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Abstract

We present high quality image synthesis results using diffusion probabilistic models,
a class of latent variable models inspired by considerations from nonequilibrium
thermodynamics. Our best results are obtained by training on a weighted variational
bound designed according to a novel connection between diffusion probabilistic
models and denoising score matching with Langevin dynamics, and our models nat-
urally admit a progressive lossy decompression scheme that can be interpreted as a
generalization of autoregressive decoding. On the unconditional CIFAR10 dataset,
we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On
256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our imple-
mentation is available at https://github.com/hojonathanho/diffusion.

1 Introduction

Deep generative models of all kinds have recently exhibited high quality samples in a wide variety
of data modalities. Generative adversarial networks (GANs), autoregressive models, flows, and
variational autoencoders (VAEs) have synthesized striking image and audio samples [12, 25, 3,
55, 35, 23, 10, 30, 41, 54, 24, 31, 42], and there have been remarkable advances in energy-based
modeling and score matching that have produced images comparable to those of GANs [11, 52].

Figure 1: Generated samples on CelebA-HQ 256× 256 (left) and unconditional CIFAR10 (right)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [50]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [52, 58]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 52]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [50] are latent variable models of the form pθ(x0) :=
∫
pθ(x0:T ) dx1:T , where

x1, . . . ,xT are latents of the same dimensionality as the data x0 ∼ q(x0). The joint distribution
pθ(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ; 0, I):

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule β1, . . . , βT :

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [− log pθ(x0)] ≤ Eq
[
− log

pθ(x0:T )

q(x1:T |x0)

]
= Eq

[
− log p(xT )−

∑
t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

]
=: L (3)

The forward process variances βt can be learned by reparameterization [31] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in pθ(xt−1|xt), because both processes have the same functional form when
βt are small [50]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation αt := 1− βt and ᾱt :=

∏t
s=1 αs, we have

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (4)
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Efficient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (3) as:

Eq
[
DKL(q(xT |x0) ‖ p(xT ))︸ ︷︷ ︸

LT

+
∑
t>1

DKL(q(xt−1|xt,x0) ‖ pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]
(5)

(See Appendix A for details. The labels on the terms are used in Section 3.) Equation (5) uses KL
divergence to directly compare pθ(xt−1|xt) against forward process posteriors, which are tractable
when conditioned on x0:

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), (6)

where µ̃t(xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt and β̃t :=

1− ᾱt−1

1− ᾱt
βt (7)

Consequently, all KL divergences in Eq. (5) are comparisons between Gaussians, so they can be
calculated with closed form expressions instead of high variance Monte Carlo estimates.

3 Diffusion models and denoising autoencoders

Diffusion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances βt of the
forward process and the model architecture and Gaussian distribution parameterization of the reverse
process. To guide our choices, we establish a new explicit connection between diffusion models
and denoising score matching (Section 3.2) that leads to a simplified, weighted variational bound
objective for diffusion models (Section 3.4). Ultimately, our model design is justified by simplicity
and empirical results (Section 4). Our discussion is categorized by the terms of Eq. (5).

3.1 Forward process and LT

We ignore the fact that the forward process variances βt are learnable by reparameterization and
instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

3.2 Reverse process and L1:T−1

Now we discuss our choices in pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) for 1 < t ≤ T . First,
we set Σθ(xt, t) = σ2

t I to untrained time dependent constants. Experimentally, both σ2
t = βt and

σ2
t = β̃t = 1−ᾱt−1

1−ᾱt
βt had similar results. The first choice is optimal for x0 ∼ N (0, I), and the

second is optimal for x0 deterministically set to one point. These are the two extreme choices
corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise
unit variance [50].

Second, to represent the mean µθ(xt, t), we propose a specific parameterization motivated by the
following analysis of Lt. With pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ

2
t I), we can write:

Lt−1 = Eq
[

1

2σ2
t

‖µ̃t(xt,x0)− µθ(xt, t)‖2
]

+ C (8)

where C is a constant that does not depend on θ. So, we see that the most straightforward parame-
terization of µθ is a model that predicts µ̃t, the forward process posterior mean. However, we can
expand Eq. (8) further using the forward process posterior formula (7):

Lt−1 − C = Eq

[
1

2σ2
t

∥∥∥∥√ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt − µθ(xt, t)

∥∥∥∥2
]

(9)

= Ex0,ε

[
1

2σ2
t

∥∥∥∥ 1√
αt

(
xt(x0, ε)− βt√

1− ᾱt
ε

)
− µθ(xt(x0, ε), t)

∥∥∥∥2
]

(10)

where xt(x0, ε) =
√
ᾱtx0 +

√
1− ᾱtε and ε ∼ N (0, I), due to Eq. (4).

3



Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , T})
4: ε ∼ N (0, I)
5: Take gradient descent step on

∇θ
∥∥ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)

∥∥2

6: until converged

Algorithm 2 Sampling

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
εθ(xt, t)

)
+ σtz

5: end for
6: return x0

Equation (10) reveals that µθ must predict 1√
αt

(
xt − βt√

1−ᾱt
ε
)

given xt. Since xt is available as
input to the model, we may choose the parameterization

µθ(xt, t) =
1√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
(11)

where εθ is a function approximator intended to predict ε from xt. To sample xt−1 ∼ pθ(xt−1|xt) is
to compute xt−1 = 1√

αt

(
xt − βt√

1−ᾱt
εθ(xt, t)

)
+σtz, where z ∼ N (0, I). The complete sampling

procedure, Algorithm 2, resembles Langevin dynamics with εθ as a learned gradient of the data
density. Furthermore, with the parameterization (11), Eq. (10) simplifies to:

Ex0,ε

[
β2
t

2σ2
tαt(1− ᾱt)

∥∥ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t)

∥∥2
]

(12)

which resembles denoising score matching over multiple noise scales indexed by t [52]. As Eq. (12)
is equal to (one term of) the variational bound for the Langevin-like reverse process (11), we see
that optimizing an objective resembling denoising score matching is equivalent to using variational
inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

To summarize, we can train the reverse process mean function approximator µθ to predict µ̃t, or by
modifying its parameterization, we can train it to predict ε. (There is also the possibility of predicting
x0, but we found this to lead to worse sample quality early in our experiments.) We have shown that
the ε-prediction parameterization both resembles Langevin dynamics and simplifies the diffusion
model’s variational bound to an objective that resembles denoising score matching. Nonetheless,
it is just another parameterization of pθ(xt−1|xt), so we verify its effectiveness in Section 4 in an
ablation where we compare predicting ε against predicting µ̃t.

3.3 Data scaling, reverse process decoder, and L0

We assume that image data consists of integers in {0, 1, . . . , 255} scaled linearly to [−1, 1]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting from
the standard normal prior p(xT ). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (x0;µθ(x1, 1), σ2

1I):

pθ(x0|x1) =

D∏
i=1

∫ δ+(xi
0)

δ−(xi
0)

N (x;µiθ(x1, 1), σ2
1) dx

δ+(x) =

{∞ if x = 1

x+ 1
255 if x < 1

δ−(x) =

{−∞ if x = −1

x− 1
255 if x > −1

(13)

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [32, 49], our choice here ensures that
the variational bound is a lossless codelength of discrete data, without need of adding noise to the
data or incorporating the Jacobian of the scaling operation into the log likelihood. At the end of
sampling, we display µθ(x1, 1) noiselessly.

3.4 Simplified training objective

With the reverse process and decoder defined above, the variational bound, consisting of terms derived
from Eqs. (12) and (13), is clearly differentiable with respect to θ and is ready to be employed for
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Table 1: CIFAR10 results. NLL measured in bits/dim.
Model IS FID NLL Test (Train)

Conditional

EBM [11] 8.30 37.9
JEM [15] 8.76 38.4
BigGAN [3] 9.22 14.73
StyleGAN2 + ADA [28] 10.06 2.67

Unconditional

Diffusion (original) [50] ≤ 5.40
Gated PixelCNN [56] 4.60 65.93 3.03 (2.90)
Sparse Transformer [7] 2.80
PixelIQN [40] 5.29 49.46
EBM [11] 6.78 38.2
NCSNv2 [53] 31.75
NCSN [52] 8.87±0.12 25.32
SNGAN [36] 8.22±0.05 21.7
SNGAN-DDLS [4] 9.09±0.10 15.42
StyleGAN2 + ADA [28] 9.74± 0.05 3.26
Ours (L, fixed isotropic Σ) 7.67±0.13 13.51 ≤ 3.70 (3.69)
Ours (Lsimple) 9.46±0.11 3.17 ≤ 3.75 (3.72)

Table 2: Unconditional CIFAR10 reverse
process parameterization and training objec-
tive ablation. Blank entries were unstable to
train and generated poor samples with out-of-
range scores.

Objective IS FID

µ̃ prediction (baseline)

L (learned diagonal Σ) 7.28±0.10 23.69
L (fixed isotropic Σ) 8.06±0.09 13.22
Lsimple – –

ε prediction (ours)

L (learned diagonal Σ) – –
L (fixed isotropic Σ) 7.67±0.13 13.51
Lsimple 9.46±0.11 3.17

training. However, we found it beneficial to sample quality (and simpler to implement) to train on the
following variant of the variational bound:

Lsimple(θ) := Et,x0,ε

[∥∥ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t)

∥∥2
]

(14)

where t is uniform between 1 and T . The t = 1 case corresponds to L0 with the integral in the
discrete decoder definition (13) approximated by the Gaussian probability density function times the
bin width, ignoring σ2

1 and edge effects. The t > 1 cases correspond to an unweighted version of
Eq. (12), analogous to the loss weighting used by the NCSN denoising score matching model [52].
(LT does not appear because the forward process variances βt are fixed.) Algorithm 1 displays the
complete training procedure with this simplified objective.

Due to discarding the weighting in Eq. (12), our simplified objective (14) is a weighted variational
bound that emphasizes different aspects of reconstructions that εθ must perform [16, 20]. We will
see in our experiments that this reweighting leads to better sample quality.

4 Experiments

We set T = 1000 for all experiments so that the number of neural network evaluations needed
during sampling matches previous work [50, 52]. We set the forward process variances to constants
increasing linearly from β1 = 10−4 to βT = 0.02. These constants were chosen to be small
relative to data scaled to [−1, 1], ensuring that reverse and forward processes have approximately
the same functional form while keeping the signal-to-noise ratio at xT as small as possible (LT =
DKL(q(xT |x0) ‖ N (0, I)) ≈ 10−5 bits per dimension in our experiments).

To represent the reverse process, we use a U-Net backbone similar to an unmasked PixelCNN++ [49,
45] with group normalization throughout [62]. Parameters are shared across time, which is specified
to the network using the Transformer sinusoidal position embedding [57]. We use self-attention at
the 16× 16 feature map resolution [60, 57]. Details are in Appendix B.

4.1 Sample quality

Table 1 shows Inception scores, FID scores, and negative log likelihoods (lossless codelengths)
on CIFAR10. Our unconditional model achieves better sample quality than other models, both
unconditional and conditional, at the expense of codelengths (see Section 4.3). Training on the true
variational bound yields better codelengths than training on the simplified objective, as expected, but
the latter yields the best sample quality. See Fig. 1 for CIFAR10 and CelebA-HQ 256× 256 samples,
Fig. 3 and Fig. 4 for LSUN 256× 256 samples [63], and Appendix C for more.
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Figure 3: LSUN Church samples. FID=7.89 Figure 4: LSUN Bedroom samples. FID=4.90

Algorithm 3 Sending x0

1: Send xT ∼ q(xT |x0) using p(xT )
2: for t = T − 1, . . . , 2, 1 do
3: Send xt ∼ q(xt|xt+1,x0) using pθ(xt|xt+1)
4: end for
5: Send x0 using pθ(x0|x1)

Algorithm 4 Receiving

1: Receive xT using p(xT )
2: for t = T − 1, . . . , 1, 0 do
3: Receive xt using pθ(xt|xt+1)
4: end for
5: return x0

4.2 Reverse process parameterization and training objective ablation

In Table 2, we show the sample quality effects of reverse process parameterizations and training
objectives (Section 3.2). We find that the baseline option of predicting µ̃ works well only when
trained on the true variational bound instead of our simplified objective (14). We also see that learning
reverse process variances (by incorporating a parameterized diagonal Σθ(xt) into the variational
bound) leads to unstable training and poorer sample quality compared to fixed variances. Predicting
ε, as we proposed, performs approximately as well as predicting µ̃ when trained on the variational
bound with fixed variances, but much better when trained with our simplified objective.

4.3 Progressive coding

Table 1 also shows the codelengths of our CIFAR10 models. The gap between train and test is at
most 0.03 bits per dimension, which is comparable to the gaps reported with other likelihood-based
models and indicates that our diffusion model is not overfitting (see Appendix C for nearest neighbor
visualizations). Still, while our lossless codelengths are better than the large estimates reported for
energy based models and score matching using annealed importance sampling [11], they are not
competitive with other types of likelihood-based generative models [7].

Since samples are nonetheless of high quality, we conclude that diffusion models have an inductive
bias that makes them excellent lossy compressors. Treating the variational bound terms L1 + · · ·+LT
as rate and L0 as distortion, our CIFAR10 model with the highest quality samples has a rate of 1.78
bits/dim and a distortion of 1.97 bits/dim, which amounts to a root mean squared error of 0.95 on a
scale from 0 to 255. More than half of the lossless codelength describes imperceptible distortions.

Progressive lossy compression We can probe further into the rate-distortion behavior of our model
by introducing a progressive lossy code that mirrors the form of Eq. (5): see Algorithms 3 and 4,
which assume access to a procedure, such as minimal random coding [17, 18], that can transmit a
sample x ∼ q(x) using approximately DKL(q(x) ‖ p(x)) bits on average for any distributions p and
q, for which only p is available to the receiver beforehand. When applied to x0 ∼ q(x0), Algorithms 3
and 4 transmit xT , . . . ,x0 in sequence using a total expected codelength equal to Eq. (5). The receiver,
at any time t, has the partial information xt fully available and can progressively estimate:

x0 ≈ x̂0 =
(
xt −

√
1− ᾱtεθ(xt)

)
/
√
ᾱt (15)

due to Eq. (4). (A stochastic reconstruction x0 ∼ pθ(x0|xt) is also valid, but we do not consider it
here because it makes distortion more difficult to evaluate.) Figure 5 shows the root mean squared
error distortion of this estimate,

√
‖x0 − x̂0‖2/D, plotted against reverse process time and rate

6



(calculated by the cumulative number of bits received so far at time t) on the CIFAR10 test set.
The distortion decreases steeply in the low-rate region of the rate-distortion plot, indicating that the
majority of the bits are indeed allocated to imperceptible distortions.
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Figure 5: Unconditional CIFAR10 test set rate-distortion vs. time. Distortion is measured in root mean squared
error on a [0, 255] scale. See Table 4 for details.

Progressive generation We also run a progressive unconditional generation process given by
progressive decompression from random bits. In other words, we predict the result of the reverse
process, x̂0, while sampling from the reverse process using Algorithm 2. Figures 6 and 10 show the
resulting sample quality of x̂0 over the course of the reverse process. Large scale image features
appear first and details appear last. Figure 7 shows stochastic predictions x0 ∼ pθ(x0|xt) with xt
frozen for various t. When t is small, all but fine details are preserved, and when t is large, only large
scale features are preserved. Perhaps these are hints of conceptual compression [16].

Figure 6: Unconditional CIFAR10 progressive generation (x̂0 over time, from left to right). Extended samples
and sample quality metrics over time in the appendix (Figs. 10 and 14).

Figure 7: When conditioned on the same latent, CelebA-HQ 256× 256 samples share high-level attributes.
Bottom-right quadrants are xt, and other quadrants are samples from pθ(x0|xt).

Connection to autoregressive decoding Note that the variational bound (5) can be rewritten as:

L = DKL(q(xT ) ‖ p(xT )) + Eq

[∑
t≥1

DKL(q(xt−1|xt) ‖ pθ(xt−1|xt))
]

+H(x0) (16)

(See Appendix A for a derivation.) Now consider setting the diffusion process length T to the
dimensionality of the data, defining the forward process so that q(xt|x0) places all probability mass
on x0 with the first t coordinates masked out (i.e. q(xt|xt−1) masks out the tth coordinate), setting
p(xT ) to place all mass on a blank image, and, for the sake of argument, taking pθ(xt−1|xt) to
be a fully expressive conditional distribution. With these choices, DKL(q(xT ) ‖ p(xT )) = 0, and
minimizing DKL(q(xt−1|xt) ‖ pθ(xt−1|xt)) forces pθ to copy coordinates t+ 1, . . . , T unchanged
and trains pθ to predict the tth coordinate given t+ 1, . . . , T . Thus, training pθ with this particular
diffusion is training an autoregressive model.

We can therefore interpret the Gaussian diffusion model (2) as a kind of autoregressive model with
a generalized bit ordering that cannot be expressed by reordering data coordinates. Prior work has
shown that such reorderings introduce inductive biases that have an impact on sample quality [35],
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Figure 8: Interpolations of CelebA-HQ 256x256 images with 500 timesteps of diffusion.

so we speculate that the Gaussian diffusion serves a similar purpose, perhaps to greater effect since
Gaussian noise might be more natural to add to images compared to masking noise. Moreover, the
Gaussian diffusion length is not restricted to equal the data dimension; for instance, we use T = 1000,
which is less than the dimension of the 32 × 32 × 3 or 256 × 256 × 3 images in our experiments.
Gaussian diffusions can be made shorter for fast sampling or longer for model expressiveness.

4.4 Interpolation

We can interpolate source images x0,x
′
0 ∼ q(x0) in latent space using q as a stochastic encoder,

xt,x
′
t ∼ q(xt|x0), then decoding the linearly interpolated latent x̄t = (1− λ)x0 + λx′0 into image

space by the reverse process, x̄0 ∼ p(x0|x̄t). In effect, we use the reverse process to remove
artifacts from linearly interpolating corrupted versions of the source images, as depicted in Fig. 8
(left). We fixed the noise for different values of λ so xt and x′t remain the same. Fig. 8 (right)
shows interpolations and reconstructions of original CelebA-HQ 256× 256 images (t = 500). The
reverse process produces high-quality reconstructions, and plausible interpolations that smoothly
vary attributes such as pose, skin tone, hairstyle, expression and background, but not eyewear. Larger
t results in coarser and more varied interpolations, with novel samples at t = 1000 (Appendix Fig. 9).

5 Related Work

While diffusion models might resemble flows [9, 43, 10, 30, 5, 14, 21] and VAEs [31, 44, 34],
diffusion models are designed so that q has no parameters and the top-level latent xT has nearly zero
mutual information with the data x0. Our ε-prediction reverse process parameterization establishes
a connection between diffusion models and denoising score matching over multiple noise levels
with annealed Langevin dynamics [52, 53]. Diffusion models, however, admit straightforward log
likelihood evaluation, and since the training procedure explicitly trains the Langevin dynamics
sampler using variational inference, there is no justified reason to choose a different sampler after
training. The connection also has the reverse implication that a certain weighted form of denoising
score matching is the same as variational inference to train a Langevin-like sampler. Other methods for
learning transition operators of Markov chains include infusion training [2], variational walkback [13],
generative stochastic networks [1], and others [47, 51, 33, 39].

By the known connection between score matching and energy-based modeling, our work could
have implications for other recent work on energy-based models [11, 38, 15, 8]. Our rate-distortion
curves are computed over time in one evaluation of the variational bound, reminiscent of how
rate-distortion curves can be computed over distortion penalties in one run of annealed importance
sampling [22]. Our progressive decoding argument can be seen in convolutional DRAW and related
models [16, 37] and may also lead to more general designs for subscale orderings or future predictions
for autoregressive models [35, 61].

6 Conclusion

We have presented high quality image samples using diffusion models, and we have found connections
among diffusion models and variational inference for training Markov chains, denoising score
matching and annealed Langevin dynamics (and energy-based models by extension), autoregressive
models, and progressive lossy compression. Since diffusion models seem to have excellent inductive
biases for image data, we look forward to investigating their utility in other data modalities and as
components in other types of generative models and machine learning systems.
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Broader Impact

Our work on diffusion models takes on a similar scope as existing work on other types of deep
generative models, such as efforts to improve the sample quality of GANs, flows, autoregressive
models, and so forth. Our paper represents progress in making diffusion models a generally useful
tool in this family of techniques, so it may serve to amplify any impacts that generative models have
had (and will have) on the broader world.

Unfortunately, there are numerous well-known malicious uses of generative models. Sample gen-
eration techniques can be employed to produce fake images and videos of high profile figures for
political purposes. While fake images were manually created long before software tools were avail-
able, generative models such as ours make the process easier. Fortunately, CNN-generated images
currently have subtle flaws that allow detection [59], but improvements in generative models may
make this more difficult. Generative models also reflect the biases in the datasets on which they
are trained. As many large datasets are collected from the internet by automated systems, it can be
difficult to remove these biases, especially when the images are unlabeled. If samples from generative
models trained on these datasets proliferate throughout the internet, then these biases will only be
reinforced further.

On the other hand, diffusion models may be useful for data compression, which, as data becomes
higher resolution and as global internet traffic increases, might be crucial to ensure accessibility of
the internet to wide audiences. Our work might contribute to representation learning on unlabeled
raw data for a large range of downstream tasks, from image classification to reinforcement learning,
and diffusion models might also become viable for creative uses in art, photography, and music.
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Extra information

LSUN FID scores for LSUN datasets are included in Table 3. Scores marked with ∗ are reported
by StyleGAN2 as baselines, and other scores are reported by their respective authors.

Table 3: FID scores for LSUN 256× 256 datasets
Model LSUN Bedroom LSUN Church LSUN Cat

ProgressiveGAN [25] 8.34 6.42 37.52
StyleGAN [26] 2.65 4.21∗ 8.53∗
StyleGAN2 [27] - 3.86 6.93
Ours (Lsimple) 6.36 7.89 19.75
Ours (Lsimple, large) 4.90 - -

Progressive compression Our lossy compression argument in Section 4.3 is only a proof of concept,
because Algorithms 3 and 4 depend on a procedure such as minimal random coding [18], which is
not tractable for high dimensional data. These algorithms serve as a compression interpretation of the
variational bound (5) of Sohl-Dickstein et al. [50], not yet as a practical compression system.

Table 4: Unconditional CIFAR10 test set rate-distortion values (accompanies Fig. 5)
Reverse process time (T − t+ 1) Rate (bits/dim) Distortion (RMSE [0, 255])

1000 1.77581 0.95136
900 0.11994 12.02277
800 0.05415 18.47482
700 0.02866 24.43656
600 0.01507 30.80948
500 0.00716 38.03236
400 0.00282 46.12765
300 0.00081 54.18826
200 0.00013 60.97170
100 0.00000 67.60125

A Extended derivations

Below is a derivation of Eq. (5), the reduced variance variational bound for diffusion models. This
material is from Sohl-Dickstein et al. [50]; we include it here only for completeness.

L = Eq
[
− log

pθ(x0:T )

q(x1:T |x0)

]
(17)

= Eq

− log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

 (18)

= Eq

[
− log p(xT )−

∑
t>1

log
pθ(xt−1|xt)
q(xt|xt−1)

− log
pθ(x0|x1)

q(x1|x0)

]
(19)

= Eq

[
− log p(xT )−

∑
t>1

log
pθ(xt−1|xt)
q(xt−1|xt,x0)

· q(xt−1|x0)

q(xt|x0)
− log

pθ(x0|x1)

q(x1|x0)

]
(20)

= Eq

[
− log

p(xT )

q(xT |x0)
−
∑
t>1

log
pθ(xt−1|xt)
q(xt−1|xt,x0)

− log pθ(x0|x1)

]
(21)
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= Eq

[
DKL(q(xT |x0) ‖ p(xT )) +

∑
t>1

DKL(q(xt−1|xt,x0) ‖ pθ(xt−1|xt))− log pθ(x0|x1)

]
(22)

The following is an alternate version of L. It is not tractable to estimate, but it is useful for our
discussion in Section 4.3.

L = Eq

− log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

 (23)

= Eq

− log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)
q(xt−1|xt)

· q(xt−1)

q(xt)

 (24)

= Eq

− log
p(xT )

q(xT )
−
∑
t≥1

log
pθ(xt−1|xt)
q(xt−1|xt)

− log q(x0)

 (25)

= DKL(q(xT ) ‖ p(xT )) + Eq

∑
t≥1

DKL(q(xt−1|xt) ‖ pθ(xt−1|xt))

+H(x0) (26)

B Experimental details

Our neural network architecture follows the backbone of PixelCNN++ [49], which is a U-Net [45]
based on a Wide ResNet [64]. We replaced weight normalization [46] with group normalization [62]
to make the implementation simpler. Our 32× 32 models use four feature map resolutions (32× 32
to 4 × 4), and our 256 × 256 models use six. All models have two convolutional residual blocks
per resolution level and self-attention blocks at the 16 × 16 resolution between the convolutional
blocks [6]. Diffusion time t is specified by adding the Transformer sinusoidal position embedding [57]
into each residual block. Our CIFAR10 model has approximately 30 million parameters, and the
other models have 114 million parameters. We also train a larger variant of the LSUN Bedroom
model by increasing filter count, with approximately 256 million parameters.

The CIFAR10 models were trained for at most 1.3M steps (approximately 1 day). CelebA-HQ used
0.5M steps, LSUN Bedroom used 2.4M steps, LSUN Cat used 1.8M steps, and LSUN Church used
1.2M steps. The larger LSUN Bedroom model used 1.15M steps. Apart from an initial choice of
hyperparameters early on to make network size fit within memory constraints, we performed the
majority of our hyperparameter search to optimize for CIFAR10 sample quality, then transferred the
resulting settings over to the other datasets:

• We chose the βt schedule from a set of constant, linear, and quadratic schedules, all
constrained so that LT ≈ 0. We set T = 1000 without a sweep, and we chose a linear
schedule from β1 = 10−4 to βT = 0.02.

• We set the dropout rate on CIFAR10 to 0.1 by sweeping over the values {0.1, 0.2, 0.3, 0.4}.
Without dropout on CIFAR10, we obtained poorer samples reminiscent of the overfitting
artifacts in an unregularized PixelCNN++ [49]. We set dropout rate on the other datasets to
zero without sweeping.

• We used random horizontal flips during training for CIFAR10; we tried training both with
and without flips, and found flips to improve sample quality slightly. We also used random
horizontal flips for all other datasets except LSUN Bedroom.

• We tried Adam [29] and RMSProp early on in our experimentation process and chose the
former. We left the hyperparameters to their standard values. We set the learning rate to
2× 10−4 without any sweeping, and we lowered it to 2× 10−5 for the 256× 256 images,
which seemed unstable to train with the larger learning rate.

• We set the batch size to 128 for CIFAR10 and 64 for larger images. We did not sweep over
these values.
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• We used EMA on model parameters with a decay factor of 0.9999. We did not sweep over
this value.

Final experiments were trained once and evaluated throughout training for sample quality. Sample
quality scores and log likelihood are reported on the minimum FID value over the course of training.
On CIFAR10, we calculated Inception and FID scores on 50000 samples using the original code
from the OpenAI [48] and TTUR [19] repositories, respectively. On LSUN, we calculated FID
scores on 50000 samples using code from the StyleGAN2 [27] repository. CIFAR10 and CelebA-HQ
were loaded as provided by TensorFlow Datasets (https://www.tensorflow.org/datasets),
and LSUN was prepared using code from StyleGAN. Dataset splits (or lack thereof) are standard
from the papers that introduced their usage in a generative modeling context. We used v3-8 TPUs for
all experiments. All details can be found in the source code release.

C Samples

Additional samples Figure 11, 13, 16, 17, 18, and 19 show uncurated samples from the diffusion
models trained on CelebA-HQ, CIFAR10 and LSUN datasets.

Latent structure and reverse process stochasticity During sampling, both the prior xT ∼
N (0, I) and Langevin dynamics are stochastic. To understand the significance of the second source
of noise, we sampled multiple images conditioned on the same intermediate latent for the CelebA
256 × 256 dataset. Figure 7 shows multiple draws from the reverse process x0 ∼ pθ(x0|xt) that
share the latent xt for t ∈ {1000, 750, 500, 250}. To accomplish this, we run a single reverse chain
from an initial draw from the prior. At the intermediate timesteps, the chain is split to sample multiple
images. When the chain is split after the prior draw at xT=1000, the samples differ significantly.
However, when the chain is split after more steps, samples share high-level attributes like gender,
hair color, eyewear, saturation, pose and facial expression. This indicates that intermediate latents
like x750 encode these attributes, despite their imperceptibility.

Coarse-to-fine interpolation Figure 9 shows interpolations between a pair of source CelebA
256 × 256 images as we vary the number of diffusion steps prior to latent space interpolation.
Increasing the number of diffusion steps destroys more structure in the source images, which the
model completes during the reverse process. This allows us to interpolate at both fine granularities
and coarse granularities. In the limiting case of 0 diffusion steps, the interpolation mixes source
images in pixel space. On the other hand, after 1000 diffusion steps, source information is lost and
interpolations are novel samples.
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Source Rec. λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5 λ=0.6 λ=0.7 λ=0.8 λ=0.9 Rec. Source

1000 steps

875 steps

750 steps

625 steps

500 steps

375 steps

250 steps

125 steps

0 steps

Figure 9: Coarse-to-fine interpolations that vary the number of diffusion steps prior to latent mixing.
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Figure 10: Unconditional CIFAR10 progressive sampling quality over time
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Figure 11: CelebA-HQ 256× 256 generated samples
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(a) Pixel space nearest neighbors

(b) Inception feature space nearest neighbors

Figure 12: CelebA-HQ 256× 256 nearest neighbors, computed on a 100× 100 crop surrounding the
faces. Generated samples are in the leftmost column, and training set nearest neighbors are in the
remaining columns.
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Figure 13: Unconditional CIFAR10 generated samples
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Figure 14: Unconditional CIFAR10 progressive generation
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(a) Pixel space nearest neighbors

(b) Inception feature space nearest neighbors

Figure 15: Unconditional CIFAR10 nearest neighbors. Generated samples are in the leftmost column,
and training set nearest neighbors are in the remaining columns.
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Figure 16: LSUN Church generated samples. FID=7.89

21



Figure 17: LSUN Bedroom generated samples, large model. FID=4.90
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Figure 18: LSUN Bedroom generated samples, small model. FID=6.36
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Figure 19: LSUN Cat generated samples. FID=19.75
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