
Triply Periodic Bicontinuous Cubic Microdomain Morphologies by
Symmetries

Meinhard Wohlgemuth,† Nataliya Yufa,† James Hoffman,‡ and Edwin L. Thomas*,†

Department of Materials Science and Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139; and Mathematical Sciences Research Institute,
Berkeley, California 94720

Received November 14, 2000; Revised Manuscript Received March 13, 2001

ABSTRACT: In response to thermodynamic driving forces, the domains in microphase-separated block
copolymers have distinct intermaterial dividing surfaces (IMDS). Of particular interest are bicontinuous
and tricontinuous, triply periodic morphologies and their mathematical representations. Level surfaces
are represented by functions F: R3 f R of points (x, y, z) ∈ R3, which satisfy the equation F(x, y, z) ) t,
where t is a constant. Level surfaces make attractive approximations of certain recently computed triply
periodic constant mean curvature (cmc) surfaces and they are good starting surfaces to obtain cmc surfaces
by mean curvature flow. The functions F(x, y, z) arise from the nonzero structure factors F(hkl) of a particular
space group, such that the resulting surfaces are triply periodic and maintain the given symmetries.
This approach applies to any space group and can, therefore, yield desired candidate morphologies for
novel material structures defined by the IMDS. We present a technique for generating such level surfaces,
give new examples, and discuss certain bicontinuous cubic IMDS in detail.

Introduction
All periodic structures belong to one of the 230 space

groups. Usually the primary goal of a structural inves-
tigation is to find the specific coordinates within the
basic unit cell (a fundamental translational repeat unit)
of all the various types of atoms of a material. This
knowledge fully describes the structure. There are many
structures that are noncrystalline at the atomic level
but are crystalline at supermolecular length scales. In
these mesoscopic crystalline materials, interest is not
in the individual locations of the atoms and molecules
but, rather, in the characterization of the interfaces
separating adjacent regions of different composition. At
high temperatures, entropic forces dominate and the
structure is a homogeneous mixture. At lower temper-
atures, repulsive enthalpic interactions exert them-
selves, leading to the formation of ordered phases. The
microdomain structure is the result of the balance
between interfacial energy (which seeks to minimize
surface area and favors cmc surfaces) and chain stretch-
ing energy (which seeks to minimize variation of the
size of the coils and favors parallel surfaces). We
therefore focus our attention on the interface between
the components. We define this interface as the inter-
material dividing surface (IMDS)1 and model it as a
smooth, mathematical surface since the typical dimen-
sions of the unit cell in block copolymer mesoscopic
crystals are 50-100 nm, much larger than the typical
width of the composition profile across the interface (3
nm or less).

Motivation and Overview of Triply Periodic
Bicontinuous IMDS in Block Copolymer Systems.
A block copolymer is a macromolecule comprised of two
or more types of monomer units covalently linked in one
or more junctions. The first detailed structural inves-

tigation of a periodic bicontinuous structure in a block
copolymer was published in 1986.2 The particular block
copolymers examined were multiarm star diblock co-
polymers of polyisoprene and polystyrene. The blocks
microphase separate into two nearly pure types of
microdomains, one comprised of the polystyrene (PS)
blocks and the other of the polyisoprene (PI) blocks. The
proposed structure was cubic Pn3hm (space group 224)
and called “OBDD”, which stands for ordered bicontinu-
ous double diamond, since the proposed structure
contained two separate, connected, triply periodic,
tetrahedrally coordinated networks comprised of the PS
blocks in a matrix of the PI block. Both the PS and PI
domains are three-dimensionally continuous. Certain
TEM images3 were later compared with two-dimen-
sional simulations of a double diamond structure based
on the cmc family of Schwarz’s D surface.4 In 1994,
another bicontinuous cubic structure, the double gyroid,
with space group Ia3hd was discovered in a low molecular
weight PS/PI diblock5 and in a diblock/diblock blend.6
Certain TEM images of this double gyroid (DG) struc-
ture were strongly reminiscent of the prior OBDD
images, suggesting a reexamination of the star diblock
structure. Improved X-ray measurements led us to
revise the assignment of the star diblock structure to
DG.7

In general, for the block copolymer microdomain
structures that had been determined up to 1986, namely
spheres packed on a body-centered cubic lattice, cylin-
ders packed on a hexagonal lattice, and alternating
lamellae, the actual IMDS observed is in all cases very
close to a cmc surface. The fundamental reason the
previously identified block copolymer microdomain struc-
tures are based on spherical, cylindrical, and planar
(lamellar) structures is due to the similarity of the
thermodynamic problem of microphase separation to the
mathematical problem of area minimization under fixed
volume (or volume fraction) constraints, which im-
mediately leads to solutions that are periodic dividing
surfaces with constant mean curvature.1 Of course, the
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polymer physics contains other features in addition to
minimization of interfacial area at fixed volume fraction.
In particular, both of the component block copolymer
chains must uniformly fill the various regions defined
by IMDS, and these chains would prefer to have random
conformations and a uniform environment, require-
ments which can be frustrated to various extent by an
IMDS having everywhere constant mean curvature.8

In recent years, a number of new IMDS microdomain
structures have been discovered, particularly in ABC
linear and miktoarm star terpolymer systems, where
the additional type of block and presence of two junc-
tions per molecule, and/or star architecture, can strongly
influence the geometry of the equilibrium microdomain
morphology.9-13 Thus, it is important to have the means
to generate new models for the host of emerging complex
microdomain structures owing to the ongoing synthesis
of novel multicomponent, variable architecture block
copolymers. The additional requirement that the can-
didate IMDS have precisely constant mean curvature
is not of paramount importance, as a cmc surface can
often be obtained by curvature flow from a surface which
is not cmc,14 and since distinctly non-cmc IMDS micro-
domain shapes have been found.8,9,15,16

I. Geometry and Symmetries of Level Surfaces
To begin, we state some basic facts concerning the

geometry of level surfaces. We take on R3 the usual
(x, y, z) coordinate system and the Euclidean scalar
product 〈 , 〉R3. Let F: R3 f R be a smooth function. A
point p ∈ R3 is a point on the surface St if F(p) ) t; hence
St ) F-1(t) ) {p ∈ R3: F(p) ) t}. If we have two level
surfaces F1 and F2 then the level surface given by the
sum c1F1 + c2F2 has the greatest common symmetries
of F1 and F2, unless of course the linear combination is
a constant.

An isometry in R3 is a map σ: R3 f R3, which
preserves distances between points. The symmetries of
a surface S are all the isometries which map S onto
itself. In R3 the crystallographic symmetries are as
follows: translations, rotations, reflections, screws, glide
reflections, rotary reflections, and inversions.

We are principally interested in generating surfaces
which periodically divide space into 3-D connected
labyrinthine regions. Filling the labyrinths with distinct
block copolymers is equivalent to coloring the IMDS
differently on the inside and the outside. Thus, when
choosing the appropriate space group for a given struc-
ture we do not want to include symmetry operations
which would interchange the different polymer regions.
For instance, we assign the space group Pm3hm to
Schwarz’s P surface instead of a supergroup Im3hm,
which would correspond to a single-color P surface with
indistinguishable polymer regions on each side.

II. Derivation of Level Set Equations for Space
Groups

To find the appropriate surface describing a given
microphase-separated morphology we start with its
symmetries, which can be determined from transmis-
sion electron microscopy (TEM) and small-angle X-ray
scattering (SAXS) experiments. Given a set of sym-
metries of a periodic structure, one can determine from
the International Tables for Crystallography (ITC) the
space group of that structure.17 To find suitable candi-
date functions which are invariant under the space
group symmetry operations we borrow a tool from X-ray
crystallography, the structure factor. The structure

factor F(hkl) describes the amplitudes and phases of the
three-dimensional diffraction pattern due to the scat-
tering of incident radiation off of planes (hkl) of atoms
in the crystalline structure. We use the structure factor
terms because they have all the symmetries of the
structure; however, for special values of h, k, and l, the
factor F(hkl) can have extra symmetries. (We only
consider F(hkl) which are nonzero since those are the
allowed terms for the space group. A function which is
zero everywhere has infinitely many symmetry ele-
ments.) For instance, in a noncentrosymmetric space
group there can be F(hkl) terms that are centrosymmet-
ric. In group I4132, for example, planes (211) give rise
to a structure factor which is invariant under inversion
(thus the F(211) level surface is centrosymmetric), while
the space group as a whole does not have inversion
symmetry.

Another approach which can yield simple analytic
expressions for periodic bicontinuous partitions of space
was developed earlier by von Schnering and Nesper.18,19

They calculated zero-potential (nodal) surfaces based on
selected distributions of point charges. This method
involves taking the Fourier transform of point charge
distributions and leads again to the structure factor of
the chosen space group. The principal aim of nodal
surface calculations is to obtain simple expressions for
the approximation of three-dimensional periodic mini-
mal surfaces, since these surfaces are relevant models
for amphiphilic monolayers in bicontinuous mixtures of
oil, water and an amphiphile.18 Schwarz and Gompper
also have employed Fourier series to approximate nodal
surfaces and have computed the variation of mean and
Gaussian curvature over the surfaces.20 Harper and
Gruner used X-ray scattering to analyze lipid-water
systems and constructed models for the sample electron
density profile based on Fourier terms for the appropri-
ate space group of the P, D, and G minimal surfaces.21

To find level set equations which could correspond to
physical intermaterial dividing surfaces we consider the
structure factors F(hkl) for small values of h, k, and l.
Larger values of h, k, and l will, in general, correspond
to surfaces with higher genus, which are less favorable
due to their larger surface energy. Additionally, we only
need to take a single permutation out of all possible ones
of (h, (k, and (l because for cubic groups these will
only differ up to an exchange of axes or a sign. Moreover,
we set the numerical coefficient of F(hkl) to unity since
scaling does not affect symmetry.

Interesting new level sets can be obtained by taking
combinations of several F(hkl) terms. To obtain surfaces
which belong to a particular group and not its super-
group we need to include at least one term which only
has the symmetry of that group.

The general form of F(hkl) is given by

where fj is a factor corresponding to the strength of
scattering of the jth type of atoms and (xn, yn, zn) is the
nth equivalent position of the jth type of atoms in the
unit cell. The symmetry of the space group is conveyed
to the structure factor through the set of {xn, yn, zn};
therefore, we can set fj equal to 1. The structure factor
then becomes

F(hkl) ) ∑
j

fj∑
n

[cos 2π (hxn + kyn + lzn) +

i sin 2π (hxn + kyn + lzn)] (1)
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The remaining requirement is to convert the structure
factor in eq 1, which is in general complex, into a real
level set equation. Let F(hkl) ) A + iB. If B is equal to
zero, F(hkl) is real and the level set equation is simply
F(x, y, z) ) A ) t. If A is zero, we take F(x, y, z) ) B )
t. This covers all the cases considered in this paper,
however, there are space groups, for instance group No.
220, where low-order structure factor terms have both
real and imaginary parts. When this occurs, we consider
both the terms of the form FA(x, y, z) ) A ) t and
FB(x, y, z) ) B ) t.

The ITC tabulate expressions for each space group
that can be used to compute the specific form of eq 1.
There are 36 groups with cubic symmetry. We illustrate
this procedure in detail for seven cubic space groups in
the subsequent sections.

III. Level Surfaces with Pm3hm, Im3hm, and
Fm3hm Symmetry

The space group Pm3hm (No. 221) has forty-eight
general positions created by its set of symmetries. Since
the origin of the unit cell can be chosen on an inversion
center, F(hkl) is centrosymmetric, therefore, only the A
term from eq 2 contributes to the level set function. The
set of 48 equipoints listed for Pm3hm is

Equation 2 for the Pm3hm group has 48 terms

which, after dividing through by 8 to make the coef-
ficient equal to 1, becomes

We arrange the allowed F(hkl) in order of increasing
values of h2 + k2 + l2. For group Pm3hm the first F(hkl)
has h ) 1, k ) 0, l ) 0. Using the simplified expressions
in the ITC we find that

The second term in the series has h, k, l ) (110) and

Similarly, the third and fourth terms on the series are
given by cos 2πx cos 2πy cos 2πz and cos 4πx + cos 4πy
+ cos 4πz, respectively.

Level Surfaces of the Type F(100) ) t. We now
examine the level surface family given by the first
term: F(100) ) t. Figure 1a shows a three-dimensional
plot of the surface with t ) 0 over a unit cell taken from
-1/2 to +1/2. This surface divides space into two continu-
ous regions of equal volume. As previously noted by a
number of authors, this level surface is quite similar in
appearance to Schwarz’s minimal P surface.22 Of course,
the F(100) level surface is not a minimal surface. Ander-
son et al.4 numerically computed the cmc family based
on the P surface. In the cmc family the ratio of the
subvolumes varies with the mean curvature. By taking
F(100) ) t * 0, a family of level surfaces with a strong
resemblance to the cmc family of the P surface can be
constructed.23 The cmc family exists from a volume
fraction of 0.5 to 0.25 with φ ) 0.353 99 at pinch-off (the
surface no longer subdivides space into two continuous
subvolumes), while the level set family exists from 0.5
to the pinch-off at φ ) 0.210 29 with t ) 1.

F(110) ) t Family. The surface described by

appears similar to another minimal surface, Schoen’s
I-WP surface, for a certain range of t values. Figure
1b shows an I-WP surface with t ) -0.25. Anderson
et al.4 also numerically computed a cmc family for
I-WP.

Combination Level Surfaces. It is interesting to
explore two-parameter families, for example, sF(100) +
(1 - s)F(110) ) t, where the parameter ranges are infinite
for both s and t. However, for our purposes an overall
scaling factor is not important, as it will only affect the
frequency of the surface. Thus, we can restrict our
search to s values between 0 and 1 (with the corre-
sponding t values, limited by the bounds on the values
of trigonometric functions) if we consider sF(100) ( (1 -
s)F(110) ) t. Figure 1c shows an array of images obtained
by varying s and t in a region which yields continuous
surfaces. By changing s from 0 to 1, we obtain surfaces
that change from the I-WP family to the P family. At
intermediate values a new family emerges with com-
bined features, as shown in Figure 1d. This level set
resembles yet another triply periodic minimal surface,
Schoen’s O, CT-O surface.24 The O, CT-O minimal
surface can be regarded as a combination of Schwarz’s
P minimal surface and Schoen’s I-WP minimal surface.

The O, CT-O surface can also be modeled within the
sF(110) ( (1 - s)F(111) ) t family. This family also yielded,
for a certain range of s and t values, members of another
known constant mean curvature family4sthat based on
Neovius’ minimal surface.25 An example of a level set
approximation of Neovius’ surface, called C(P), is shown
in Figure 1e. We also found an expression for the level
set approximation to a combination of the P and C(P)
surfaces, previously shown by Karcher26 to be another
minimal surface with Pm3hm symmetry. This surface is
shown in Figure 1f and is built from a combination of
F100, F110, F111, F200, F222 and F300 terms. Another
interesting surface from this group resembling a mini-
mal surface, also found by Karcher,27 is the K surface,
shown in Figure 1g.

Supergroups: Im3hm and Fm3hm. The cubic space
groups Im3hm and Fm3hm are supergroups of Pm3hm.
They differ only by a body-centering translation in
Im3hm and face-centering translations in Fm3hm. The
reduced terms of group Im3hm are nonzero only for h +

F(hkl) ) ∑
n

[cos 2π (hxn + kyn + lzn) +

i sin 2π (hxn + kyn + lzn)] (2)

x, y, z; xj, yj, z; xj, y, zj; x, yj, zj

z, x, y; z, xj, yj; zj, xj, y; zj, x, yj, etc.

F(hkl) ) cos 2πhx cos 2πky cos 2πlz +
cos 2πhxj cos 2πkyj cos 2πlz +
cos 2πhxj cos 2πky cos 2πlzj +
cos 2 πhx cos 2πkyj cos 2πlzj +
cos 2πhz cos 2πkx cos 2πly +
cos 2 πhz cos 2πkxj cos 2πlyj +
cos 2πhzj cos 2πkxj cos 2πly +

cos 2πhzj cos 2πkx cos 2π lyj + ... (3)

F(hkl) )
cos 2πhx [cos 2πky cos 2πlz + cos 2πly cos 2πkz] +
cos 2πhy [cos 2πkz cos 2πlx + cos 2πlz cos 2πkx] +

cos 2πhz [cos 2πkx cos 2πly + cos 2πlx cos 2πky] (4)

F(100) ) cos 2πx + cos 2πy + cos 2πz (5)

F(110) ) cos 2πx cos 2πy + cos 2πy cos 2πz +
cos 2πz cos 2πx (6)

F(110) ) cos 2πx cos 2πy + cos 2πy cos 2πz +
cos 2πz cos 2πx ) t (7)
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k + l ) 2n and for the group Fm3hm are nonzero only if
h, k, l are all odd or all even. Nonzero reduced F(hkl)
terms are identical for this subgroup and its super-
groups.

A combination of the first two level set terms of the
Fm3hm space group gives us an approximation to an-
other triply periodic minimal surface discovered by
Schoen,23 the F-RD. Figure 1h shows an example of a
member of the F-RD family using the first, third and
fifth terms:

Anderson et al.4 also computed the F-RD cmc family.

IV. The Level Surfaces with I4132 and Ia3hd
Symmetry

Level set equations for another pair of cubic space
groups, I4132 space group (No. 214) and its supergroup
Ia3hd (No. 230), are of interest because they relate to
the double gyroid microdomain structure found in many
block copolymer materials.5,6,13,16,28 The group Ia3hd
contains all the symmetries of I4132 as well as inversion.
The first few allowed reflections for I4132 and for Ia3hd
are (110), (211), (220), and (211), (220), respectively.
Schoen’s infinite periodic minimal G surface, the so-

Figure 1. (a) Level set approximation for the P surface: F(x, y, z) ) F(100) ) cos 2πx + cos 2πy + cos 2πz ) 0. This surface has
genus 3. (b) Level set approximation to the I-WP surface: F(x, y, z) ) F(110) ) cos 2πx cos 2πy + cos 2πy cos 2πz + cos 2πz cos 2πx
) -0.25. The I-WP surface has genus 7. (c) Part of the two-parameter experiment for group No. 221. The basic equation is s (cos
x + cos y + cos z) + (1 - s) (cos x cos y + cos y cos z + cos z cos x) ) t, where s varies from 0 to 1. The values of t are changing
along the horizontal axis, and s is varied along the vertical axis. There are distinct regions on the graph where P, I-WP, and the
combination surface O, CT-O are located. (d) Approximation of the O, CT-O surface. In this part, we use the second and the third
terms in the series, but it is also possible to obtain similar, though less minimal-like plots by using the first and the second
terms, as shown in Figure 1c. F(x, y, z) ) 0.6 F(110) - 0.4F(111) ) 0.6 (cos 2πx cos 2πy + cos 2πy cos 2πz + cos 2πz cos 2πx) - 0.4
cos 2πx cos 2πy cos 2πz ) 1. The genus of the O, CT-O is 10. (e) Approximation to the Neovius’ surface C(P). The equation is F(x,
y, z) ) 0.6 F(100) - 0.4 F(111) ) 0.6 (cos 2πx + cos 2πy + cos 2πz) - 0.4 cos 2πx cos 2πy cos 2πz ) - 0.3. The genus of this surface
is 9. (f) P + C(P) surface approximation. The equation is given by F(x, y, z) ) 0.35 F(111) + 0.2 F(100) + 0.2 F(222) + 0.1 F(200) + 0.05
F(300) + 0.1 F(110) ) 0.35 cos 2πx cos 2πy cos2πz + 0.2(cos 2πx+ cos 2πy + cos 2πz) + 0.2(cos 4πx cos 4πy cos 4πz) + 0.1(cos 4πx +
cos 4πy + cos 4πz) + 0.05(cos 6πx + cos 6πy + cos 6πz) + 0.1(cos 2πx cos 2πy + cos2πy cos 2πz + cos 2πz cos 2πx) ) 0. A minimal
surface with this topology was discovered by Karcher.25 The genus is 12. (g) K surface approximation. This surface was also
discovered by Karcher.25 The equation is given by F(x, y, z) ) 0.3F(100) + 0.3F(110) - 0.4F(200) ) 0.3 (cos 2πx + cos 2πy + cos 2πz) +
0.3(cos 2πx cos 2πy + cos 2πy cos 2πz + cos 2πz cos 2πx) - 0.4 (cos 4πx + cos 4πy + cos 4πz) ) - 0.2. The genus of this surface
is 12. (h) F-RD surface approximation. The equation is F(x, y, z) ) 0.8 F(111) + 0.1F(222) - 0.1F(220) ) 0.8 cos 2πx cos 2πy cos 2πz
+ 0.1(cos 4πx cos 4πy cos 4πz) - 0.1(cos 4πx cos 4πy + cos 4πy cos 4πz + cos 4πz cos 4πx) ) 0. The genus of this surface is 6.

FF-RD (x, y, z) ) 0.8 F(111) - 0.1F(220) + 0.1F(222) ) 0
(8)
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called “gyroid” surface, has the symmetries of space
group I4132.23 This cubic space group does not a center
of symmetry, so the F(hkl) can have contributions from
both A and B terms. The unit cell is body-centered cubic,
so in addition to the three translations along the x, y,
and z axes there is a centering translation (1/2, 1/2, 1/2).
The set of symmetries for I4132 generates 48 equipoints
for the general position. Equation 2 for the I4132 group
can be simplified so that its A and B components have
six terms each:

and

The first allowed term is F(110):

Figure 2a depicts the unit cell of this surface with t )
0. The surface appears quite similar to Schoen’s gyroid
minimal surface. A level set family of F(110) exists for
the range t ) (x2, which corresponds to values of φ
from 0.5 to 0.046. Since the gyroid surface does not have
inversion symmetry, it cannot be approximated by terms
from group Ia3hd.

F(211) ) t Family and Combination Level Sur-
faces. The next nonzero term for group I4132 and the
first allowed term for group Ia3hd is F(211):

Setting F(211) equal to zero does not yield a smooth
surface. However, by varying t we can obtain a continu-
ous surface, G′. The surface (shown with t ) -0.5 in
Figure 2b) is a member of the C(I2-Y**) family discov-
ered by von Schnering. This surface is similar to the
gyroid but with extra tunnels inserted along 〈111〉
directions to create inversion symmetry, so its space
group is Ia3hd.

Exploration of the linear combination sF(110) ( (1 -
s)F(211) ) t does not lead to a topologically new inter-
mediate surface. The next term in the series, F(220), is
simply an I-WP approximation with twice the fre-
quency of eq 7. The combination sF(211) ( (1 - s)F(220) )
t yields two interesting surfacessan approximation of
the double gyroid microdomain structure, denoted DG

(called I2-Y** by von Schnering), and another interesting
surface named the Lidinoid after S. Lidin.29 The Lidi-
noid surface is shown in Figure 2e. This surface has
handles to the face centers, vertexes and midpoints of
all edges. The s, t array of combination images including
DG and L is shown in Figure 2c. The double gyroid has
the symmetries of Ia3hd; it consists of right- and left-
handed networks of a single nonminimal gyroid, as
shown in Figure 2d. Grosse-Brauckmann30,31 computed
the cmc family of gyroid surface using Brakke’s Surface
Evolver.14

Figure 2. (a) G (gyroid) level surface: F(x, y, z) ) F(110) ) sin
2πy cos 2πz + sin 2πz cos 2πx + sin 2πx cos 2πy ) 0. The genus
of this surface is 3. (b) G′ surface level set: F(x, y, z) ) F(211) )
sin 4πx cos 2πy sin 2πz + sin 4πy cos 2πz sin 2πx + sin 4πz
cos 2πx sin 2πy ) -0.32. G′ has several new features as
compared to the gyroid, e.g., extra holes and tunnels. Unlike
the gyroid, G′ belongs to space group 230. (A surface from this
family which uses F(211) +0.5 F(220) has been named C(I2-Y**)
by von Schnering and Nesper.19) The G′ surface has genus 12.
(c) Part of the two-parameter experiment for space group No.
230. The basic equation is F(x, y, z) ) sF211 ( (1 - s)F220 ) t.
(d) Double gyroid surface approximation. The equation is F(x,
y, z) ) 0.8F(211) - 0.2F(220) ) 0.8(sin 4πx sin 2πz cos 2πy + sin
4πy sin 2πx cos 2πz + sin 4πz sin 2πy cos 2πx) - 0.2(cos 4πx
cos 4πy + cos 4πy cos 4πz + cos 4πz cos 4πx) ) 0. (e)
Approximation to the L surface. The equation is F(x, y, z) )
0.5 F(211) - F(220) ) 0.5(sin 4πx cos 2πy sin 2πz + sin 4πy cos
2πz sin 2πx + sin 4πz cos 2πx sin 2πy) - 0.5(cos 4πx cos 4πy
+ cos 4πy cos 4πz + cos 4πz cos 4πx) ) -0.15.

F(hkl)
A (x, y, z) ) cos 2π(h + k + l

4 ) ×

{cos 2π(hx + l
4) cos 2π(ky + h

4) cos 2π(lz + k
4) +

cos 2π(hy + l
4) cos 2π(kz + h

4) cos 2π(lx + k
4) + ... }

(9a)

F(hkl)
B (x, y, z) ) cos 2π(h + k + l

4 ) ×

{sin 2π(hx + l
4) sin 2π(ky + h

4) sin 2π(lz + k
4) +

sin 2π(hy + l
4) sin 2π(kz + h

4) sin 2π(lx + k
4) + ... }

(9b)

F(110)
B (x, y, z) ) sin 2πy cos 2πz + sin 2πz cos 2πx +

sin 2πx cos 2πy (10)

F(211) ) A ) sin 4πx cos 2πy sin 2πz +
sin 4πy cos 2πz sin 2πx +

sin 4πz cos 2πx sin 2πy ) t (11)
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V. Level Surfaces with Fd3hm and Pn3hm
Symmetry

Schwarz’s D surface21 is a triply periodic minimal
surface with the symmetries of space group Fd3hm (No.
227). The related family of constant mean curvature
surfaces was computed by Anderson et al.4 The set of
symmetries for the Fd3hm group generates 192 equi-
points for the general position. Equation 2 for the Fd3hm
becomes

The allowed low-order terms are (111), (220), (311),
(222), etc. The first term is given by

Figure 3a shows the unit cell of this surface for t equal
to 0, which is quite similar to the D minimal surface. A
family of continuous level surfaces exists for φ values
from 0.50 to 0.14, corresponding to t values between 0
and (1.

The second allowed term in this group is

This term generates a surface which is similar to the
I-WP surface of eq 7 but with double the frequency and
a phase shift of π/2. The combination of the first two
terms, sF(111) ( (1 - s)F(220), yields a new bicontinuous
surface, D′, which is shown in Figure 3b. This surface
has some features of the P, I-WP and C(P) surfaces.

Pn3hm is a supergroup of Fd3hm. Its low-order nonzero
terms are (110), (111), (200), (211), etc. The first term
is given by

The above equation also yields an I-WP-like surface

with a π/2 phase shift. The second term for Pn3hm group
is F(111):

This surface is a periodic set of three orthogonal planes.
The combination of these two terms yields a structure
consisting of two offset surfaces, each one having
diamond symmetry. This structure corresponds to the
so-called double diamond structure, the OBDD micro-
domain morphology (see Figure 3c).2,32,33

VI. Combining Level Sets from Different Space
Groups

Our library of level set surfaces may also be used
intuitively to generate surfaces exhibiting the greatest
common symmetries of two existing level set surfaces
by simply adding the respective terms and adjusting the
parameters to obtain continuous surfaces. As an ex-
ample of generating such new surface we consider
combining the term for the P surface with twice the
normal frequency (F(200)

221) with the double gyroid terms
(F(211)

230 + F(220)
230). By analyzing the generators for the

starting space groups, we find the new P2-DG level
surface belongs to space group P213, No. 198. A plot of
the surface is shown in Figure 4.

Conclusion
We have conducted a systematic search for the cubic

space groups 214, 221, and 227 and their supergroups,

Figure 3. (a) D surface level set approximation, shifted here by π/4 for a more familiar representation: F(x, y, z) ) F(111) ) cos
2πx cos 2πy cos 2πz + sin 2πx sin 2πy cos 2πz + sin 2πx cos 2πy sin 2πz + cos 2πx sin 2πy sin 2πz ) 0. The genus of the D surface
is 3. (b) D′ surface level set: F(x, y, z) ) 0.5F(111) - 0.5F(220) ) 0.5(cos 2πx cos 2πy cos 2πz + cos 2πx sin 2πy sin 2πz + sin 2πx cos
2πy sin 2πz + sin 2πx sin 2πy cos 2πz) - 0.5(sin 4πx sin 4πy + sin 4πy sin 4πz + sin 4πz sin 4πx) ) 0.2. This is a new triply
periodic surface with Fd3hm symmetry and genus 9. (c) Double diamond surface, shown here in a shifted unit cell for easier
visualization. F(x, y, z) ) 0.5F(110) + 0.5F(111) ) 0.5(sin 2πx sin 2πy + sin 2πy sin 2πz + sin 2πx sin 2πz) + 0.5(cos 2πx cos 2πy cos
2πz) ) 0.

F(hkl) ) cos2 2π(h + k
4 ) cos2 2π(k + l

4 ) ×

{cos 2π(hx + ky + lz) + cos 2π(hx + ky - lz - h + k
4 ) +

cos 2π(hx - ky + lz + l + h
4 ) + ... } (12)

F(111) ) cos 2πx cos 2πy cos 2πz +
sin 2πx sin 2πy cos 2πz + sin 2πx cos 2πy sin 2πz +

cos 2πx sin 2πy sin 2πz (13)

F(220) ) sin 4πx sin 4πy + sin 4πy sin 4πz +
sin 4πx sin 4πz (14)

F(110) ) sin 2πx sin 2πy + sin 2πy sin 2πz +
sin 2πx sin 2πz (15)

Figure 4. P2-DG surface. This new surface belongs to space
group No. 198. It arises as a combination of terms of the double
gyroid and P surface level sets. The equation for this surface
is given by: F(x, y, z) ) 0.7 FA

(211) - 0.1F(220) - 0.2F(200) ) 0.7-
(sin 4πx cos 2πy sin 2πz + sin 4πy cos 2πz sin 2πx + sin 4πz
cos 2πx sin 2πy) - 0.1(cos 4πx cos 4πy + cos 4πy cos 4πz + cos
4πz cos 4πx) - 0.2 (cos 4πy + cos 4πz + cos 4πx) ) 0. The first
two terms are from space group No. 230, and the third term
is from space group No. 221.

F(111) ) cos 2πx cos 2πy cos 2πz (16)
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225, 224, 229, and 230, seeking allowed embedded,
connected surfaces with the given symmetries. Search-
ing group 221 yielded level set approximations to all the
known triply periodic low genus surfaces: the P surface
(see Figure 1a), I-WP (Figure 1b), their combination,
the O, CT-O (Figure 1d), Neovius’ surface C(P) (Figure
1e), the intermediate combination of P and C(P) (Figure
1f), and a P-like surface K (Figure 1g). We also discov-
ered level set equations for the Lidinoid (Figure 2e) and
double diamond (Figure 3c) surfaces. We found these
new level set surfaces by generating arrays of surfaces:
varying the free parameters over a grid and visually
inspecting for interesting bi- and tricontinuous surfaces.
We then refined the search in the areas of interest,
investigating combinations of up to six terms to find the
most physically plausible level set equations.

This investigation has shown that it is possible to find
new triply periodic embedded surfaces with cubic sym-
metries by a simple algorithmic procedure starting from
the structure factor equations from the ITC. We have
found two new surfaces, in groups 198 and 227, the P2-
DG and the D′ surfaces, pictured in Figures 3b and 4,
respectively. It is likely that minimal surface equiva-
lents of these surfaces exist, and thus the cmc surface
families also exist. These bi- and tricontinuous struc-
tures may be useful candidate models for novel micro-
domain structures in block copolymers. Given the
increasing interest in synthesis of well-defined, multi-
component, complex architecture macromolecules, these
models may also be inspirational to both polymer
chemists and also to polymer physicists due to their
possible unusual transport and optical (e.g., photonic
crystal) properties.33-35
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