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A B S T R A C T

Membership Inference Attacks (MIAs) have been considered as one of the major privacy threats in
recent years, especially in machine learning models. Most canonical MIAs identify whether a specific
data point was presented in the confidential training set of a neural network by analyzing its output
pattern on such data point. However, these methods heavily rely on overfitting and are difficult to
achieve high precision. Although some recent works, such as difficulty calibration techniques, have
try to tackle this problem in a tentative manner, identifying members with high precision is still a
difficult task.

To address above challenge, in this paper we rethink how overfitting impacts MIA and argue that
it can provide much clearer signals of non-member samples. In scenarios where the cost of launching
an attack is high, such signals can avoid unnecessary attacks and reduce the attack’s false positive
rate. Based on our observation, we propose High-Precision MIA (HP-MIA), a novel two-stage attack
scheme that leverages membership exclusion techniques to guarantee high membership prediction
precision. Our empirical results have illustrated that our two-stage attack can significantly increase
the number of identified members while guaranteeing high precision.

1. Introduction
Machine learning models have demonstrated its effec-

tiveness in various fields, ranging from image classification
to speech recognition. A sophisticated machine learning
model usually requires large amounts of data for training.
However, in most cases, these training data contains sensi-
tive information, which brings a major concern of whether
the model will reveal sensitive information about the training
data. Unfortunately, recent researches [5, 39, 44] have shown
that attackers can infer sensitive information from training
data, if given access to machine learning models. In partic-
ular, among existing privacy attacks, Membership Inference
Attack (MIA) [39] causes the most serious privacy leakage.
In MIA, the adversary aims to infer whether a record exists
in the training set of the target model. Since MIA is easy to
achieve and powerful, MIA has been considered as a major
security threat in many scenarios.

Nevertheless, existing MIAs methods tend to predict
non-member samples as member samples and suffer from
a high false positive rate (FPR) [35]. FPR shows how often
a MIA method mislabels non-member samples as member
ones. Therefore, previous attacks [38, 39, 40] do not work
well in scenarios where the false positive cost is high. Some
recent works [3, 37, 46] have considered leveraging difficulty
calibration to mitigate the high FPR problem.

For example, in a target CNN that achieve 98.69% accu-
racy at MNIST, the C-Conf attack proposed by Watson et
al.[46] can identify 52 out of 10000 members with 100%
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Figure 1: The difference between HP-MIA and MIA.The aim
of MIA is to find a suitable threshold that achieves the highest
accuracy in distinguishing members from non-members, while
the goal of HP-MIA is to find the threshold that identifies
members with a high prediction rate.

precision, which far less than an ideal result. Although
this result is already a big improvement, identifying more
members with high precision is still a difficult task.

Deep neural networks are equipped with strong learning
abilities [52]: Consider a seriously-overfitted target model,
its loss could still be maintained at a relatively low level,
even if the training samples contain sample-specific noise.
Particularly, suppose the Loss of all members in the training
set is less than a constant 𝜖. Since MIA is built upon ove-
fitting to a large extent, we can mark all records with a loss
greater than a 𝜖 as non-members and achieve membership
exclusion with 100% precision. In fact, easy-to-predict non-
members may have very low loss, and neural networks are
prone to overconfidence in records outside the training data.
Therefore, overfitting output pattern may not only provide a
valid basis for membership inference directly, but can also
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provide an explicit non-membership signal to an adversary.
MIA has been used in some work to construct more powerful
privacy theft attacks, so it is significant to implement high
precision MIA. In addition to this, MIA has now been de-
veloped as a privacy analysis technique for machine learning
models[27, 40], but previous work has mostly been limited
to discussing privacy leakage at the model level. High-
precision MIA can capture the most vulnerable samples and
thus help us understand the privacy leakage problem of
machine learning models at the data level.

To this end, in this paper we propose High Precision
MIA (HP-MIA), a novel MIA pipeline that identifies more
member samples than previous works. As illustrated in
Figure 1, while previous MIAs mainly focus on determining
an optimal threshold for distinguishing members from non-
members with high accuracy, our work focus on identifying
members with low FPR. We tackle the construction of a
high prediction rate MIA as an optimization problem with
constraints. Specifically, instead of using overfitting signals
of a neural network for direct membership inference, we use
them to perform membership exclusion. HP-MIA consists of
two stages, (i) membership exclusion stage, which exclude
non-membership samples from the target dataset by over-
fitting signals, and (ii) membership inference stage, which
leverages calibrated attack to identify the true members.

Moreover, MIA has been used in some works[4, 5] to
construct more powerful privacy attacks. MIA has also now
been developed as a privacy analysis technique for machine
learning models, but most previous works[12, 27, 30, 40]
has been limited to discussing privacy leakage at the model
level. High-precision MIA can capture the most vulnerable
samples and contribute to understanding why privacy leak-
age exists in machine learning models at data level.

Our attack is also evaluated broadly on various attack
scenarios and various empirical results have confirmed the
effectiveness of our proposal. In different datasets, HP-MIA
is able to correctly infer 2 ∼ 10 times more member samples
than previous works when the precision is close. Since our
attack only requires training a small number of machine
learning models, it has a smaller computational cost than
other recent work[3, 49].

Contribution
We summarize our contributions and key finding as

follows :

∙ Based on new observations on overfitting, we propose
a novel perspective on designing MIAs. Particularly,
we find that overfitting provides the adversary with a
far more reliable non-membership signal than mem-
bership signal. In scenarios where the cost of attack
is high, such signals can help the adversary avoid
unnecessary losses.

∙ We propose a Two-stage High Precision MIA (HP-
MIA), which consists of sample exclusion stage and
inference stage. We improve the performance of high-
precision inference via preemptive exclusion. Unlike

previous MIA attack, we leverage overfitting signals
to perform exclusion on non-members rather than
directly identifying members.

∙ We deploy our attack on various datasets and models.
Our empirical results show that HP-MIA is able to
identify more memberships than other attacks while
guaranteeing high precision. In addition, we further
investigated how example difficulty affects member
privacy risk, and the results suggest that hard-to-
predict examples may be easier to cause privacy leak-
age.

Organization
We present the background of the membership infer-

ence attack and some recent work on difficulty calibration
techniques in Section 2. Section 3 presents our HP-MIA
framework and a new two-stage attack. Experimental results
are given in Section 4. In Section 5 we discuss how and why
our attack is successful. In Section 6 we discuss some related
work. In Section 7 we conclude this work.

2. Background
In this section, we give the definition of membership

inference attack (MIA) and introduce the threshold-based
MIA in Section 2.1. Then, we describe difficulty calibration
techniques used to mitigate the high FPR problem of MIA
in Section 2.2. In Section 2.3, we introduce the Likelihood
Ratio Attack.

2.1. Membership Inference Attack
Definition 1 (Membership Inference Attacks[39]). Given a
machine learning model ℎ that has completed training on
the training set 𝐷 ∼ 𝑄𝑛, and a target sample 𝑧 = (𝑥, 𝑦),
where 𝑥 represents input data, 𝑦 represents the label, and 𝑄
denotes the probability distribution of the data points. The
membership inference attack can be formalized as a binary
classifier:

 ∶ 𝑍 ×𝐻 ⟶ {0, 1} . (1)

where 0 means 𝑧 does not belong to the training set 𝐷,
otherwise it is 1. 𝑍 denotes the set of all samples 𝑧 ∼ 𝑄
and 𝐻 denotes the set of all classifiers trained on examples
from a data distribution 𝑄.

Most of the previous work[28, 38, 39, 40, 46] assumed
that the adversary only has black-box access to the target
model and infer membership information from posterior
probability vector. In addition to this, the adversary trains
a shadow model to mimic the behavior of the target model.
Shokri et al.[39] use neural networks to construct the attack
model and train it based on the inputs and outputs of the
shadow model.

A common binary classification in membership infer-
ence problems is the threshold model, which distinguishes
members from non-members by computing a particular
score 𝑠(ℎ, 𝑧) and setting a threshold 𝑡.

𝑠𝑐𝑜𝑟𝑒(ℎ, 𝑧, 𝑠, 𝑡) = 𝐼 [𝑠(ℎ, 𝑧) > 𝑡] , (2)
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where 𝑧 = (𝑥, 𝑦) denotes the target example and ℎ de-
notes the target model, the indicator function 𝐼 [𝑥] equals
to 1 if 𝑥 is true and 0 otherwise. 𝑠(ℎ, 𝑧) is referred to
as the "membership score"[46] and can usually be calcu-
lated using loss(Loss)[50], confidence(Conf)[38], modified
entropy(Mentr)[40], etc. The formulas for the above three
methods are as follows:

𝑠𝐿𝑜𝑠𝑠(ℎ, 𝑧) = −𝑙(ℎ, 𝑧) = 𝑙𝑜𝑔(ℎ(𝑥)𝑦), (3)

𝑠𝐶𝑜𝑛𝑓 (ℎ, 𝑧) = max
𝑖

𝑙𝑜𝑔(ℎ(𝑥)𝑖), (4)

𝑠𝑀𝑒𝑛𝑡𝑟(ℎ, 𝑧) = (1−ℎ(𝑥)𝑦)𝑙𝑜𝑔(ℎ(𝑥)𝑦)+
∑
𝑖≠𝑦

ℎ(𝑥)𝑖𝑙𝑜𝑔(1−ℎ(𝑥)𝑖),

(5)

where ℎ(𝑥)𝑦 represents the confidence of the probability
vector outputted by the ℎ on y, 𝑙 denotes cross-entropy loss.

2.2. Calibrated Membership Inference Attack
If non-member examples have low prediction difficulty,

the target model may demonstrate a high level of confidence.
Most early MIA [38, 39, 50]mistakenly assumed that the
prediction difficulty of members and non-members is the
same. This assumption is thought to be the primary cause of
the high FPR problem. To tackle this issue, Watson et al.[46]
proposed the difficulty calibration technique.

Specifically, we assume that the adversary has a refer-
ence dataset 𝐷𝑟𝑒𝑓 with the same distribution as the training
set of the target model. He trains some reference models on
the 𝐷𝑟𝑒𝑓 before performing the attack. Then, the calibrated
membership scores should be calculated based on the results
of the target example obtained on the target and reference
models. Formally, we define the calibrated membership
scores as:

𝑠𝑐𝑎𝑙(ℎ, 𝑧) = 𝑠(ℎ, 𝑧) − 𝐸𝑔←𝑇 (𝐷𝑟𝑒𝑓 ) [𝑠(𝑔, 𝑧)] , (6)

where 𝑇 denotes the randomized training algorithm,𝑔 ←
𝑇 (𝐷𝑟𝑒𝑓 ) denotes the machine learning model 𝑔 generated
by algorithm 𝑇 through dataset 𝐷𝑟𝑒𝑓 . The calibrated attack
is performed by setting a threshold on the calibrated score.

The goal of this calibration technique is to eliminate
the interference of the example’s own characteristics with
the MIA, similar approaches have been used in the work of
Sablayrolles et al.[37] and Carlini et al.[5]

2.3. Likelihood Ratio Attack
Likelihood Ratio Attack(LiRA) is a hypothesis testing

based attack proposed by Carlini et al.[3] to strengthen the
threat of MIA in low FPR scenarios. Let 𝜙(ℎ) = 𝑙𝑜𝑔( ℎ

1−ℎ ),
for an attack sample 𝑧 = (𝑥, 𝑦), where 𝑥 represents input
data and 𝑦 represents the label. The probability distribu-
tion of 𝜙(ℎ(𝑥)𝑦) computed by the model ℎ containing 𝑧 in
the training set is denoted by 𝑄𝑖𝑛, while 𝑄𝑜𝑢𝑡 denotes the

probability distribution of the computed result without 𝑧 in
the training set. Based on the Neyman-Pearson Lemma[33],
the threshold of online LiRA is given by Carlini et al.[3] as
follows:

𝑠𝐿𝑖𝑅𝐴(ℎ, 𝑧) =
𝑝(𝜙(ℎ(𝑥)𝑦)|𝑄𝑖𝑛)
𝑝(𝜙(ℎ(𝑥)𝑦)|𝑄𝑜𝑢𝑡)

, (7)

where 𝑝 denotes the conditional probability density function.
Carlini et al.[3] assume that the 𝑄𝑖𝑛∕𝑜𝑢𝑡 is Gaussian distribu-
tion, and in order to fit 𝑄𝑖𝑛∕𝑜𝑢𝑡, a large number of reference
models need to be trained for each attack sample. To avoid
the huge computational effort, Carlini et al.[3] proposed of-
fline LiRA, an attack based on one-sided hypothesis testing,
where only a batch of models need to be trained for fitting
the probability distribution 𝑄𝑜𝑢𝑡. Specifically, this approach
uses the following membership score:

𝑠𝐿𝑖𝑅𝐴(ℎ, 𝑧) = 1 − 𝑃𝑟[𝑋 > 𝜙(ℎ(𝑥)𝑦)], 𝑋 ∼ 𝑄𝑜𝑢𝑡. (8)

3. Methodology
In this section we introduce our two-stage High Preci-

sion Membership Inference Attack (Two-stage HP-MIA). In
Section 3.1 we describe HP-MIA formally using a game and
illustrate the setup of this paper on adversary knowledge.
In Section 3.2 and Section 3.3 we introduce the attack
procedure and technical details of Two-stage HP-MIA.

3.1. Threat Model
This paper assumes that the adversary has only black-box

access to the target model and an adversary dataset derived
from the same distribution as the target model’s training set.
Through adversary dataset, the adversary can train shadow
models and reference models to mimic the behavior of
the target model. In addition to this, we assume that the
adversary knows the stochastic training algorithm used by
the victim in training the target model and the structure of
the target model. Our assumptions about the adversary’s
knowledge are similar to most prior work[28, 38, 39, 40].

In contrast to the definition in Section 2.1, for HP-MIA,
the adversary is more interested in the precision of the attack.
Inspired by some previous work[3, 28, 50], we describe this
process by defining the following game:

Definition 2 (HP-MIA game 𝐺(,, 𝑇 , 𝑛)). Let  be a
distribution over data points, be an attack, 𝑇 be a random-
ized training algorithm, 𝑛 be a positive integer. The game
proceeds as follows:

1. The challenger chooses a secret bit 𝑏 ← {0, 1}
uniformly at random, and samples a training dataset
𝐷 ∼ 𝑛.

2. If 𝑏 = 1, the challenger randomly selects a record 𝑧 in
the training set 𝐷. Otherwise, the challenger samples
a record 𝑧 from the distribution (such that 𝑧 ∉ 𝐷).

3. The challenger trains a model ℎ ← 𝑇 (𝐷) on 𝐷 and
sends ℎ and 𝑧 to the adversary.
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Figure 2: Overall Procedure of Two-stage HP-MIA

4. The adversary tries to infer the secret bit as 𝑏′, and
performs an attack only if 𝑏′ = 1.

5.

𝐺(,, 𝑇 , 𝑛) =

{
1 𝑏′ = 1 and 𝑏 = 1.
0 𝑏′ = 1 and 𝑏 = 0.

Note the difference between Definition 2 and the game
defined by Yeom et al[50]. We consider an "extremely
cautious adversary": in order to achieve high precision, the
adversary only considers an example as a member when the
confidence level is high. Otherwise, the adversary abandons
the attack. Therefore, we only consider the case 𝑏′ = 1. In
the HP-MIA game, the adversary wins when he launches
an attack and successfully identifies a membership, and
loses when he identifies a membership incorrectly. In reality,
MIA may be used as the first step in some more powerful
attacks[4, 5], so an error in MIA may lead to unnecessary
losses. In this scenario, a high-precision attack is essential.

Given a target dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡, 𝐷𝑎𝑑𝑣
⋂

𝐷𝑡𝑎𝑟𝑔𝑒𝑡 = ∅, the
adversary aims to identify members of the target model
from the target dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 with as high a precision
as possible. For the above attack setup, the two important
metrics we focus on are the precision(Pr) and recall(Recall)
of the attack. We give a formal definition of HP-MIA by a
constrained optimization problem:

Definition 3 (High-Precision𝛼 Membership Inference At-
tack). Given a target model ℎ, a target dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡, 𝛼 ∈
[0, 1] is a precision constraint value. We call ̂ is a High-
Precision 𝛼 Membership Inference Attack (HP𝛼-MIA) for ℎ
if ̂ satisfies:

̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒

𝑅𝑒𝑐𝑎𝑙𝑙(, 𝐷𝑡𝑎𝑟𝑔𝑒𝑡),

𝑠.𝑡.𝑃 𝑟(, 𝐷𝑡𝑎𝑟𝑔𝑒𝑡) ⩾ 𝛼.
(9)

where 𝑠𝑐𝑜𝑟𝑒 denotes the threshold attack model, as shown
in (2), 𝑃𝑟(, 𝐷𝑡𝑎𝑟𝑔𝑒𝑡) denotes the precision of  on 𝐷𝑡𝑎𝑟𝑔𝑒𝑡.

The formulae for Pr and Recall we will give in Section
4.1.4. We outline the whole process of Two-stage HP-MIA in
Figure 2. The adversary needs to build reference model and
shadow model before conducting an attack. Then, the adver-
sary select the attack threshold based on the shadow model.
When performing membership inference, the attacker first
excludes some examples by membership exclusion attack,
and then uses high-precision membership inference for the
remaining examples.

3.2. Preparation for Attack
Before the attack, the adversary needs to build a series

of models to imitate the behavior of the target model, which
will be used for membership score calibration and attack
model training. These models can be divided into reference
model and shadow model because of their different uses.
We assume that the adversary has a adversary dataset 𝐷𝑎𝑑𝑣
which from the same distribution as the training set of the tar-
get model, so we can construct the reference dataset𝐷𝑟𝑒𝑓 for
training the reference model and the shadow dataset𝐷𝑠ℎ𝑎𝑑𝑜𝑤
for training the shadow model. Note that the two data sets
should be disjoint, i.e. 𝐷𝑟𝑒𝑓

⋂
𝐷𝑠ℎ𝑎𝑑𝑜𝑤 = ∅.

The reference model is used to construct the calibrated
MIA, The calculation of the calibrated membership score is
shown in (6). The basic idea of calibrated attack is to judge
whether the target model has learned the target example by
comparing the prediction of the target model with that of
the reference model. In general, the higher the number of
reference models, the better the difficulty correction. We will
discuss the effect of the number of reference models on the
attack performance in Section 4.3.3.
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Algorithm 1: Attack Process of Two-stage HP-MIA

1 Input: target model ℎ, target record 𝑧, membership score used 𝑠0 in the first stage and its threshold 𝑡0, membership
score 𝑠1 used in the second stage and its threshold 𝑡1

2 if 𝑠0(ℎ, 𝑧) < 𝑡0 then
// Membership Exclusion

3 return ∅
4 else if 𝑠1(ℎ, 𝑧) < 𝑡1 then

// Membership Inference

5 return ∅
6 else
7 return 1

The shadow model is used to mimic the behavior of the
target model just like the reference model, but it is used for
the determination of the attack model threshold. The shadow
training set is constructed from the adversary dataset, does
not overlap with the reference training set due to reliance
on the reference model for difficulty correction in shadow
training. For convenience, we refer to the setup of Salem et
al.[38] which only trains a shadow model for the attack.

3.3. Two-stage High Precision MIA
We propose a novel attack framework, which is divided

into two steps: exclusion and inference. We adopt simple
threshold model as the implementation of this attack, and
therefore need to determine the membership scores(𝑠1 and
𝑠2) and thresholds(𝑡1 and 𝑡2) for both steps. The method for
determining the thresholds will be shown in Section 3.4.

We use the cross-entropy Loss as the membership score
𝑠1 in the first stage, which is calculated in (3). We excluded
examples with large Loss values as non-members in the first
stage. This is a completely opposite approach to Yeom et
al.[50]. Our intuition is that the neural network is able to fit
the training data well, so examples with large Loss values
have a high probability of being non-members.

For the examples that are not excluded in the first stage,
we further perform HP-MIA on them. Note that a score-
based attack without considering the example difficulty
makes it difficult to achieve a high-precision MIA. There-
fore, we use the calibrated Loss as the membership score 𝑠2
in the second stage, which is calculated in (6).

Algorithm 1 demonstrates the process of performing
Two-stage HP-MIA on a single target example. Note that in
this paper, we consider an extremely cautious adversary who
only judges the target example as a member when he is very
sure, otherwise he will abandon the attack.

3.4. Select Attack Threshold
Two-stage HP-MIA needs relies on two thresholds, the

threshold 𝑡0 for membership exclusion attack and the thresh-
old 𝑡1 for membership inference attack. Algorithm 2 shows
our process of choosing the optimal threshold. Function
"Two-stage threshold" demonstrates the process of selecting
the threshold for Two-stage HP-MIA. The adversary needs
to set the value of 𝛼, where a higher 𝛼 indicates a higher

requirement for algorithm precision. The value of 𝛽 does not
need to be set, as the algorithm will automatically search for
the optimal 𝛽 value.

In practice, we do not have access to the training set
of the target model and thus cannot solve the optimization
problem (9) on the real dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡. According to our
assumptions on adversary knowledge in Section 3.1, we
can construct the member dataset 𝐷𝑖𝑛

𝑠ℎ𝑎𝑑𝑜𝑤 and non-member
dataset 𝐷𝑜𝑢𝑡

𝑠ℎ𝑎𝑑𝑜𝑤 of the shadow model for supervised training
of the attack model. As for the score-based attacks, the
process of constructing a attack is actually finding an optimal
threshold, and we choose the appropriate threshold in the
following membership score set 𝑈 :

𝑈 (ℎ, 𝑠,𝐷𝑠ℎ𝑎𝑑𝑜𝑤) =
{
𝑢𝑖 =

𝑠(ℎ, 𝑧𝑖) + 𝑠(ℎ, 𝑧𝑖+1)
2

∶ 𝑧𝑖 ∈ 𝐷𝑠ℎ𝑎𝑑𝑜𝑤

}
,

(10)

where 𝑠(ℎ, 𝑧𝑖) ⩽ 𝑠(ℎ, 𝑧𝑖+1), 𝑖 = 1, 2, ..., 𝑚,and 𝑚 is the
amount of members of the shadow data set. Specifically, we
iterate through all elements in 𝑈 and calculate the attack
precision and recall corresponding to each element, select
the subset 𝑈 ′ that satisfies precision ⩾ 𝛼, and return the
element in 𝑈 ′ that corresponds to the largest recall.

We denote the precision constraint value of the mem-
bership inference attack as 𝛼 and the precision constraint
value of the membership exclusion attack as 𝛽. 𝛼 is set by
the adversary according to his requirements.

Our method to obtain the two thresholds for Two-stage
HP-MIA relies on the "Membership Exclusion threshold"
and "Membership Inference threshold" functions. These two
functions calculate the optimal threshold 𝑡0 and 𝑡1of Mem-
bership Exclusion and Membership Inference for a given
precision constraint. As shown in Algorithm 2, for a given 𝛽
and 𝐷𝑠ℎ𝑎𝑑𝑜𝑤, the attacker first obtains the threshold 𝑡0 by the
"Membership Exclusion threshold" function, and excludes
some non-members according to 𝑡0 to obtain the remaining
target sample 𝐷𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 . After that, according to the a speci-
fied 𝛼 givenby the adversary, the optimal threshold 𝑡1 and the
number of correctly identified members 𝑇𝑃 for 𝐷𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 is
obtained by the "Membership Inference threshold" function.

The adversary constructs the optimal attack by contin-
uously adjusting the value of 𝛽 using the trained shadow
model. They select the optimal thresholds 𝑡𝑜𝑝𝑡0 and 𝑡𝑜𝑝𝑡1 that
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maximize 𝑇𝑃 . Using the two determined thresholds 𝑡𝑜𝑝𝑡0 and
𝑡𝑜𝑝𝑡1 , the adversary proceeds to attack the victim model.

4. Experiments
In this section, we first show the experimental setup

in Section 4.1, including dataset, target model architecture,
training setup, and evaluation metrics of the attack model.
Then, we evaluate our attack and compare it with the previ-
ous MIA in Section 4.2. Finally, we analyze the impact of
some factors on the attack performance in Section 4.3.

4.1. Experimental Setup
4.1.1. Dataset

We conducted experiments on several baseline datasets
of different complexity: MNIST[26], Fashion-MNIST (F-
MNIST)[47], CIFAR10[24], Purchase1001, and Texas1002.
We randomly divide each of these datasets into six datasets,
two of which are used as the training set 𝐷𝑖𝑛

𝑡𝑎𝑟𝑔𝑒𝑡 and test
set 𝐷𝑜𝑢𝑡

𝑡𝑎𝑟𝑔𝑒𝑡 for the target model, two of which are used
as the training set 𝐷𝑖𝑛

𝑠ℎ𝑎𝑑𝑜𝑤 and test set 𝐷𝑜𝑢𝑡
𝑠ℎ𝑎𝑑𝑜𝑤 for the

shadow model, and the remaining two datasets are used as
the reference training set for the training of the reference
model.

For MNIST and F-MNIST, the target model test set
has 10,000 images, and the remaining datasets have 12,000
images each. For CIFAR10, each dataset has 10,000 images.
For Purchase100, each dataset has 20,000 records, and for
Texas100, each dataset has 10,000 records.

4.1.2. Model architectures
The target model for MNIST and Fashion-MNIST is a

small CNN with two convolutional layers and a maximum
pooling layer, two convolutional layers with 24 and 48 output
channels, and a kernel size of 5, followed by a fully con-
nected layer with 100 neurons as the classification head, and
we use Tanh as the activation function. For CIFAR10, we use
AlexNet(CIFAR10-A)[25] and Wide-ResNet (CIFAR10-W,
with depth 28 and width 2)[51] as the structure of the target
model. For Purchase100 and Texas100, we refer to the work
of Song et al.[40] and use a multilayer perceptron (MLP) as
the target model with four hidden layers with the number of
neurons of 1024, 512, 256, and 128, respectively, and use
Tanh as the activation function.

4.1.3. Model tranning
We use Adam optimizer[22] to train the target model.

For the target models of MNIST, F-MNIST, CIFAR10-A,
CIFAR10-W, Purchase100 and Texas100, we set the learn-
ing rates to 0.001, 0.001, 0.0003, 0.001, 0.0001 and 0.0002,
respectively, the corresponding batch sizes to 100, 100, 100,
50, 200, and 50, respectively, and the number of iterations
to 100, 100, 200, 200, 200 and 200, respectively. To reduce
the degree of overfitting, for MNIST, FMNIST, Purchase100
and Texas100, we use L2 regularization and set 𝜆 = 0.0005.

1https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
2https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm

For CIFAR10, we use data augmentation(Random Hori-
zontal Flip and Random Rotation) to improve the accuracy
of the model and prevent overfitting. Table 1 shows the
performance of several target models.

The shadow and reference models are trained using the
same training algorithm and hyperparameters as the target
model. For each dataset, we train a shadow model on the
shadow dataset for attack model construction and 20 ref-
erence models on the reference dataset for calculating the
calibrated score.

4.1.4. Success metrics
We consider an extremely cautious MIA adversary who

wants to identify as many members as possible with high
precision. We use the following metrics to evaluate the
attack performance: number of correctly identified members
(TP), recall (Recall) and precision (Pr). Recall and Pr are
calculated as follows:

Recall = TP|𝐷𝑖𝑛
𝑡𝑎𝑟𝑔𝑒𝑡| , Pr = TP

TP + FP
,

where FP denotes the number of non-members identified as
members by the attack model. We will show the PR curves
to present the experimental results more comprehensively.
Referring to some recent work[3, 46, 49], we will also show
the ROC curve and calculate the AUC (area of the ROC
curve).

4.2. Attack Evaluation
4.2.1. Effectiveness of two-stage HP-MIA

To highlight the effect of Two-stage attack, we use
two calibrated attacks, C-Loss and C-Conf, to compare
with our attacks. These two attacks use Loss and Confi-
dence as membership scores, respectively, and use difficulty
calibration[46] to remove the effect of example difficulty. It
is worth noting that C-Loss can be viewed as a direct HP-
MIA without using the membership exclusion technique.

In addition, we also consider Attack R from the work
of Ye et al. and LiRA proposed by Carlini et al. Attack R
proposed by Ye et al. also belongs to a threshold attack,
but the process of finding the threshold is different. The
adversary needs to be given a confidence requirement 𝑟.
The threshold is computed using the 𝑟-percentile of the loss
histogram of the target example on the reference model. The
target example is judged to be a member if the loss value
computed on the target model is less than the threshold. For
the attack of Ye et al. we use linear interpolation method to
calculate the continuous percentile. For Carlini et al.’s attack,
considering the computational cost, we only implement of-
fline LiRA and calculate the membership scores according
to Equation (8) to achieve HP-MIA. For MNIST, F-MNIST,
Purchase100 and Texas100, we train 100 reference models
to implement Ye et al.’s attack and offline LiRA, and for
CIFAR10-A and CIFAR10-W, we train 60 reference models.

We can only implement HP-MIA that satisfies the pre-
cision constraint on the shadow model, so the precision on
the target model may be biased, and the bias size depends on
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Algorithm 2: Select Attack Threshold

1 function Membership Exclusion threshold :
2 Input: shadow dataset 𝐷𝑠ℎ𝑎𝑑𝑜𝑤, target model ℎ, membership score 𝑠 and precision constraint value 𝛽.
3 Initialize 𝑈 ′ and 𝑇𝑃𝑠𝑒𝑡 to ∅
4 Construct the set 𝑈 (ℎ, 𝑠,𝐷𝑠ℎ𝑎𝑑𝑜𝑤) according to Equation (10), 𝑚 ← |𝑈 |
5 for 𝑖 ← 1 ∶ 𝑚 do

// Find the optimal threshold 𝑡0 in 𝑈 (ℎ, 𝑠,𝐷𝑠ℎ𝑎𝑑𝑜𝑤) at the specified precision 𝛽
6 Judge examples in 𝐷𝑠ℎ𝑎𝑑𝑜𝑤 with membership scores less than 𝑢𝑖 as non-members
7 Calculate the number of correctly identified non-members (𝑇𝑃 ) and the precision (𝑃𝑟) of non-member

identification
8 if 𝑃𝑟 ⩾ 𝛽 then
9 𝑈 ′ ← 𝑈 ′ ∪ 𝑢𝑖

10 𝑇𝑃𝑠𝑒𝑡 ← 𝑇𝑃𝑠𝑒𝑡 ∪ 𝑇𝑃

11 if 𝑈 ′ == ∅ then
12 return fail
13 𝑘 ← 𝑚𝑎𝑥

𝑘=1,2,...,𝑛
𝑇𝑃𝑠𝑒𝑡

14 𝑡0 ← 𝑈 ′
𝑘

15 return 𝑡0
16 function Membership Inference threshold :
17 Input: shadow dataset 𝐷𝑠ℎ𝑎𝑑𝑜𝑤, target model ℎ, membership score 𝑠 and precision constraint value 𝛼.
18 Initialize 𝑈 ′ and 𝑇𝑃𝑠𝑒𝑡 to ∅
19 Construct the set 𝑈 (ℎ, 𝑠,𝐷𝑠ℎ𝑎𝑑𝑜𝑤) according to Equation (10), 𝑚 ← |𝑈 |
20 for 𝑖 ← 1 ∶ 𝑚 do

// Find the optimal threshold 𝑡1 in 𝑈 (ℎ, 𝑠,𝐷𝑠ℎ𝑎𝑑𝑜𝑤) at the specified precision 𝛼
21 Judge examples in 𝐷𝑠ℎ𝑎𝑑𝑜𝑤 with membership scores greater than 𝑢𝑖 as members
22 Calculate the number of correctly identified members (𝑇𝑃 ) and the precision (𝑃𝑟) of member identification
23 if Pr ⩾ 𝛼 then
24 𝑈 ′ ← 𝑈 ′ ∪ 𝑢𝑖
25 𝑇𝑃𝑠𝑒𝑡 ← 𝑇𝑃𝑠𝑒𝑡 ∪ 𝑇𝑃

26 if 𝑈 ′ == ∅ then
27 return fail
28 𝑇𝑃 , 𝑘 ← 𝑚𝑎𝑥

𝑘=1,2,...,𝑛
𝑇𝑃𝑠𝑒𝑡

29 𝑡1 ← 𝑈 ′
𝑘

30 return 𝑡1, 𝑇 𝑃
31 function Two-stage threshold :
32 Input: shadow dataset 𝐷𝑠ℎ𝑎𝑑𝑜𝑤, target model ℎ, membership score used 𝑠0 in the first stage, membership score

𝑠1 used in the second stage and precision constraint value 𝛼.
33 Initialize 𝑇𝑃 𝑜𝑝𝑡, 𝑡𝑜𝑝𝑡0 and 𝑡𝑜𝑝𝑡1 to 0
34 for 𝛽 ← 0, 1; 𝑠𝑡𝑒𝑝 = 0.001 do

// Adjust the 𝛽 value to get the optimal recall

35 𝑡0 ← Membership Exclusion-threshold(𝐷𝑠ℎ𝑎𝑑𝑜𝑤, ℎ, 𝑠0, 𝛽)
36 𝐷𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ←

{
𝑧𝑖 ∶ 𝑧𝑖 ∈ 𝐷𝑠ℎ𝑎𝑑𝑜𝑤, 𝑠(ℎ, 𝑧𝑖) ⩾ 𝑡0

}
37 𝑡1, 𝑇 𝑃 ← Membership Inference-threshold(𝐷𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 , ℎ, 𝑠1, 𝛼)
38 if 𝑇𝑃 > 𝑇𝑃 𝑜𝑝𝑡 then
39 𝑇𝑃 𝑜𝑝𝑡 ← 𝑇𝑃
40 𝑡𝑜𝑝𝑡0 ← 𝑡0
41 𝑡𝑜𝑝𝑡1 ← 𝑡1

42 return 𝑡𝑜𝑝𝑡0 , 𝑡𝑜𝑝𝑡1
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Table 1
Accuracy of the target model

MNIST F-MNIST CIFAR10-A CIFAR10-W Purchase100 Texas100

Model CNN CNN AlexNet WideResNet MLP MLP
Train_Acc 100% 99.85% 100% 99.53% 99.98% 98.94%
Test_Acc 98.69% 88.71% 70.61% 80.22% 83.16% 45.32%

Table 2
Evaluation of various data sets, model structures, and MIA methods, 𝛼 = 98%

MNIST F-MNIST CIFAR10-A CIFAR10-W Purchase100 Texas100

C-Loss
TP 17 27 2 3 15 107

Recall 0.14% 0.23% 0.02% 0.03% 0.08% 1.07%
Pr 100% 93.10% 100% 100% 93.75% 97.27%

C-Conf
TP 79 187 139 91 7 203

Recall 0.66% 1.56% 1.39% 0.91% 0.04% 2.03%
Pr 98.75% 92.12% 100% 96.81% 87.80% 94.86%

offline LiRA
TP 43 10 1803 770 32 31

Recall 0.36% 0.08% 18.03% 7.70% 0.16% 0.31%
Pr 100% 100% 95.40% 84.34% 94.12% 86.11%

Two-stage(Ours.)
TP 86 233 481 99 20 520

Recall 0.72% 1.94% 4.81% 0.99% 0.10% 5.20%
Pr 98.85% 88.59% 98.57% 95.19% 100% 97.20%

𝛼 = 98%

Table 3
Evaluation of various data sets, model structures, and MIA methods,𝛼 = 100%

MNIST F-MNIST CIFAR10-A CIFAR10-W Purchase100 Texas100

C-Loss
TP 17 27 2 3 15 27

Recall 0.14% 0.23% 0.02% 0.03% 0.08% 0.27%
Pr 100% 93.10% 100% 100% 93.75% 96.43%

C-Conf
TP 52 104 139 56 7 203

Recall 0.43% 0.87% 1.39% 0.56% 0.04% 2.03%
Pr 100% 93.70% 100% 94.92% 87.80% 94.86%

offline LiRA
TP 43 10 1803 770 32 31

Recall 0.36% 0.08% 18.03% 7.70% 0.16% 0.31%
Pr 100% 100% 95.40% 84.34% 94.12% 86.11%

Two-stage(Ours.)
TP 85 114 110 90 20 145

Recall 0.71% 0.95% 1.10% 0.90% 0.10% 1.45%
Pr 100% 100% 94.23% 94.74% 100% 100%

𝛼 = 100%
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Figure 3: ROC curve and PR curve for MNIST
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Figure 4: ROC curve and PR curve for F-MNIST
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Figure 5: ROC curve and PR curve for CIFAR10-A

how close the shadow model is to the target model. Most of
the time, as the precision constraint value rises, the accuracy
of the attack on the target model becomes higher. Since the
method of Ye et al. is not suitable for the direct construction
of HP-MIA, we compare it with it here. Table 2 and Table

3 show the attack performance of the three attacks when
𝛼 is set to 0.98 and 1. Bolded characters indicates the best
result for a specific metric (e.g., TP, Recall) among different
methods. The Two-stage attack consistently identifies the

0.2 0.4 0.6 0.8 1.0
FPR

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve for CIFAR10-W
C-Conf
C-Loss
offline Lira
Ye et al
Ours

(a) ROC curve

10−3 10−2 10−1 100
FPR

10−3

10−2

10−1

100

TP
R

ROC c rve(log) for CIFAR10-W
C-Conf
C-Loss
offline Lira
Ye et al
Ours

(b) ROC curve(log)

0.2 0.4 0.6 0.8 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

iso
n

PR curve for CIFAR10-W
C-Conf
C-Loss
offline Lira
Ye et al
Ours

(c) PR curve

Figure 6: ROC curve and PR curve for CIFAR10-W
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Figure 7: ROC curve and PR curve for Purchase100
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Figure 8: ROC curve and PR curve for Texas100

Table 4
AUC of different attacks on different datasets

MNIST F-MNIST CIFAR10-A CIFAR10-W Purchase100 Texas100

C-Loss 0.5027 0.5439 0.5538 0.5705 0.5207 0.7170

C-Conf 0.5151 0.5831 0.7124 0.6660 0.6728 0.8540

offline LiRA 0.5175 0.5529 0.6057 0.6478 0.5820 0.6975

Ye et al 0.5351 0.5500 0.6419 0.6831 0.6052 0.6887

Two-stage(Ours.) 0.5394 0.6005 0.7673 0.7122 0.7070 0.8786

most members on all models at various precision constraint
settings.

When we set 𝛼 = 0.98 and 𝛼 = 1, we find that Two-stage
HP-MIA can always identify more members with higher
accuracy. For example, for MNIST, when the precision
is 100%, our attack has identified the most samples. For
the Texas100, other attacks cannot achieve 100% accuracy,
while Two stage HP-MIA recognizes more samples while
achieving 100% precision. Unfortunately, when the same 𝛼
is set, the accuracy of different attacks is different, which is
not convenient for us to compare better.

Referring to the previous work[3, 49], we further show
the ROC curve and PR curve of the attack, and use the
ROC (log) curve to show the attack effect under low FPR.
Note that some attacks are difficult to achieve high precision
attacks on some datasets, e.g., Ye et al.’s method struggles
to achieve precision above 0.95 on any dataset other than
MNIST. Therefore, the curves of some attacks are incom-
plete. As shown in Figure 3 - 8, We found that the curve area
of Two stage HP-MIA was the largest in most cases, and
reached high TPR at a fast speed. Table 4 shows the AUC
values of different attacks on different target models, and it
can be found that our methods have the largest AUC.

4.2.2. Failure of the direct Overfitting-based MIA
Throughout this paper, we refer to MIAs that attack using

only uncorrected membership scores as Overfitting-based
MIAs. This type of attack does not consider the impact
of sample characteristics on privacy leakage. Overfitting-
based MIAs fails under the requirement of high precision,

so we did not compare these methods directly with our
attacks in Section 4.1. We construct HP-MIA using three
membership scores, Loss[50], Conf[38, 39] and Mentr[40],
respectively, and Table 5 shows the performance of these
attacks on different datasets. Note that Algorithm1 will re-
turn a threshold that achieves the maximum accuracy when it
finds that it cannot find a threshold that satisfies the accuracy
requirement on the shadow model. We find that these attacks
are completely unable to achieve the precision we require,
even though we only set 𝛼 = 0.9.

4.3. Ablation Study
4.3.1. Membership exclusion precision constraint

value
Compared to other score-based attacks, Two-stage HP-

MIA has two thresholds and thus takes more time in build-
ing the attack model. Some score-based MIAs provide an
empirical threshold, for example, Waston et al.[46] point
out that the empirical threshold for calibration attacks is a
value slightly greater than 0. The adversary needs to adjust
the precision constraint value 𝛽 of the membership exclusion
attack to achieve the most powerful attack when constructing
Two-stage HP-MIA, and we would like to know if 𝛽 has
an empirical value as a reference. We conduct experiments
on the MNIST and CIFAR10 datasets to observe the perfor-
mance of Two-stage HP-MIA when different 𝛽 are set.

Unfortunately, we find that there is no relatively general
precision constraint value for the membership exclusion
attack. Figure 9 shows our experimental results, and we find
that the value of 𝛽 has different effects on the two datasets.
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Table 5
Performance of overfitting-based MIA under high-precision constraints, All attacks on Purchase100 result in 𝑇𝑃 + 𝐹𝑃 = 0

MNIST F-MNIST CIFAR10-A CIFAR10-W Purchase100 Texas100

Loss 52.63% 33.33% 65.64% 60.48% 74.34%

Conf 60.26% 33.33% 61.08% 53.94% 74.34%

Mentr 52.63% 33.33% 59.80% 52.90% 74.49%

𝛼 = 90%

Figure 9: Effect of precision constraint value for membership exclusion. We found that there is no more general precision constraint
value for the membership exclusion technique, and the impact of different different precision constraint values on CIFAR10 and
MNIST is not the same.

the number of exposed examples on the MNIST dataset
increases slowly with larger 𝛽, while the number of identified
examples on CIFAR10 decreases rapidly with larger 𝛽. HP-
MIA require capturing more detailed model features and
example characteristics, so it is difficult to have a general
reference value. In order to construct more robust attacks, it
is necessary to spend more time to optimize the thresholds.

4.3.2. 𝑙2 regularization
𝑙2 regularization is a relatively simple defense technique

for member inference attacks[21, 28, 39]. We assume that the
adversary is unknown to the defense used by the victim, and
both the shadow model and the reference model are trained
using the original algorithm. Table 6 shows the performance
of the target model with the regularization technique and
the inference effect of the Two-stage attack. As a common
method to overcome overfitting, regularization can prevent
the leakage of membership privacy to some extent.

In general, the number of memberships that can be
inferred by Two-stage decreases significantly as 𝜆 grows. It
is worth noting that lower levels of 𝑙2 regularization may not
reduce the attack precision as well. For CIFAR10, the attack
precision at 𝜆 < 0.001 is instead higher than that without the
𝑙2 regularization method.

Figure 10 and 11 show the ROC curves and PR curves
under different regularization factor settings. Our attack

requires the use of two thresholds, and the first stage of
the attack depends on the degree of overfitting of the tar-
get model. Therefore, the attack curves vary widely under
different degrees of regularization. We believe that L2 reg-
ularization can be an effective defense against MIA, but it
is not absolute. For F-MNIST, we find that the target model
using regularization has a greater degree of privacy leakage
instead.

4.3.3. Number of reference models
Figure 14 shows the TP and Pr of Two-stage HP-MIA

with different number of reference models (𝛼 = 0.9). we use
the datasets MNIST, F-MNIST and CIFAR10. in general,
the attack precision receives little effect from the number of
reference models, and the difference between the maximum
and minimum precision on MNIST, F-MNIST and CIFAR10
are 0.97%, 0.89% and 0.43%. Besides, using fewer reference
models may lead to a lower number of identified member-
ships. The TP of Two-stage HP-MIA using only one refer-
ence model is the least on the target model of three datasets.
However, we found that the increase in the number of ref-
erence models did not significantly improve the TP except
for CIFAR10. For MNIST,the highest number of identified
members was for the attack using 8 reference models, with
621, while the attack using 20 reference models identified
590 memberships. For F-MNIST, the highest number of
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Table 6
Two-stage experimental results on the target model using regularized defense, the datasets are F-MNIST and CIFAR10-A

Dataset 𝜆 Train_Acc Test_Acc TP Pr

F-MNIST

0 100% 88.74% 1406 89.21%
0.0001 100% 88.77% 283 84.99%
0.0003 100% 88.16% 111 84.09%
0.0005 99.96% 88.14% 83 81.37%
0.0007 99.93% 88.34% 75 81.52%
0.001 99.68% 87.87% 47 79.66%
0.005 95.12% 88.50% 0 0
0.01 89.68% 86.50% 0 0

CIFAR10-A

0 100% 70.61% 3866 85.34%
0.0001 99.92% 67.88% 2044 92.57%
0.0003 99.74% 69.13% 1781 90.77%
0.0005 100% 68.85% 1531 92.79%
0.0007 99.88% 70.23% 583 88.74%
0.001 99.50% 66.59% 505 90.02%
0.005 98.91% 69.26% 23 85.19%
0.01 92.26% 62.26% 10 76.92%

0.2 0.4 0.6 0.8 1.0
FPR

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve for F-MNIST
Coefficient:0
Coefficient:0.001
Coefficient:0.0001

(a) ROC curve

10−3 10−2 10−1 100
FPR

10−3

10−2

10−1

100

TP
R

ROC curve for F-MNIST
Coefficient:0
Coefficient:0.001
Coefficient:0.0001

(b) ROC curve(log)

0.2 0.4 0.6 0.8 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

iso
n

PR curve for F-MNIST
Coefficient:0
Coefficient:0.001
Coefficient:0.0001

(c) PR curve

Figure 10: ROC curve and PR curve for F-MNIST, Target models using different regularization factors.
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Figure 11: ROC curve and PR curve for CIFAR-A, Target models using different regularization factors.
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Figure 12: ROC curve and PR curve for F-MNIST(Two-stage HP-MIA using different number of reference models)

S. Chen et al.: Preprint submitted to Elsevier Page 12 of 18



HP-MIA: A Novel Membership Inference Attack Scheme for High Membership Prediction Precision

0.2 0.4 0.6 0.8 1.0
FPR

0.2

0.4

0.6

0.8

1.0
TP

R

ROC curve for CIFARA-10
Num:1
Num:5
Num:10

(a) ROC curve

10−3 10−2 10−1 100
FPR

10−3

10−2

10−1

100

TP
R

ROC curve for CIFAR10-A
Num:1
Num:5
Num:10

(b) ROC curve(log)

0.2 0.4 0.6 0.8 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec
iso

n

PR curve for CIFAR10-A
Num:1
Num:5
Num:10

(c) PR curve

Figure 13: ROC curve and PR curve for CIFAR-A(Two-stage HP-MIA using different number of reference models)

Figure 14: The TP and Pr of Two-stage HP-MIA with different number of reference models. Attack precision receives little effect
from the number of reference models (𝛼 = 0.9). Using few reference models (e.g., one) may result in a low number of identified
memberships.

identified memberships was for the attack using 16 reference
models, with 121 more members identified than when using
20 reference models. We do not recommend training too
many reference models for calculating the calibrated score
when not planning to spend too much time to deploy the
attack.

Figure 12 and Figure 13 show the results of our ex-
periments using ROC curves and PR curves. We find that
there will be some reduction in TPR at low FPR when
fewer reference models are used. But overall, we think that
the number of reference models does not have a significant
impact on the attack.

4.3.4. The methodology used in the second stage
Two-stage HP-MIA is a generalized framework that

allows an adversary to use a variety of different attacks in
two stages. Due to the need for high precision, we recom-
mend using methods that consider sample difficulty in the
second stage. Combining exclusion attacks with methods
other than C-Loss can construct new attacks. In the second
stage of Two-stage HP-MIA, we use the offline Lira method
proposed by Carlini et al.[3] and test the effectiveness of
this attack on F-MNIST and CIFAR10-A. Our experimental
setup and model structure on both datasets are consistent
with the prior.

Figure 15 and Figure 16 show the experimental results
of this method with the method using C-Loss in the second
stage phase and the offline Lira method. According to the
ROC curve and PR curve, we found that the performance
of offline Lira combined with the exclusion attack has been
improved to some extent, especially the AUC value (area
of the ROC curve) has increased significantly. However, the
AUC value of this method is still smaller than the previous
method using C-Loss in the second stage. It should be noted
that the computational cost of offline Lira is higher than that
of C-Loss. Therefore, we prefer to use C-Loss in the second
stage.

5. Discussion
5.1. Why Our Attacks Work?

First, the use of difficulty calibration techniques is nec-
essary to achieve a high precision attack. According to
the experimental findings shown in Table 5 we find that
direct attacks based on overfitting fail under high precision
requirements, even for simple MLPs with an accuracy of
only 43.89%. as different examples contribute differently to
the model, it is difficult to achieve reliable MIA by sim-
ply considering the difference in prediction results between
members and non-members of the model. Thus, it seems that
the serious privacy crisis of being identified by the adversary
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Figure 15: ROC curve and PR curve for F-MNIST, Our (C-Loss) and Our (offline Lira) denote the two-stage HP-MIA using the
C-Loss method and offline Lira method in the second phase, respectively.
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Figure 16: ROC curve and PR curve for CIFAR-A, Our (C-Loss) and Our (offline Lira) denote the two-stage HP-MIA using the
C-Loss method and offline Lira method in the second phase, respectively.

with high precision is more related to the characteristics of
the example itself.

More importantly, our attack no longer employs mem-
bership inference based on overfitting membership scores,
but simply uses it as an exclusion technique. This method
was inspired by the tendency of neural networks to overfit
hard-to-predict example. And our experimental results am-
ply demonstrate the effectiveness of this simple technique.
Especially in scenarios where attacks are very costly, we
believe that membership exclusion techniques are necessary
to avoid launching unnecessary attacks. Comparing Two-
stage HP-MIA with the exclusion technique and other at-
tacks, Two-stage HP-MIA is able to identify more samples
while ensuring high precision.

5.2. Which Examples are Dangerous and Which
Examples are Safe?

The success of the difficulty calibration technique pro-
vides ample evidence that considering example character-
istics is necessary for MIA, and that example specificity
is closely related to membership privacy leakage. When
looking at this problem from the perspective of a victim
or defender, we may be concerned about those examples
whose privacy is vulnerable to leakage. Since the current
MIA considering example characteristics focuses only on the
prediction difficulty of examples, we will only discuss the
relationship between sample difficulty and privacy here, and
we leave the exploration about the other example properties
to future work.

We use the mean value of a example’s Loss on the
reference model as an indicator of its difficulty:

𝜏(𝑧) = 𝐸𝑔←𝑇 (𝐷𝑟𝑒𝑓𝑒𝑟𝑛𝑐𝑒) [𝑙(𝑔, 𝑧)]

We conducted experiments on four datasets: MNIST, CI-
FAR10, Purchase100, and Texas100. We used the 20 refer-
ence models trained on each data from previous experiments
to calculate the difficulty scores, using the average of the
losses on the reference models as an estimate of the difficulty
scores per sample. For CIFAR10, the model structure we
used was AlexNet. The member datasets were divided into
two parts, the exposed data identified by Two-stage HP-
MIA with high prediction(𝛼 = 90%) and the hidden data not
identified, and the difficulty scores were calculated for each
of the two types of data.

Figure 17 shows the frequency histograms of the diffi-
culty scores in the four datasets. Interestingly, we found that
for samples with very low Loss values (close to 0) on the
reference model, our attacks were difficult to identify. While
other difficult samples were identified with high accuracy. In
general, sample security in the dataset is correlated with its
prediction difficulty. The strong memory capability makes
the neural network easy to show high confidence in the train-
ing set data, so if a sample has a high prediction difficulty but
has a very low Loss value in can in the neural network, the
adversary can confidently guess that it belongs to the training
set.
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Figure 17: Difficulty score distribution of membership datasets of MNIST, CIFAR10, Purchase100 and Texas100. Examples with
high predicted difficulty are more likely to be exposed, while simple samples are safer

Note that privacy leakage for hard examples is caused by
a combination of example difficulty and model characteris-
tics (overfitting). For the easy example, it is safer because the
difference in predictive behavior for it in the model trained
with it and the model trained without it is smaller.

It is worth mentioning that hard examples receive more
attention than easy examples during the training of deep
neural networks. When the model was trained using cross-
entropy, hard examples contributed a larger gradient than
easy examples in the back-propagation[36, 54]. In addition
to this, Kishida et al.[23] found that hard examples con-
tributed more to the generalization of the model than easy
examples, suggesting that it is undesirable to remove hard
examples from the dataset to guarantee privacy.

5.3. Comparison with Previous Works
The computational cost of the membership inference

attack consists of two main components, one is the compu-
tational cost of training the shadow and reference models,
and the other is the computational cost of optimizing the
thresholds.

In our experiments, Ye et al.’s method does not require
experimental shadow models, and all other attacks (includ-
ing ours) train only one shadow model. Carlini et al.[3]
and Ye et al.[49] design attack strategies from hypothesis
testing, and their approaches require training a large number

of reference models. For example, online LiRA train 2𝑛
reference models for each target record to fit the distribution
𝑄𝑖𝑛 and distribution 𝑄𝑜𝑢𝑡. Offline LiRA and the method of
Ye et al. train 2𝑛 reference models, and these 2𝑛 models
can be used against all target records for the attack process.
For 𝑚 records, Online LiRA requires training (𝑚 + 1) × 𝑛
reference models, while Offline LiRA and the method of
Ye et al. require training 2𝑛 reference models. Unlike their
work, we do not use a large number of reference models to
fit the probability distribution, but only a small number of
models (e.g., 1 ∼ 20) for difficulty calibration. As a result,
our attack incurs significantly lower (About 5 ∼ 10 times
less) computing cost than the work of offline LiRA and Ye
et al., and is close to that of Waston et al.[46]. As shown in
figure 14, the effect of Two-stage HP-MIA did not receive a
significant impact even with a smaller number of reference
models. And unlike the work of Waston et al.[46], we used
an overfitting-based attack to exclude non-member records,
thus improving the precision of the calibrated attack.

Two-stage HP-MIA consumes more time in optimizing
the thresholds since it has two thresholds. As shown in
Algorithm 2, Two-stage HP-MIA needs to adjust the value of
𝛽 several times and search for 𝑡1 and 𝑡2 after each adjustment
of 𝛽, respectively. While other attacks only need to search
a threshold value. Assuming that the adversary adjusts the
𝛽 𝑁 (1001 in Algorithm 2) times while searching for the
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threshold, the cost of searching for the threshold in Two-
stage HP-MIA is about 2𝑁 times as much as the other
methods.

It should be noted that the cost of searching for thresh-
olds is actually significantly less than the cost of training the
reference model, so the overall computational cost of Two-
stage HP-MIA is still less than the methods of Carlini et al.
and Ye et al.

5.4. The Limitations of this Work
Based on the experimental results, we found that the

precision of the final attack may be slightly less than 𝛼, which
is due to the difference between the shadow model and the
target model. In addition, as in previous work[3, 8, 39, 50],
we assume that the training algorithm, model structure, and
training set distribution used by the shadow model are inde-
pendent identically distributed to the target model, which is
a rather rigorous hypothesis in practice.

6. Related Work
6.1. Privacy Attacks against Machine Learning

Privacy attacks against machine learning model reveal
the privacy risks of training data. Membership inference
attacks(MIA)[39] aim to infer whether the target example
belongs to the training set, and some current work[6, 8,
31, 34, 44] has generalized MIA to different application
scenarios. Property inference attack was proposed by Ganju
et al.[15] and this attack was demonstrated to be effective in
extracting special attribute information from the model[45,
55]. Some work attempts to recover training data directly.
Zhu et al.[56] proposed a method to recover data using gradi-
ents, which triggered some research on gradient information
leakage[2, 9, 30, 53]. Carlini et al.[4, 5] showed that training
data can be extracted by querying model in a black box
scenario. Recent work[43] has found that it is possible to
improve privacy attacks by poisoning the target model.

6.2. Privacy-Preserving Machine Learning
Differential privacy (DP) proposed by Dwork et al.[13,

14] can provide strong privacy guarantees for machine learn-
ing models. Abadi et al.[1] achieve DP training by cropping
and adding noise to the gradients during training. Dong
et al.[10] analyze the privacy leakage problem from the
perspective of hypothesis testing and propose Gaussian DP.
Unfortunately, differential privacy mechanisms can impair
the performance of the target model[48]. Since MIA is con-
sidered as a fundamental privacy attack[3], many works[18,
19, 32] have developed corresponding privacy-preserving
frameworks that utilize various strategies to defend against
MIA and guarantee acceptable model accuracy.

6.3. Quantifying Privacy Risks of Machine
Learning

Machine learning privacy attacks represented by MIA
are often used as privacy metrics for models. Liu et al.[27]
synthesized a variety of privacy attacks to evaluate the
privacy leakage of the model through extensive experiments.

Recently, Mireshghallah et al.[29] used MIA for privacy
metrics of Masked Language Models. In terms of example
privacy measures, Song et al.[40] define the privacy risk of
a example in terms of Bayesian probability. Duddu et al.[12]
use the Shapley value[16, 20] as a tool to measure a machine
learning’s memory for a single example.

6.4. Example Difficulty and Privacy Risk
Some recent works[23, 42] demonstrate some interesting

properties of hard examples and easy examples, specifically
that the difficulty of examples is stable across convolutional
neural network structures. Sablayrolles et al.[37] and Watson
et al.[46] use example difficulty to improve MIA, and Carlini
et al.[3] further proposed a Likelihood Ratio Attack which
is more powerful at low FPR. Our work further highlights
the relevance of the example character to privacy risks.
However, so far we still do not have a good understanding of
how neural networks memorize data, and related work[11,
17, 41] on adversarial examples demonstrates the output of
neural networks is easily controlled by deliberately designed
noise. It remains a challenging problem to understand the
relationship between sample difficulty and member privacy.

7. Conclusion
In this work, we rethink the relationship between over-

fitting and membership inference attacks and demonstrate
that using an overfitting-based approach for membership
exclusion can effectively improve the performance of HP-
MIA. Our evaluation results show that our attack is able
to identify more members while guaranteeing high accu-
racy compared to other attacks. In addition, our method
has a smaller computational cost compared to the previous
method.

We believe that our work in understanding membership
privacy is preliminary and the relationship between example
characteristics and privacy leakage needs to be further ex-
plored. In particular, we would like to know how adversaries
should perform effective attacks on easy examples, and how
victims and defenders have to work on the defense of hard
examples.
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This paper is the extended version of the paper "Two-
stage High Precision Membership Inference Attack" in the
Fourth International Conference on Machine Learning for
Cyber Security, ML4CS 2022[7]. In this version, we added
two new attacks and a new target model structure in Section
4, used regularization for other target models, and showed
ROC and PR curves of attack results. We also added two
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new sections, Section 5 and Section 6, to discuss features of
our method and related work.
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