net [16],
SGL [18], and RV-GAN [17].

Table I and III provide the qualitative results of vessel seg-
mentation for retinal vessel datasets DRIVE, CHASE_DB1, and
STARE. It is obviously apparent from these tables that FR-UNet
is competitive with state-of-the-arts by achieving the best overall
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RV-GAN

Ground truths

Fig. 4. Comparison of RV-GAN and FR-UNet segmentation results on
the DRIVE dataset.

performance with the highest AUC (0.9889 and 0.9914) on
DRIVE and STARE, and the third (0.9913, only 0.07% lower
than the first SGL) on CHASE_DBI. Additionally, it is worth
mentioning that the Sen score obtained by FR-UNet is much
higher than other methods on CHASE_DB1 and STARE. They
have respectively increased by 1.08 and 1.2% compared with
the second scores obtained by SGL and SCS-Net on DRIVE
and CHASE_DBI1. Many studies [15], [18] point out that better
sensitivity indicates the model is able to extract more thin vessels
and boundary pixels, which demonstrates that FR-UNet has
a great ability to extract microvascular structures. From all
the results, FR-UNet, SGL, and RV-GAN achieved the highest
scores on some evaluation metrics, respectively. Among them,
RV-GAN, as a GAN-based segmentation architecture, achieves
the highest Acc, Spe, and F1 on DRIVE and the highest F1
on CHASE_DBI, but Sen (0.7927 and 0.8199) is relatively
low compared with that of SGL (0.8380 and 0.8690) and FR-
UNet (0.8356 and 0.8798) on DRIVE and CHASE_DBI1. As
a result, it ignores many microvascular structures, as shown in
Fig 4. More importantly, the parameter amount of RV-GAN,
consisting of coarse and fine generators and discriminator, is
14.81 M, which is about 2.59 times that of FR-UNet. In ad-
dition, it can be found from the evaluation metrics on DRIVE
and CHASE_DBI that the performance of FR-UNet and SGL
is extremely close. However, SGL adopts model cascade and
cross-validation-based pseudo label generation strategies, which
greatly increases model complexity and training time compared
to FR-UNet.

The results of segmentation on the coronary angiograph
datasets DCA1 and CHUAC are shown in Table II. FR-UNet
obtained the highest AUC, Acc, Sen, F1 and IOU on DCA1
and the highest AUC, Sen, F1 and IOU on CHUAC. However,
unlike other comprehensive evaluation indicators, the Spe score
was low. Sen and Spe indicate the proportion of positive and
negative pixels correctly predicted. When extracting more weak
vessel pixels, FR-UNet introduces some false positives, i.e.,
nonvessel pixels are mispredicted. We consider that the model
further improves the extraction ability of weak vessels while

TABLE IV
ABLATION STUDY OF FR-UNET WITH DIFFERENT NETWORK
CONFIGURATIONS IN VESSEL SEGMENTATION (BASELINE: RES-UNET,
MRCI: MuLTI-RESOLUTION CONVOLUTION INTERACTIVE MECHANISM, FAM:
FEATURE AGGREGATION MODULE, AND DS:DEEP SUPERVISION)

Methods Acc Sen Spe AUC Fl (0)8)
baseline 0.9688 0.8021 0.9848 0.9828 0.8184 0.6927
baseline+MRCI 0.9709 0.7991 0.9874 0.9881 0.8279 0.7064
baseline+ MRCI+FAM 0.9707 0.8245 0.9857 0.9882 0.8299 0.7093
baseline+MRCI+DS 0.9711 0.8101 0.9865 0.9884 0.8306 0.7102

baseline+MRCI+FAM+DS 0.9705 0.8356 0.9837 0.9889 0.8316 0.7120

inevitably increasing the tolerance of false positives. In addition,
the number of FR-UNet’s parameters is 5.72 M, which is only
slightly more than RV Seg-Net among all the methods in Table 1.
Compared with state-of-the-art methods, our FR-UNet is still
a relatively light-weight network, which demonstrates that the
improvement in FR-UNet performance is not attributable to
model complexity.

We further visualize the vessel segmentation results, including
those of UNet++, Attention U-Net, CS-Net, and FR-UNet, as
shown in Fig. 5. The retinal vessel image contains many thin
vessels. Hence, we zoom in on the image details for a clearer
visualization, as shown in the highlighted rectangular regions.
From the first subgraph of DRIVE and the two subgraphs of
CHASE_DB1 and STARE, we can observe that FR-UNet de-
tects more thin vessel pixels with low contrast than UNet++,
Attention U-Net, and CS-Net. On the other hand, as shown
in the second subfigure on the DRIVE, FR-UNet is superior
with fewer false segmentations compared with other methods.
In addition, FR-UNet also achieves significant segmentation
effects on coronary angiography images from the DCA1 and
CHUAC datasets, which are the closest to the ground truth
compared to other methods due to retaining most of the spatial
information of vessels. The aforementioned comparisons show
that the FR-UNet has a strong capability for vessel segmentation.

B. Ablation Studies

As shown in Fig. 2(a), FR-UNet can be regarded as an
encoder-decoder network consisting of a multi-resolution con-
volution interactive mechanism (MRCI, see the green triangle
region in Fig. 3), feature aggregation module (FAM), and deep
supervision (DS). To validate the effectiveness of the com-
ponents, we conducted ablation studies to evaluate how each
component affects the results, using the DRIVE dataset as an ex-
ample. Res-UNet [36] served as the baseline of the experiment,
we employed the residual block to replace the original block
of U-Net and utilized a 1 x 1 convolution followed by a BN
layer to halve the number of channels after skip-connections,
aiming to apply residuals in the decoder. We gradually added
the above components to the baseline for ablation studies. All of
the experiments were performed using the same hyperparameter
configuration. The results are shown in Table IV. We observe that
the multiresolution convolution interactive mechanism (referred
to as ‘Baseline+MRCT’) significantly improved the overall
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Fig. 5. Visualization of vessel segmentation results. The images from the first row to the last row viewed vertically are from the DRIVE,

CHASE_DBH1, STARE, DCA1, and CHUAC datasets, respectively. From a horizontal perspective, the first column to the last column are the original
images, ground truths, and segmentation results of UNet++, Attention U-Net, CS-Net, and FR-UNet, respectively. The DRIVE, CHADE_DB1, and
STARE datasets contain many thin vessels, and we zoom in on the image details for clearer visualization, as shown in the highlighted rectangular

regions.

performance compared with Res-UNet. The Acc, Spe, AUC, F1,
and IOU increased by 0.21, 0.26, 0.53, 0.95, and 1.37%, respec-
tively. It is worth noting that Spe achieved the highest score,
but Sen slightly decreased by 0.3%. The experimental results
show that the vessel segmentation performance is enhanced due
to high-resolution representation learning and interactive fusion
of contextual information.

Res-UNet combined with a multiresolution convolution in-
teractive mechanism constitutes the main body of FR-UNet.We
add feature aggregation modules and deep supervision to this ar-
chitecture, respectively. The experimental results are described

as ‘Baseline+MRCI+FAM’ and ‘Baseline+MRCI+DS’ in Ta-
ble IV. The feature aggregation module replaces the 1 x 1
convolution with multiple convolutions in parallel and im-
proves the Sen, AUC, F1, and IOU scores. In particular, ‘Base-
line+MRCI+FAM’ outperforms ‘Baseline+MRCI’ with an im-
provement of 2.54% in Sen. We believe that the strategy aggre-
gates richer representation information before the residual block,
which benefits vessel pixels with extremely imbalanced cate-
gories. As a practical module, deep supervision is widely used
in various popular network architecture. We apply it to multilevel
full-resolution feature maps for supervised learning. Compared
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Different levels of model pruning on FR-UNet. The blue convolutional nodes on the P1-P4 subgraphs constitute the sub-networks, and the

TABLE V
PRUNING SUBNETWORK PERFORMANCE COMPARISON USING TFTS AND TTS. (TFTS:TRAINING USING THE FULL FR-UNET AND TESTING USING
SUBNETWORKS, AND TTS:BOTH TRAINING AND TESTING USING INDEPENDENT SUBNETWORKS.)

TFTS TTS
Methods Param (M)
Acc Sen Spe AUC F1 10U Acc Sen Spe AUC F1 10U

FR-UNet-Full 5.72 0.9705 0.8356 0.9837 0.9889 0.8316 0.7120 | 0.9705 0.8356 0.9837 0.9889 0.8316 0.7120
FR-UNet-P1 2.60 0.9707 0.8069 0.9865 0.9882 0.8285 0.7072 | 0.9711 0.7961 0.9879 0.9884 0.8284 0.7071
FR-UNet-P2 1.23 0.9685 0.7358 0.9909 0.9852 0.8038 0.6720 | 0.9709 0.7922 0.9881 0.9880 0.8267 0.7046
FR-UNet-P3 0.49 0.9653 0.6737 09933 09815 0.7727 0.6295 | 0.9703 0.8053 0.9861 0.9873 0.8260 0.7036
FR-Unet-P4 0.19 09618 0.6408 0.9926 0.9708 0.7462 0.5952 | 0.9694 0.7815 0.9876 0.9856 0.8174 0.6911

with ‘Baseline+MRCI,” the all-around performance was im-
proved by deep supervision, especially the Acc, which achieved
the highest score. Finally, we further embed both FAM and DS
into the baseline (referred to as ‘Baseline+MRCI+FAM+DS”)
to verify the superposition effect of all components. As shown
in Table IV, this method achieved the highest Sen, AUC, FI,
and IOU in the ablation study, which shows the effectiveness
of FR-UNet for blood vessel segmentation. However, Spe is the
lowest, and the reason was analyzed in the last subsection. In
summary, the results demonstrate that the strategy of FR-UNet,
which maintains full-resolution representation learning and su-
perimposes deep supervision and feature aggregation modules,
is qualified for blood vessel segmentation.

C. Model Pruning

As an essential valuation metric for model performance, net-
work parameters affect training and inference time. Although we
deliberately decreased the number of channels and simplified
skip-connections to alleviate this problem, FR-UNet still has
5.72 million parameters. Therefore, we propose a compromise
solution to reduce the number of model parameters through
model pruning. FR-UNet is generated by iteratively embed-
ding convolution nodes on the periphery of the initial encoder-
decoder network. We sequentially pruned the outermost nodes
of FR-UNet to obtain four subnetworks P1, P2, P3, and P4 with
different pruning levels. As shown in Fig. 6, the blue convolu-
tional nodes in the P1-P4 subgraph constitute the subnetwork,
and the gray convolutional nodes are removed in FR-UNet. As
a result, the horizontal and vertical depths of subnetworks P1

to P4 are gradually reduced, but the segmentation performance
may degrade. We evaluate the model’s performance on the
DRIVE dataset in two ways: 1) training using the full FR-UNet
and testing using subnetworks (TFTS), in which the network
parameters are trained using the full FR-UNet model, and the
pruned subnetwork gives the corresponding training weights for
testing; 2) both training and testing in subnetworks (TTS), where
the subnetwork is trained and tested in isolation without any
interaction with other networks.

As shown in Table V, the number of parameters is gradually
reduced by at least 50% from FR-UNet to P4, but the vessel
segmentation performance gradually degrades according vari-
ous evaluation metrics. Specifically, the number of parameters
of the P1 subnet is 2.60 M, which is approximately 45% that
of the full FR-UNet. However, the overall performance is close
to that of full FR-UNet regardless of TFTS or TTS, and even
P1’s Acc and Spe scores are slightly superior to those of the full
FR-UNet. Compared to the results of each pruning subnetwork
of TFTS and TTS, the vessel segmentation outcome of TTS is
significantly better than that of the same subnetwork of TFTS
in P2, P3, and P4. Moreover, the performance gap between
the subnetworks of the TTS is smaller. Due to the different
principles of the two methods, we believe that the evaluation
results are reasonable. TFTS and TTS are suitable for different
situations: 1) To meet the inference time requirements, TFTS can
be deployed directly for a pruned model trained by full FR-UNet
without retraining. 2) TTS is suitable for more flexible situations
where subnetworks with different pruning levels are trained and
tested as needed to achieve a trade-off between inference time
and segmentation performance.
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High threshold

Fig. 7.

Low threshold

Dual-threshold iterative

Visualization of dual-threshold iteration and single-threshold results on DRIVE dataset. The first row of images from left to right are

the original images, ground truths, and the probability maps predicted by FR-UNet; the second row is the binary map obtained by applying high
threshold, low threshold, and dual-threshold iteration to the probability map. To show the details, we enlarge the five highlighted rectangular regions

in the images.

D. Comparison of Threshold Methods

In order to estimate the proposed dual-threshold iterative
method, we separately applied single-threshold (ST) and DTI
algorithms to the probability map predicted by the network
model to obtain a binary segmentation map. For the predicted
probability map p € (0, 1), we set the high threshold at 0.5 and
empirically determined the low threshold at 0.3. The visualiza-
tion result is shown in Fig. 7. We observe enlarged subgraphs
in which the thin vessels in the original image have extremely
low contrast and are difficult for ordinary people to recognize.
Nevertheless, the experts annotated the thin vessels in the blue
and green subgraphs but did not annotate them in the red, yellow,
and purple subgraphs. The probability map shows that the gray
value difference between the two types of vessels predicted
by the network model is slight. It is observed from the blue
and green subgraphs that the thin vessels extracted by the high
threshold are not complete, whereas the DTI preserves more
details closer to the ground truth. Furthermore, the low threshold
produced oversegmentation in the red, yellow, and green sub-
graphs. However, unlike the low threshold, DTI did not produce
oversegmentation due to its iterative optimization mechanism
that emphasizes the neighborhood relationships between pixels.
It can be seen from the histogram of the evaluation metrics in

0.9
0.8
0.7
0.6
Acc Sen Spe F1 10U
High threshold Low threshold Dual-threshold Iterative
Fig. 8. The performance comparison of single-threshold and dual-

threshold iterative methods on the same probability map. The green,
blue, and yellow histograms denote the high threshold, low threshold,
and dual-threshold iteration, respectively.

Fig. 8 that DTI is significantly higher than the high threshold
on Sen while the others are low, and DTI is slightly better than
the low threshold in overall performance. Therefore, the low
threshold extracts more thin vessel pixels than the high threshold,
but more false-negative pixels are introduced. In this regard, DTI
effectively alleviates this problem. Considering the connectivity
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TABLE VI
STATISTICS OF CONNECTED COMPONENTS WHERE THE RESULTS ARE
PRODUCED BY SINGLE-THRESHOLD (y = 0.5, 0.4 AND 0.3) AND
DUAL-THRESHOLD ITERATION METHODS (7p,~; = 0.5 AND 0.4 AND
Yh,v1 = 0.5 AND 0.3) WITH DIFFERENT PARAMETERS ON THE DRIVE

DATASET
VCA|
Network models ST DTI
0.5 0.4 0.3 0.5+0.4  0.5+0.3

Unet [10] 19.76 1633 15.26 9.94 7.26
Unet++ [23] 18.86  14.38  12.81 9.46 6.79
Attention U-Net [35] 20.68 15.39  14.56 10.04 7.23
HRNet [20] 19.59 14.20 13.73 8.04 5.81
CSNet [34] 2550  20.09 16.89 9.55 6.34
FR-UNet 1844 1529 13.16 5.84 3.31

of vessel structures, DTI gradually explores the weak vessel
pixels between the high and low thresholds, starting with the
vessel pixels extracted from the high threshold. DTT introduces
fewer false negative pixels than low thresholds and visually
improves vessel connectivity.

In addition to the evaluation of pixel-level dense prediction,
the connectivity analysis of vessel segmentation is also critical.
However, there are few works in the literature on the quantitative
evaluation of vascular connectivity. For this, we innovatively
calculate the number of connected components for connectivity
analysis. Theoretically, the smaller the number of connected
components on the map, the better the connectivity of the vessels.
The characteristics of biological tissues mean that vessels are
connected and cannot exist independently. Nevertheless, the
vessel annotation has breakpoints, resulting in a ground truth
with multiple connected components. According to the statistics,
the total number of connected components of 20 ground truths is
80 on the DRIVE test set, which is a standard to measure connec-
tivity. The vessel connectivity assessment (VCA) is calculated
as:

N
1 L(pre)
VCA=— —_
N ; L(gt)’

where pre and gt denote the binarized prediction map and
ground truth, respectively. £() denotes the calculation of the
number of connected components, and /V is the number of vessel
images in the test set, which is 20 for DRIVE. Theoretically, the
lower the value of VCA, the better the connectivity of vessels.
We applied ST and DTI to the probability maps predicted by
different network models and calculated the VCA. It can be
seen from the data in Table VI that the VCA calculated by DTI
is significantly lower than that of ST among all networks. For
example, the number of connected components is the lowest
when v = 0.3 in ST (VCA = 13.16) of FR-UNet. In contrast,
VCA is only 3.31 in DTI when v, = 0.5 and ; = 0.3, which is
approximately 25.15% of the best result of the single threshold
method. It demonstrates how the dual-threshold iteration method
achieves excellent vessel connectivity when binarizing the vessel
prediction map. Furthermore, from the VCA results of each
network, our FR-UNet achieves the best connectivity, which
further demonstrates that it can extract more vessels.

(10)

VI. CONCLUSION

In this article, a full-resolution UNet for vessel segmentation
is proposed. In the network, the parallel convolutional layers hor-
izontally extend to learn full-resolution representations continu-
ously, and the feature aggregation module aggregates multiscale
representations to interact information with different resolutions
and supplement high-level contextual representations to form
full-resolution feature maps. The architecture of FR-UNet is
simple but effective and can be pruned at different levels to meet
efficient application scenarios. The evaluation metrics show that
FR-UNet has achieved outstanding comprehensive performance
compared with other state-of-the-art methods. Moreover, the
visualized segmentation results of retinal vessels and coronary
angiography illustrate FR-UNet’s powerful vessel extraction
capabilities. In addition, we introduced dual-threshold iteration
instead of a single-threshold method to extract weak vessel
pixels further to improve blood vessel connectivity. In the future,
we will continue to explore this work and extend it to 3D
vessel segmentation such as magnetic resonance angiography
and computed tomography angiography.
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