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ABSTRACT
Recommender Systems have been playing essential roles in e-
commerce portals. Existing recommendation algorithms usually
learn the ranking scores of items by optimizing a single task (e.g.,
Click-through rate prediction) based on users’ historical click se-
quences, but they generally pay few attention to simultaneously
modeling users’ multiple types of behaviors or jointly optimize
multiple objectives (e.g., both Click-through rate and Conversion
rate), which are both vital for e-commerce sites. In this paper, we
argue that it is crucial to formulate users’ different interests based
on multiple types of behaviors and perform multi-task learning for
significant improvement in multiple objectives simultaneously. We
propose Deep Multifaceted Transformers (DMT), a novel frame-
work that can model users’ multiple types of behavior sequences
simultaneously with multiple Transformers. It utilizes Multi-gate
Mixture-of-Experts to optimize multiple objectives. Besides, it ex-
ploits unbiased learning to reduce the selection bias in the training
data. Experiments on JD real production dataset demonstrate the
effectiveness of DMT, which significantly outperforms state-of-
art methods. DMT has been successfully deployed to serve the
main traffic in the commercial Recommender System in JD.com.
To facilitate future research, we release the codes and datasets at
https://github.com/guyulongcs/CIKM2020_DMT.
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Figure 1: A real example in the Recommender Systems in JD.

1 INTRODUCTION
Recommender Systems, which aim to recommend potentially inter-
ested items for users and solve the information explosion problem,
are playing critical roles in E-commerce sites (e.g., Amazon, JD.com,
Alibaba) [10, 20, 41, 42], videos sharing sites (e.g., YouTube) [7],
picture sharing sites (e.g., Pinterest) [36], social networks (e.g., Face-
book) [11, 13] and so on. For example, in JD.com, one of the largest
E-commerce sites in the world, the Recommender System serves
more than 0.3 billion users in China, Thailand, Malaysia and other
countries, and contributes billions of dollars for the Gross Merchan-
dise Volume (GMV) (i.e., the total sales value for merchandise sold)
each year. Industrial Recommender Systems are usually consisted of
two stages: The first stage is Candidate generation [4, 7, 21, 25, 32],
which selects hundreds or thousands of products as candidates
from millions or even billions of items; The second stage is Rank-
ing [7, 41], which ranks the selected candidates and returns several
top-ranked items for each user. In this paper, we focus on the rank-
ing stage, which is critical for improving both the satisfaction of
the users and the revenue of the sites.
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Many ranking methods for recommendations have been pro-
posed, including tree-based methods [9], deep neural networks [5,
7, 10, 40, 41], reinforcement learning [42, 43] based models and
so on. However, designing a real-world large-scale E-commerce
recommender system still faces many challenges, including:

• Multi-objective ranking. We need to simultaneously optimize
multiple objectives, which could be related but sometimes need a
trade-off. In E-commerce portals, for example, the recommended
products are expected to be clicked and purchased by the users.
Thus here both Click-Trough Rate (CTR) and Conversion Rate
(CVR) are two important objectives. The most straightforward
method that always returns the most popular products for all
users may leads to high CTR but low CVR resulting from its poor
personalization of the recommendations to the users.

• Multiple types of users’ behaviors. Users usually have many
types of behaviors (e.g., click, add to cart, order) in E-commerce
sites. They can imply users’ real-time intents in different aspects.
What’s more, they may play different roles for different rank-
ing objectives. For example, empirically recommending some
products that are similar to purchased products by the target
user will lead to high CTR but low CVR. Currently, most existing
studies aim to model users’ click sequences and optimize the
CTR-based objective for recommendation [40, 41]. It still remains
as an open problem to effectively formulate users’ multiple types
of behaviors for multi-objective ranking.

• Biased implicit feedbacks. Existing recommender systems usu-
ally exploit users’ implicit feedback (e.g. click or not) to learn
the ranking model. However, selection bias exists in the implicit
feedback data. A user might click a product simply because it
is ranked high, and such observation is called “position bias”.
Besides, given a target item, the neighboring items near to it
could also influence its CTR, which is refferred as “neighboring
bias” in this paper. A user may less likely to click a product if it
is surrounded by many similar ones in the same category. For
example, in Figure 1, the product “iPhone 11"" may have higher
probability of being clicked because it is ranked in the first posi-
tion, and the three “iPhones" may have strong competition for
being clicked. Which types of bias information are more influ-
ential? How to effectively model and reduce the bias? They are
both open questions in E-commerce scenarios.

Some pioneering studies have investigated the multi-task learn-
ing problem for recommender systems [19, 22, 23, 33, 38], where
the Multi-gate Mixture-of-Experts (MMoE) [23, 38] method has
achieved state-of-the-art performance. However, these works only
model one type of behaviors (i.e., clicks). We argue that it is crucial
to formulate users’ different interests based on multiple types of
behaviors for significant improvement in multiple objectives simul-
taneously. Furthermore, existing works [7, 40, 41] usually ignore
the bias issue when they model users’ behaviors, which is extremely
important in real-world systems.

To address these challenges, we propose a novel framework Deep
Multifaceted Transformers (DMT) for the multi-objective ranking
in large-scale E-commerce Recommender Systems. In particular,
DMT exploits multiple Transformers [30] to model users’ multiple
types of behavior sequences, and represent users’ real-time intents
in different aspects as multiple low dimensional interest vectors.

Then the MMOE modules can model the relationship and conflict
between multi tasks, and optimize multiple objectives simultane-
ously based on these interest vectors. To consider the bias in the
implicit feedbacks, DMT utilizes a Bias Deep Neural Network to
estimate the propensity score based on the selection bias features,
which further improves the performance of the framework.

To summarize, our major contributions are listed as follows:
• We investigate the multi-objective E-commerce recommendation
problem bymodeling users’ multiple types of behavior sequences.

• We present DMT, which exploits multiple transformers to model
users’ diverse behavior sequences, utilizes Multi-gate Mixture-
of-Experts to jointly optimize multi-objectives, and uses a Bias
Deep Neural Network for reducing the bias in E-commerce Rec-
ommender Systems.

• We conduct extensive experiments and demonstrate that DMT
outperforms state-of-the-art baselines greatly for both click and
conversion tasks. DMT has been deployed in the commercial
Recommender System in JD.com, contributing billions of dollars
in revenue each year.

2 RELATEDWORK
2.1 CTR prediction
Click-through rate (CTR) prediction, which aims to estimate the
probability of a user clicking on the item, is one of the long-standing
core tasks in industrial applications, such as Recommender Sys-
tems [5, 7, 37], Search Engine [35], Advertising [13, 40, 41] and so
on. GBDT [9] is one of the most popular and successful methods for
CTR prediction in industrial systems [13, 35]. It has the advantage
of simplicity, effectiveness, good explainability, flexible extensibil-
ity and so on. In recent years, deep learning based methods have
achieved appealing performance for CTR prediction. These meth-
ods [5, 7] follow the Embedding&MLP paradigm: large-scale sparse
input features are firstly mapped into low dimensional embedding
vectors, and then concatenated together to fed into the multilayer
perceptron (MLP) to learn the nonlinear relations among features.
Wide&Deep [5] combines wide linear models and deep neural net-
works for recommender systems. Some work [2, 12, 28, 29] focus
on the feature interaction problem. They can be regarded as com-
plement work with our approach. State-of-the-art methods have
found the effectiveness of modeling users’ historical behaviors for
CTR prediction [8, 10, 16, 17, 26, 27, 31, 40, 41]. DIN [41] notices
that a user may have multiple interests and uses attention mecha-
nism to learn the representation of user interests from historical
behaviors with respect to a certain candidate item. It achieves better
performance than the simple Embedding&MLP method [7]. To fur-
ther consider the sequential information in users’ click sequence,
DIEN [40] uses two layers of GRU to model the click sequence
and capture the evolution of the user’s interest. HUP [10] exploits
Pyramid Recurrent Neural Networks to model users’ hierarchical
interests in categories and items. Recently, some works [3, 8, 18, 39]
attempt to exploit Self-Attention Neural Networks to model user’s
behavior sequence. However, existing methods usually focus on
modeling a single type of user’s behavior sequence or consider a
single objective. How to effectively model users’ multiple types of
behaviors sequences on items for multiple objectives in industrial
Recommender Systems still remains as an open problem.
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2.2 Multi-task Learning for Recommendation
Many existing multi-task recommender systems are designed for
specific types of applications or features. Lu et al. [22] jointly learns
to perform rate prediction using matrix factorization and recom-
mendation explanation using sequence to sequence learning on
textual data. Wang et al. [33] proposes a multi-objective evolu-
tionary algorithm for long tail items recommendation to suggest
accurate and novel items. General Multi-task ranking systems com-
monly follows a Shared-bottom [38] architecture, where different
tasks share the same bottom layers (i.e., multilayer perceptron lay-
ers). However, the hard-parameter sharing mechanisms may harm
the learning of multiple objectives when correlation between task
is low. To better model the relations and conflicts among multiple
objectives, recently Multi-gate Mixture-of-Experts (MMoE) [23, 38]
is adopted for multi-task ranking and has achieved state-of-the-art
performance. However, existing work usually applying the MoE
layer on the input layer [23] or lower-level shared multi perceptron
layers [38]. In this paper, we propose the idea of applying the MoE
layer on the multiple types of interests vectors, which are learnt by
multiple Transformers based on corresponding behavior sequences.
This is significantly different with existing work. To our best knowl-
edge, this is the first work that demonstrates the effectiveness of
applying MMoE on users’ multifaceted interest vectors, which are
extracted by sequential models based on users’ multiple types of
behavior sequences, for multi-objective ranking.

2.3 Unbiased Learning to Rank
Ranking models are usually trained based on logs (e.g., users’ im-
plicit feedback) in human-interactive systems. The training logs
naturally have selection bias. For example, position bias in search
rankings strongly influence howmany clicks a result receives [1, 14].
Directly using the implicit feedback data for training may affect the
learning of ranking models in estimating relevance between users
and items, and lead to sub-optimal results [14]. Unbiased Learning
to Rank [14] aims to reduce such biases in learning ranking models.
Many works [1, 14, 34] have been proposed to model the position
bias in search ranking. These methods usually need to learn a sepa-
rate model to estimate the propensity scores [1, 14]. Recently, there
are some initial work [38] that attempts to learn a single Deep
Neural Network based model that can simultaneously solve the
click prediction and bias modeling problems in Recommender Sys-
tems. This approach is more suitable for industrial Recommender
Systems where the training data distribution (e.g., users’ interests
or behaviors, item popularities) may change frequently.

3 PROBLEM FORMULATION
The Multi-objective Ranking problem in E-commerce Rec-
ommender Systems. Given a set of𝑀 candidate items, the Multi-
objective Ranking problem aims to predict the ranking score of
each candidate item based on multiple objectives. In this paper, we
consider two objectives: Click-through Rate (i.e. click prediction)
and Click-through Conversation Rate (i.e. order prediction), which
denote the probability of clicking and purchasing the item respec-
tively. It should be noted that, Click-through Conversation Rate is
the product of Click-through Rate and Conversation Rate [24].

4 METHOD
In this section, we introduce DMT, a Deep Multifaceted Transform-
ers based framework for multi-objective ranking in E-commerce
Recommender Systems. As illustrated in Figure 2, DMT is com-
posed of Deep Multifaceted Transformers, Multi-gate Mixture-of-
Experts (MMoE) layers and a Bias Deep Neural Network.

4.1 Input and Embedding Layers
The inputs of DMT can be divided into two parts: categorical fea-
tures and dense features.

4.1.1 Categorical features. The most useful categorical features
in e-commerce recommender systems are users’ diverse behaviors.

Users’ diverse behavior sequences. In E-commerce portals,
the uses usually have rich and diverse behaviors, such as click prod-
ucts, add products to cart, order products and so on. The sequence
of each type of users’ behaviors is represented by a variable-length
sequence of items. Given a target user 𝑢, the input of our model is
the target item and the user’s multiple types of behavior sequences
𝑆 = ⟨𝑥1, 𝑥2, . . . , 𝑥𝑇 ⟩, where 𝑇 is the length of the sequence. The
𝑖th element 𝑥𝑖 = (𝑡𝑖 , 𝑝𝑖 ) indicates that 𝑢 performs a behavior on
the item 𝑝𝑖 at the time 𝑡𝑖 . In this paper, we consider three types of
users’ behavior sequences: click sequences 𝑆𝑐 , add to cart sequences
𝑆𝑎 and order sequences 𝑆𝑜 , which are users’ main behaviors in e-
commerce sites.

Embedding Layer. For each product 𝑝𝑖 , we use its product id 𝑝𝑖 ,
category id 𝑐𝑖 , brand id 𝑏𝑖 and shop id 𝑠𝑖 information to represent
it. As previous did [7, 41], we use the embedding layer to transform
the high dimensional sparse ids into low dimensional dense rep-
resentations. Specifically, the embedding layer firstly uses embed-
ding tables of products, categories, brands and shops to transform
the sparse ids 𝑝𝑖 , 𝑐𝑖 , 𝑏𝑖 , 𝑠𝑖 into low-dimensional dense vectors (i.e.,
𝑒𝑝𝑖 ,𝑒𝑐𝑖 ,𝑒𝑏𝑖 ,𝑒𝑠𝑖 ) respectively and then concatenates these vectors into
a single embedding vector 𝑒𝑖 . The embedding tables are initialized
as random numbers and jointly learnt with our model.

4.1.2 Dense features. The last generation Recommender System
in JD.com exploits GBDT [9] to learn the ranking models based on
some dense features, which have been designed and improved for
more than five years. We empirically find that it will bring signifi-
cant gains by integrating these dense features into the DNN model.
In the JD Recommender System, we use 615 dense features, which
can mainly be divided into three types: item profile features (e.g.,
number of clicks, CTR, CVR, rating) , use profile features (e.g., pur-
chase power, preferred categories and brands), user-item matching
features (e.g., whether the item matches the user’s gender or age)
and user-item interaction features (e.g., number of clicks on the
category of the item within a time window). As Deep Neural Net-
works are sensitive to the scaling of their inputs, we use the Z-score
Normalization method to normalize the dense features.

4.2 Deep Multifaceted Transformers Layer
4.2.1 Deep Multifaceted Transformers. To capture each user’s

multifaceted interest, we use three separate Deep Interest Trans-
formers (they have different parameters) to model the user’s click
sequence, cart sequence and order sequence, and learn the user’s
short-term, middle-term and long-term interest vectors respectively.
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Figure 2: The architecture of our framework DMT. It utilizes Deep Multifaceted Transformers (bottom), which is consisted of
multiple Deep Interest Transformers (right), to extract users’ multifaceted interests from their diverse behavior sequences,
exploits Multi-gate Mixture-of-Experts (MMoE) (top) to simultaneously optimize multiple objectives, and uses a Bias Deep
Neural Network (left) to reduce the bias in training data.

The basic idea is that users’ multiple types of behavior sequences
on items (e.g., click, add to cart and order) are significantly different
and they have different timescales. For example, a user may have
many click behaviors but usually have only a few cart or order
behaviors in a short time range (e.g., within a week). In this paper,
for each user, the click sequence is her recent 50 clicked products
within 7 days, the cart or order sequence is her recent 10 carted or
ordered products within a year.

4.2.2 Deep Interest Transformer. For each behavior sequence,
we exploit Deep Interest Transformer (right side in Figure 2) to
model user’s real-time interest and represent it as an interest vector.
In the Deep Interest Transformer, the encoder models the relation-
ships among items in the sequence, and the decoder learns user’s
interest vector corresponding to the target item. The encoder and
decoder in the interest extractor are both based on self-attention
blocks.

Self-attention blocks. Self-attention [30], which is an attention
mechanism relating different positions of a single sequence in order
to compute a new representation of the sequence, has achieved state-
of-the-art performance for sequence modeling in many tasks [3, 30].
An attention function mappings a query and a set of key-value pairs
to an output, which is a weighted sum of the values, where the
weight assigned to each value is computed based on the query
and corresponding key. The Self-attention block uses the Scaled
Dot-Product Attention defined in Equation 1:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (QK
𝑇√
𝑑𝑘

)V (1)

where Q, K and V present the queries, keys and values respectively,
𝑑𝑘 , 𝑑𝑘 and 𝑑𝑣 are the dimensions of the queries, keys and values.
Each Self-attention block is consisted of Multi-head Self-attention
Layers and Point-wise Feed-Forward Networks.

(1) Multi-head Self-attention Layers. To capture the relationships
between queries and keys from different subspaces [30], we use
multiple heads self-attention. Firstly, it linearly projects the queries
Q ∈ R𝑇𝑞×𝑑 , keys K ∈ R𝑇𝑘×𝑑 and values V ∈ R𝑇𝑘×𝑑 for ℎ times
with different linear projection matrices and performs Scaled Dot-
Product Attention on the results to yield each head. Then, it con-
catenates the results from each head and projects them to the final
values with the matrixW𝑂 . The process can be formulated as fol-
lows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)W𝑂

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄WQ
𝑖
, 𝐾WK

𝑖 ,𝑉WV
𝑖 )

where ℎ is the number of heads, W𝑄

𝑖
∈ R𝑑×𝑑𝑘 ,W𝐾

𝑖
∈ R𝑑×𝑑𝑘 and

W𝑉
𝑖
∈ R𝑑×𝑑𝑣 are parameter projection matrices,W𝑂 ∈ Rℎ𝑑𝑣×𝑑 and

𝑑𝑘 = 𝑑𝑣 = 𝑑
ℎ
. The output of the Multi-head Self-attention Layers

has the dimension of R𝑇𝑞×𝑑 .

(2) Point-wise Feed-Forward Networks. To increase the represen-
tation ability of the model, each Self-attention block applies fully
connected feed-forward networks (FFN) to each position in the
output of the Multi-head Self-attention Layers separately and iden-
tically. As shown in Equation (2), the networks consists of two
linear transformations with a ReLU activation in between:

𝐹𝐹𝑁 (𝑥) = 𝑅𝑒𝐿𝑈 (𝑥W1 + b1)W2 + b2 (2)

where W1 ∈ R𝑑∗𝑑𝑓 ,W2 ∈ R𝑑𝑓 ∗𝑑 , b1 ∈ R𝑑𝑓 and b2 ∈ R𝑑 .
Positional encoding. For a behavior sequence 𝑆 = ⟨𝑥1, 𝑥2, . . . ,

𝑥𝑇 ⟩, where𝑇 is the length of the sequence, and 𝑥𝑖 = (𝑡𝑖 , 𝑝𝑖 ) indicates
that the user performs a behavior on the item 𝑝𝑖 at the time 𝑡𝑖 . To
model the positional information in the behavior sequence, we
investigate two methods for positional encoding:
• Sinusoidal Positional Embedding (pos_sincos) [15, 30]. This
method encodes the positions 1, 2, ...,𝑇 in the sequence into em-
beddings using sine and cosine functions.
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• Learned Positional Embedding (pos_learn) [30]. It directly learns
the positional embeddings in the model training stage and adds
the positional embeddings to corresponding item embeddings in
the sequence.
Encoder. The encoder applies a self-attention block on the the

embeddings of the behavior sequence and allows each item in the
sequence to attend over all items in the input sequence. The self-
attention mechanism models the mutual relationships between
every two items in the user’s behavior sequence, and can better
learn the user’s interest from historical behaviors.

Decoder. As a user may have diverse interest [41], the decoder
uses the target item as query and the output of the encoder as both
keys and values. It learns the attention score between the target
item and each item in the historical sequence, and learns a unique
user interest vector for each target item. The interest vector varies
over different target items, improving the representation ability of
the model.

4.3 Multi-gate Mixture-of-Experts Layers
In e-commerce recommender systems, there are usually multiple
objectives, such as CTR, CVR, GMV and so on. The ranking system
should be able to learn and estimate multiple types of users’ utilities
and combines these estimations to compute a final utility ranking
score. The multiple objectives may have complex relationships (e.g.,
independent, related or conflict) with each other, and the commonly
used Shared-bottom [23] architecture may harm the learning of
multiple objectives. To capture the relation and conflict of multiple
tasks, we adopt Multi-gate Mixture-of-Experts (MMoE) [38] for
multi-objective ranking. DMT applies MMoE on top of the concate-
nation of outputs from the Deep Multifaceted Transformers Layer
and the dense features. It uses 𝑁 expert networks, which are all
multi-layer perceptrons with ReLu activations, to model the input x
respectively and get the outputs of each expert, which are denoted
as 𝑒1 (𝑥), 𝑒2 (𝑥), ..., 𝑒𝑁 (𝑥). For each task 𝑘 , as shown in Equation 3,
firstly, it exploits a gating network 𝑁𝑁𝐺𝑘 to learn the weights of
each expert as𝑤𝑘 = (𝑤𝑘1 ,𝑤

𝑘
2 , ...,𝑤

𝑘
𝑁
) ∈ R𝑁 . Secondly, it calculates

the weighted sum of experts outputs as 𝑓 𝑘 (𝑥). Finally, it feds 𝑓 𝑘 (𝑥)
into a utility network 𝑁𝑁𝑈 𝑘 to get 𝑢𝑘 ∈ R1, the utility for task
𝑘 . The gating networks and utility networks are implemented by
multi-layer perceptrons, and their parameters are different for each
task.

𝑤𝑘 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑁𝑁𝐺𝑘 (𝑥))

𝑓 𝑘 (𝑥) =
𝑁∑
𝑖=1

𝑤𝑘𝑖 𝑒𝑖 (𝑥)

𝑢𝑘 = 𝑁𝑁𝑈
𝑘 (𝑓 𝑘 (𝑥))

(3)

4.4 Bias Deep Neural Network.
Ranking models are usually trained using implicit feedback, which
is biased because the displayed items are generated from the exist-
ing ranking system and the user have selection bias (e.g., position
bias) [38]. As shown in Figure 1, the user can scroll down and browse
products in many pages. In this paper, we investigate two types of
selection bias in e-commerce Recommender Systems: Position bias
and Neighboring bias.

• Position bias. The “position bias" means that users tend to click
items which are displayed closer to the top of the list. The po-
sition of each item can be defined as the index number or page
number in the screen. We denote them as “Position_index" and
“Position_page" respectively. For example, in Figure 1, the page
numbers of the four products are both 1 because they are all in the
first page, and the index numbers of them are 1,2,3,4. We set the
maximum number of page and index as 100 and 400 respectively.

• Neighboring bias. The “neighboring bias" means that the prob-
ability of clicking a item may be influenced by its neighboring
products.

DMT uses a Bias Deep Neural Network to model the selection
bias. The input of the networks are bias features. For the position
bias, the input is the number of index (“Position_index" bias) or
page (“Position_page" bias) of the target item. For the neighboring
bias, the input is the categories of the target item and its nearest
𝐾 neighboring items. We experimentally set 𝐾 = 6. We embed
the sparse bias features into low dimension vectors and fed them
into multi-layer perceptrons with Relu activations. Giving the bias
feature 𝑥𝑏 , the selection bias for the target item is 𝑦𝑏 ∈ R1:

𝑦𝑏 = 𝑁𝑁𝐵 (𝑥𝑏 ) (4)

where 𝑁𝑁𝐵 is the Bias Deep Neural Network.

4.5 Model Training and Prediction.
4.5.1 Training. In the training stage, for each task 𝑘 , the predic-

tion score 𝑦𝑘 is calculated by applying the sigmoid frunction on the
sum of the utility logit 𝑢𝑘 from the Multi-task Learning Layers and
the bias logit 𝑦𝑏 from the Bias Deep Neural Network. The multiple
tasks are both classification problems, so we use the cross entropy
loss function for each task. The total loss 𝐿 is the weighted sum of
losses in multiple objectives:

𝑦𝑘 = 𝜎 (𝑢𝑘 + 𝑦𝑏 )

𝐿𝑘 = − 1
𝑁

𝑁∑
𝑖∈1

(𝑦𝑖𝑙𝑜𝑔𝑦𝑘 + (1 − 𝑦𝑖 )𝑙𝑜𝑔(1 − 𝑦𝑘 ))

𝐿 =

𝑁∑
𝑘∈1

𝜆𝑘𝐿𝑘

(5)

where 𝜎 is the sigmoid function, 𝑁 is the size of training set, 𝑦𝑖 ∈
{0, 1} is the ground truth label, and 𝜆𝑘 is the weight of losses for
each task.

4.5.2 Prediction. In the prediction stage in online serving sys-
tem, for each task 𝑘 , the utility score 𝑦𝑘 is simply calculated by
applying the sigmoid function on the utility score 𝑢𝑘 from the
Multi-task Learning Layers. The final online ranking score 𝑦 for
the target item is the weighted utility scores for each task:

𝑦𝑘 = 𝜎 (𝑢𝑘 )

𝑦 =

∑𝑁
𝑘∈1𝑤𝑘𝑦𝑘∑𝑁
𝑘∈1𝑤𝑘

(6)

where𝑤𝑘 is the weight of ranking score for task 𝑘 . We use offline
grid search and online A/B testing [38] to choose the best values of
𝑤𝑘 .

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2497



Table 1: Performance of different methods for Click and Order prediction. “∗” indicates the statistically significant improve-
ments (i.e., p-value < 0.01) over the best baseline.

Model Dense features Click Prediction Order Prediction
AUC RelaImpr Precision@4 MRR@4 AUC RelaImpr Precision@4 MRR@4

DNN(Base) No 0.6132 0.00% 0.2494 0.3776 0.6093 0.00% 0.1364 0.2465
DIN No 0.6322 16.78% 0.2592 0.3960 0.6297 18.66% 0.1399 0.2535
DIEN No 0.6429 26.24% 0.2645 0.4069 0.6370 25.34% 0.1410 0.2545
DMT𝑡𝑟𝑎𝑛𝑠 No 0.6458 28.80% 0.2683 0.4172 0.6397 27.81% 0.1447 0.2598
DMT No 0.6624∗ 43.46%∗ 0.2793∗ 0.4426∗ 0.6697∗ 55.26%∗ 0.1509∗ 0.2909∗

GBDT Yes 0.6590 -6.64% 0.2786 0.4405 0.6537 -7.63 % 0.1473 0.2765
DNN(Base) Yes 0.6703 0.00% 0.2833 0.4494 0.6664 0.00% 0.1500 0.2796
DIN Yes 0.6715 0.70% 0.2841 0.4502 0.6669 0.30% 0.1502 0.2807
DIEN Yes 0.6729 1.53% 0.2847 0.4515 0.6674 0.60% 0.1523 0.2824
DMT𝑡𝑟𝑎𝑛𝑠 Yes 0.6741 2.23% 0.2862 0.4543 0.6695 1.86% 0.1549 0.2847
DMT Yes 0.6855∗ 8.93%∗ 0.2896∗ 0.4627∗ 0.6866∗ 12.14%∗ 0.1561∗ 0.3075∗

Table 2: Statistics of the Datset

Type Total Samples Impressions Clicks Orders

Train 667,907,650 622,596,211 43,876,602 1,434,837
Test 105,444,671 98,732,799 6,477,409 234,463

5 EXPERIMENTAL SETTINGS
5.1 Dataset
We conduct our research on JD RecSys Dataset, a large scale indus-
trial dataset that is collected from the logs in the Recommender
System in JD. One week’s samples is used for training and samples
of the following day is used for testing. The statistics of the dataset
is shown in Table 2.

5.2 Baselines
• GBDT. GBDT, which is a widely used model for industrial recom-
mender systems, was used as the last generation recommender
systems in JD for more than five years.

• DNN. DNN follows the Embedding&MLP architecture, and it
is one of the most successful deep learning based model for
industrial Recommender Systems.

• DIN. DIN exploits attention mechanism to learn the representa-
tion of users’ interest from historical behaviors with respect to a
certain ad.

• DIEN. DIEN uses two layers of GRU to model user’s behavior
sequences, captures the evolution of user’s interest, and achieves
state-of-the-art performance for CTR prediction.

• DMT𝑡𝑟𝑎𝑛𝑠 . It is a variant of DMT where the Bias Deep Neural
Network and MMoE are not used.

5.3 Evaluation Metrics
To evaluate the effectiveness of the methods, we compare them
on two tasks: click prediction and order prediction, which aim to
predict whether the user will click or order the target item respec-
tively. For offline A/B Testing, we use four widely used metrics
AUC [41], RelaImpr [41], Precision@K and MRR@K [6]. For online

A/B Testing, we use three core metrics in e-commerce sites: CTR,
CVR and GMV [41].

6 EXPERIMENTAL RESULTS
6.1 Comparison with Baselines
Table 1 shows the experimental results of different methods for
the click prediction and order prediction tasks. All experiments are
repeated 5 times and the averaged results are reported. Firstly, to
investigate the effectiveness of our method on model users’ behav-
ior sequences, we don’t use the dense features and demonstrate
the results in the upper part of the table. Secondly, to investigate
whether the existing dense features for our previous GBDT model
can help improve the model’s performance, we further incorporate
them in the models, and demonstrate the results in the lower part
of the table. From this table, we can find that: (1) DIN performs
better than DNN model by utilizing the attention mechanism, and
DIEN can achieve better performance than DIN by further model-
ing the sequential information in user’s historical sequence. (2) Our
method DMT achieves superior performance compared with GBDT
and deep network based models including DNN, DIN and DIEN.
When the dense features are used, DMT achieves 0.0126 absolute
AUC gain and 7.4% RelaImpr over DIEN for click prediction, and
0.0192 absolute AUC gain and 11.54% RelaImpr over DIEN for order
prediction. This is a significant improvement for industrial appli-
cations where 0.1% absolute AUC gain is remarkable [24, 41]. (3)
The improvements of DIEN, DIEN, DMT over DNN(Base) become
smaller when the dense features are used. The reason is that the
the dense features, which have been designed and improved for
more than five years, already contain about 200 dense features to
model the information in users’ behavior sequences.

6.2 Effectiveness of Components in DMT
To investigate the effectiveness of components in DMT, we conduct
extensive ablation study.

6.2.1 Deep Multifaceted Transformers. Firstly, we investigate
how different Positional embedding methods (described in 4.2.2)
influence the performance of the Deep Multifaceted Transformers,
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and demonstrate the results in Table 3, where we use neither Multi-
task learning nor Bias Deep Neural Network. From this table, we
can find that: The Learned Positional Embedding method achieves
the best performance compared with other methods. So we use this
method in the experiments.

Table 3: Performance of position embedding in DMT.

Model behaviors position Click Order
embedding AUC AUC

DMT click+cart+order no 0.6435 0.6279
DMT click+cart+order pos_sincos 0.6396 0.6344
DMT click+cart+order pos_learn 0.6458 0.6397

Secondly, we investigate whether modeling multiple types of
behavior sequences is beneficial. From the top three lines results
in Table 4, we find that simultaneously modeling modeling cart
sequence can achieve better performance than singly modeling the
click sequence. However, if we further adding the order sequence,
the performance for click prediction and order prediction doesn’t
increase further. We empirically find that: For a product that have
a long repurchase period (i.e., computer), a user will tend to click
but not purchase the product again in short time after buying it.
For a product that have a short repurchase period (i.e., milk), the
user may both click and purchase it again in short time. The order
sequence may lead to the conflict between click prediction and
order prediction and disturb the information in the click or cart
sequence.

6.2.2 Multi-task Learning. We study how different Multi-task
learningmethods(i.e., Shared-bottom [38] andMMoE) will influence
the performance of the model, and demonstrate the results in Table
4. From this table, we can conclude that: (1) Modeling multiple types
of behaviors will bring better performance than singly modeling
the click sequence. (2) Shared-bottom can improve the prediction
performance. (3) MMoE achieves the best performance for both
click prediction and order prediction. This demonstrates that MMoE
can better model the relationships and conflicts between multiple
objectives and users’ diverse behavior sequences.

To demonstrate how MMoE helps multi-objectives optimization,
in Figure 3, for each task, we plot the average weights of experts,

Table 4: Performance of multi-task learning in DMT.

Model behaviors Multi-task Click Order
AUC AUC

DMT click No 0.6443 0.6393
DMT click+cart No 0.6460 0.6410
DMT click+cart+order No 0.6458 0.6397
DMT click Shared-bottom 0.6567 0.6568
DMT click+cart Shared-bottom 0.6593 0.6622
DMT click+cart+order Shared-bottom 0.6563 0.6622
DMT click MMoE 0.6577 0.6603
DMT click+cart MMoE 0.6595 0.6628
DMT click+cart+order MMoE 0.6608 0.6642

Figure 3: Expert Utilization for Multiple Tasks in MMoE.

Table 5: Performance of Bias Deep Neural Network in DMT.

Model Bias features Multi-task Click Order
AUC AUC

DMT No No 0.6742 0.6688
DMT No MMoE 0.6846 0.6857
DMT position_index MMoE 0.6828 0.6862
DMT position_page MMoE 0.6840 0.6865
DMT neighboring MMoE 0.6855 0.6866

which are the outputs of the gating networks. We can find that: (1)
The Click prediction task is mainly influenced by the expert 1 and
expert 4; while the Order prediction task is mostly influenced by
the expert 1, expert 3 and expert 4. (2) Each expert has different
influence on the two tasks. This demonstrates that MMoE can
effectively modularize input information (i.e., both diverse interest
vectors from multiple types of behaviors and dense features) into
experts using the gating networks, and capture the relation and
conflict of multiple tasks.

6.2.3 Bias Deep Neural Network. Table 5 shows how different
types of bias features will influence the performance of DMT. From
this table we can find that: Modeling the neighboring bias will bring
better performance than modeling the position bias features, where
the position is defined by the index or page number in the screen.

6.3 Online A/B Testing
We conduct online A/B testing for one month and examine online
metrics such as CTR, CVR and GMV. The results are demonstrated
in Table 6, where the bias features used is the neighboring bias.
From this table, we can find that: (1) Modeling the bias information
in the implicit feedback brings 0.6%, 2.3% and 1.7% gains in CTR,
CVR and GMV respectively. This demonstrates the effectiveness of
the Bias Deep Neural Network. (2) DMT outperforms state-of-the-
art method DIEN by 4.5%, 4.6% and 8.0% in CTR, CVR and GMV
respectively. (3) Compared with the GBDT, the last generation
model in our recommender systems, DMT improves the CTR, CVR
and GMV by 18.8%, 19.2% and 17.9% respectively, which are the
largest improvements in JD Recommender Systems over past three
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years. DMT has been deployed online successfully and serves the
main traffic in JD Recommender Systems.

Table 6: Performance in online A/B Testing in JD Recom-
mender Systems. “∗” indicates the statistically significant
improvements (i.e., p-value < 0.01) over the baseline.

Model BDNN CTR CVR GMV
GBDT(base) No +0.00% +0.00% +0.00%
DIEN No +14.3% +14.6% +11.9%
DMT No +18.2% +16.9% +16.2%
DMT Yes +18.8%∗ +19.2%∗ +17.9%∗

7 CONCLUSION
In this paper, we propose DMT, which exploits Deep Multifaceted
Transformers to model users’ diverse behavior sequences, utilizes
Multi-gate Mixture-of-Experts to jointly optimize multi-objectives
in e-commerce, and uses the Bias Deep Neural Networks to reduce
the select bias in implicit feedback. We conduct extensive experi-
ments and demonstrate the effectiveness of DMT formulti-objective
ranking in large-scale e-commerce Recommender Systems. Online
A/B testing in JD Recommeder Systems further demonstrates that
DMT can achieve substantial improvements in business.
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