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ABSTRACT
Incorporating temporal information into recommender systems has
recently attracted increasing attention from both the industrial and
academic research communities. Existing methods mostly reduce
the temporal information of behaviors to behavior sequences for
subsequently RNN-basedmodeling. In such a simplemanner, crucial
time-related signals have been largely neglected. This paper aims to
systematically investigate the effects of the temporal information
in sequential recommendations. In particular, we firstly discover
two elementary temporal patterns of user behaviors: “absolute time
patterns” and “relative time patterns”, where the former highlights
user time-sensitive behaviors, e.g., people may frequently interact
with specific products at certain time point, and the latter indicates
how time interval influences the relationship between two actions.
For seamlessly incorporating these information into a unifiedmodel,
we devise a neural architecture that jointly learns those temporal
patterns to model user dynamic preferences. Extensive experiments
on real-world datasets demonstrate the superiority of our model,
comparing with the state-of-the-arts.
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1 INTRODUCTION
Recommender system, as an effective information filtering method,
has been deployed in many real applications, ranging from video
sharing website, e-commerce to on-line bookstore and social net-
work. For capturing user dynamic preferences, recent years have

∗∗ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401154

Figure 1: An example of leveraging user historical records
for recommendation.

witnessed an emerging trend on modeling user sequential behav-
iors [14, 18], and the basic assumption lies in that “a user’s former
behaviors may influence her latter ones”.

Existing sequential recommendation algorithms mostly focus on
the sequences of users’ behaviors while ignoring their temporal pat-
terns [41, 43]. For example, traditional [17] recommender systems
typically model the temporal evolution of the user interests using
concept drifting with the assumption that users’ interests evolve
smoothly over time. Recent methods based on Neural Networks, es-
pecially the session-based recommendations [14, 18], mainly focus
on tracking short-term user interests and only take the sequential
orders of the items into modeling. Beyond that, some sequential
recommendation models embed the bucketized absolute time and
positions with self-attention [15, 41]. Though there are some initial
efforts on integrating temporal information into sequential rec-
ommendations, they mostly take incomplete (or partial) temporal
information into consideration. There is still a lack of efforts on com-
prehensively and thoroughly modeling such integrated temporal
patterns.

In this study, we systematically investigate the effects of the
temporal information in sequential recommendations. As exampled
in Figure 1, a user repeatedly purchased clothes such as a t-shirt in
June and a jacket in January. Though a rough category of “clothes”
can be used to summarize her interest, a better refined model can
also infer the associated seasonal information, e.g., the user would
be interested in shirts in April. Such temporal patterns provide
distinct evidences to obtain users’ time sensitive preferences in
recommendation. Notably, another important observation is that
the user initially purchased a guitar along with a guitar tuner, and
then bought guitar picks and strings several months later. Zooming
into the temporal details of the purchase sequences, temporal pat-
terns emerge as follows: when a user purchases a guitar, she might
not be interested in guitar picks or strings immediately, but would
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buy them in about three and five months respectively; furthermore,
guitar picks are periodically purchased every three months.

According to these observations, two typical temporal patterns
of user behavior sequences can be recognized: the Absolute Time
Pattern and the Relative Time Pattern. Absolute Time Patterns
directly relate users’ behavior sequences to the timestamp: in the
above example, the user’s purchase of clothes is directly related to
time and varies with seasons. Relative Time Patterns emphasize
the time intervals between behaviors and can be further divided
into two subcategories: Self-relative Time Pattern and Relatedness
Relative Time Pattern. Self-relative Time Patterns, for example, the
consecutive repurchases of guitar picks every three months charac-
terize periodical behaviors in e-commerce, which typically applies
to consumables, e.g. diapers, beers, etc. By contrast, Relatedness
Relative Time Patterns add the time dimension into consideration
by revealing the relatedness relationship between items. In Figure 1,
the interval between between guitar and strings can be determined
as five months because initially both of them were purchased in
July while the string replacement occurred in December.

To tackle these issues, we propose a novel neural network frame-
work named Temporal Attentive SEquential Recommendation
(TASER), which can jointly learn those temporal patterns and user
interests for sequential recommendations. For each input sequence,
an absolute temporal module that contains a group auto-encoder
embedding network is introduced to embed the time sequences.
This module enriches the capacity for representing the absolute
time, compared with traditional time bucketization methods. To-
gether with the absolute temporal module, a relative temporal mod-
ule injects the relative temporal effects into the relationships be-
tween two actions of user behavior sequences in an explicit manner.
Moreover, a time-aware constraint is adopted in our loss function
to obtain a better representation of the temporal information. Fi-
nally, the effectiveness of our proposed sequential recommendation
model is verified through extensive experiments on two large-scale
real-world datasets.

Our main contributions are summarized as follow:

• We discover absolute time patterns and relative time patterns
based on insightful data analysis to model users’ temporal
behaviors for recommender systems.

• We propose a novel time-aware neural network — TASER to
leverage such temporal patterns in a unique perspective.

• We conduct extensive experiments on real-world datasets to
demonstrate the significant performance gains of our model
against state-of-the-art methods.

The rest of paper is organized as follows: In section 2, we first
conduct preliminary analysis based on a real-world dataset to ver-
ify our assumption and formulate our problem formally. We then
propose our model TASER in section 3. In sections 4 and 5, we
intensively compare our TASER with state-of-the-art baselines over
seven public datasets.Finally the related works and conclusions of
this study are presented in sections 6 and 7, respectively.

2 PROBLEM FORMULATION
In this section, we present several case studies to verify the key
concepts of temporal patterns in sequential recommendation.

(a) Absolute Time Pattern - T-Shirt (b) Absolute Time Pattern - CD

(c) Self-Relative Time Pattern (d) Relatedness Relative Time Pattern

Figure 2: Cases of various time patterns. (a) and (b) illustrate
two absolute time patterns, while (c) and (d) demonstrate the
self-relative and relatedness relative time patterns, respec-
tively. Note that the “Summer” months in (a) include June,
July and August, and the blue shadow in (b) means that the
sales per day is under five.

2.1 Case Study
All of our analysis is based on the Amazon datasets1 [13], which
involves user purchasing behaviors as well as the corresponding
timestamps ranging from May 1996 to July 2014.

2.1.1 Absolute Time Pattern. The absolute time pattern is a point-
wise concept, characterizing the absolute timestamp as a unique
variable in depicting user-item interactions. Timestamp can provide
the context and auxiliary information to determine whether a user
is interested in an item, which is useful in revealing periodical
behaviors. As exampled in Figure 2(a), the sales of a T-shirt (Item ID
in the dataset: B000NZW3J8) sharply rised from May to September
every year, which is consistent with the common knowledge that
customers are more likely to buy T-shirts in summer than in winter.
Another example is the daily sales of a music album released on Nov
23, 2009, which is shown in Figure 2(b). The sales of the music album
have a strong relationship with the release time. In the beginning,
the sales were relatively high and stable, and then declined as time
passed, and eventually fell under 5 after 90 days.

2.1.2 Relative Time Pattern. The relative time pattern is a pair-
wise concept, which focuses on the time interval between each
pair of user behaviors. Intuitively, such information reflects the
influence of the former behavior upon the latter one, and different
pairs may exhibit various patterns. We further propose two kinds of
relative time patterns: Self-relative time patterns and Relatedness
relative time patterns. Figure 2(c) shows an example of a self-relative

1http://jmcauley.ucsd.edu/data/amazon/
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Figure 3: Illustration of our temporal-awaremodel. (a) The overall framework. (b) The detailed implementation of GroupAuto-
encoder structure. (c) Left: The labeled, directed, fully-connected graph consisting of sequence elements and their relative time.
Right: The detailed implementation of Relative Temporal Attention Net.

time pattern. The green line presents a user’s repeated purchases
of guitar picks, where the intensity of purchases is a function of
time and 𝑥 = 0 means the first purchase. Figure 2(d) illustrates
two relatedness relative time patterns on item pairs guitar->tuner
(red line) and guitar->strings (blue line) respectively. Most users
purchase guitars and tuner together, while typically buy new strings
about 150 days later than the guitar. This observations demonstrate
two specific time intervals between purchases of the two item
pairs, which are important relatedness relative time patterns for
recommendations.

From the above case studies, we can conclude that both cat-
egories of time patterns are essential to accurately model user
behaviors in practical recommender systems.

2.2 Problem Definition
In this paper, we represent matrices, vectors, and scalars as bold
capital letters (e.g., 𝑿 ), bold lower-case letters (e.g., 𝒙), and normal
lower-case letters (e.g., 𝑥 ), respectively. Suppose we have a user set
U and an item set I. For a user𝑢 ∈ U, we chronologically organize
her purchasing behaviors as 𝑺𝑢 = [(𝑠𝑢1 , 𝑡

𝑢
1 ), (𝑠

𝑢
2 , 𝑡

𝑢
2 ) ..., (𝑠

𝑢
𝑙𝑢
, 𝑡𝑢
𝑙𝑢
)],

where the pair (𝑠𝑢
𝑖
, 𝑡𝑢
𝑖
) means a user 𝑢 interacted with an item 𝑠𝑢

𝑖
at

time 𝑡𝑢
𝑖
, and 𝑡𝑢1 ≤ 𝑡𝑢2 ≤ ... ≤ 𝑡𝑢

𝑙𝑢
holds. The set of all user behaviors

is defined as S = {𝑺𝒖 | 𝑢 ∈ U}. Then the task of sequential recom-
mendation with temporal information can be formally defined as
follows. GivenU,I, S and the target timestamp 𝑡 , our task aims
to predict the target item for each user on which the user would
conduct her behavior at 𝑡 .

3 OUR MODEL
In this section, we present TASER, a temporal attentive sequential
recommendation model. The architecture of our model is shown
in the top of Figure 3. First of all, the absolute temporal module
embeds the sequential behaviors with timestamps into dense vec-
tors, which are then fed into the relative temporal module to
generate the semantic vectors of the target user’ historical behav-
iors. Then the similarity between the target user and the candidate
items can be calculated for prediction in the decoder module.

3.1 Absolute Temporal Module
The absolute temporal module is designed to capture the absolute
time information. The input of this module includes four compo-
nents: the sequence of items 𝒔𝑢 , the corresponding sequence of
time 𝒕𝑢 , the target user 𝑢 and the next interaction time 𝑡𝑢

𝑙+1. The
output is 𝒁 = [𝒛1, 𝒛2, ...𝒛𝑙 ], where an arbitrary element 𝒛𝑖 ∈ R𝑑 is
a 𝑑-dimensional vector:

𝒛𝒊 = E(𝑢) + E(𝑠𝑢𝑖 ) + E(𝑡𝑢𝑖 ) + E(𝑡𝑢
𝑙+1) (1)

where E(·) represents the embedding layer, which directly en-
codes discrete variables into embedding, and discretizes contin-
uous variables into discretized values for encoding [5]. Formally,
E(𝑡𝑢

𝑖
) = 𝒕𝒆𝑖 = E(𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑒 (𝑡𝑢

𝑖
)), where 𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑒 (·) is a func-

tion that bucketizes time into discrete values, and 𝒕𝒆𝑖 ∈ R𝑑 is a
𝑑-dimensional embedding vector of the time 𝑡𝑢

𝑖
.
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The granularity of the bucketization may vary quite differently,
and inappropriate bucketization usually results in poor perfor-
mances. To address this issue, we integrate group auto-encoder
[30] into this module. Suppose that there are a set of latent groups
of vectors 𝑮 = {𝒈1,𝒈2, ...,𝒈 |𝑮 |}, where the cardinality |𝑮 | is smaller
than the number of the bucket size𝑇𝐵𝑢𝑐𝑘𝑒𝑡 , i.e,. |𝑮 | < 𝑇𝐵𝑢𝑐𝑘𝑒𝑡 holds.
The goal of a group auto-encoder is to encode the time embedding
𝒕𝒆𝑖 into a probability distribution over 𝑮 . As we can see in Figure
3(b), the probability that 𝒕𝒆𝑖 is mapped to the 𝑗th group can be
calculated as follows:

𝑝 ( 𝑗 | 𝒕𝒆𝑖 ) =
exp(𝒕𝒆⊤

𝑖
𝑾𝑒𝑛𝑐 𝒈𝑗 )∑

𝑘∈ |𝑮 |
exp(𝒕𝒆⊤

𝑖
𝑾𝑒𝑛𝑐 𝒈𝑘 ) (2)

where 𝒈𝑗 ,𝒈𝑘 ∈ R𝑑 represents the embedding of the 𝑖th group
𝑔𝑖 ∈ 𝐺 , and 𝑾𝑒𝑛𝑐 ∈ R𝑑×𝑑 is the encoding matrix that computes
proximity between 𝒕𝒆𝑖 and 𝒈𝑗 . Then the group embedding of 𝒕𝒆𝑖
can be calculated as follows:

𝝍𝑖 =
|𝑮 |∑
𝑗=1

𝑝 ( 𝑗 | 𝒕𝒆𝑖 ) 𝒈𝑗 , 𝒕𝒆′𝑖 =𝑾𝑑𝑒𝑐 𝝍𝑖 , (3)

where 𝝍𝑖 can be seen as the high-level representation of 𝒕𝒆𝑖 . Then
the output of the Absolute Temporal Embedding module can be
rewritten as follows:

𝒛𝒊 = E(𝑢) + E(𝑠𝑢𝑖 ) + 𝝍𝑖 + 𝝍𝑙+1 (4)
The loss ℓ𝑎 of this auto-encoder involves two terms ℓ𝑡1 and ℓ𝑡2 :

ℓ𝑎 = ℓ𝑎1 + ℓ𝑎2 ,

ℓ𝑎1 = | |𝒕𝒆𝑖 − 𝒕𝒆′𝑖 | |,

ℓ𝑎2 =

𝑇𝐵𝑢𝑐𝑘𝑒𝑡∑
𝑚=1

−𝒚𝑖 [𝑚] log �̂�𝑖 [𝑚]
, (5)

where ℓ𝑎1 formulates the difference between the embedding 𝒕𝒆𝑖
and the group embedding 𝒕𝒆′

𝑖
of the time 𝑡𝑢

𝑖
, and ℓ𝑎2 calculates the

cumulative log loss of the predictions. In particular,𝒚𝑖 is the one-hot
representation for the ground truth of the 𝑖th bucketized time, and
�̂�𝑖 = softmax (𝑾𝑡 𝝍𝑖 + 𝒃𝑡 ) is its prediction, where𝑾𝑡 ∈ R𝑇𝐵𝑢𝑐𝑘𝑒𝑡×𝑑 .

3.2 Relative Temporal Module
As mentioned in Section 2, the pairwise relationship between each
pair of items has a strong connection with the time interval be-
tween the purchases of the items. For a sequence with 𝑙 items, the
embedding matrix of the relative time is ΔΨ, where the element
Δ𝝍𝑖 𝑗 is in the 𝑖th row and the 𝑗th column, and 1 ≤ 𝑖 ≤ 𝑙, 1 ≤ 𝑗 ≤ 𝑙 ,
Δ𝝍𝑖 𝑗 = 𝝍𝑖 − 𝝍 𝑗 and 𝝍𝑖 ,𝝍 𝑗 are shown in Equation (3).

Currently, Recurrent Neural Networks (RNN) is the most effec-
tive category of methods for sequential recommendations. However,
such methods [43] only consider the relative time between adjacent
items. They generally ignore the cases between non-adjacent ones,
which could be useful for predictions as well. Thus the dependen-
cies between any pair of non-adjacent items can be only estimated
along the full path between the two, resulting in certain estimation
loss. As the sequence increases, such loss grows sharply, which
might significantly deteriorate the accuracy of these methods [28].

In this paper, we formulate the sequential items in users’ se-
quential behaviors as a labeled, directed, fully-connected graph

G = (𝑍, 𝐸), where the set of the nodes 𝑍 represents the items,
and the set of the edges 𝐸 includes all of the pairwise sequences
from the head nodes to the tails. Thus Δ𝚿 is the embedding of 𝐸,
where the element Δ𝝍𝑖 𝑗 is the embedding of the edge from the 𝑖th
node to the 𝑗th one. Since G is directed and its adjacency matrix
is asymmetric, it is impossible to directly generate a correspond-
ing Laplacian matrix and conduct a spectral decomposition on it
for calculations. Inspired by the non-spectral approaches [29], we
introduce an attention-based architecture named Relative Time
Attention Net, which can propagate the semantic information of
the nodes and the edges in G.

As we can see in figure 3(c), let 𝑨1 and 𝑨2 be two predicted
adjacency matrices of G, which can be formulated as follows:

𝑨1 = Δ𝚿 𝑾𝐴
1 , 𝑨2 = Δ𝚿 𝑾𝐴

2 ,

where𝑾𝐴
1 ,𝑾

𝐴
2 ∈ R |Δ𝝍𝑖 𝑗 |× |Δ𝝍𝑖 𝑗 | are the trainable weight matrices

to distill useful information for propagation. The relative temporal
attention net can be divided into three steps: Attention coefficient
calculation, attention coefficient normalization, and final represen-
tation refinement, which are presented as follows.

For each input sequence 𝒁 = [𝒛1, 𝒛2, · · · , 𝒛𝑙 ], where 𝒛𝑖 ∈ R𝑑 is
the embedding of the item node 𝑧𝑖 outputted by the absolute tem-
poral module, we firstly calculate the attention coefficient matrix
𝑬 ∈ R𝑙×𝑙 , a.k.a., attention map, based on the query, key and relative
time. Particularly, the coefficient 𝑒𝑖 𝑗 between 𝒛𝑖 and 𝒛 𝑗 indicates
the importance of the node 𝒛 𝑗 to 𝒛𝑖 when their relative time is Δ𝝍𝑖 𝑗 ,
which can be formulated as:

𝑒𝑖 𝑗 =
(𝒛𝑖𝑾𝑅

1 ) (𝒛 𝑗𝑾
𝑅
2 + (𝝍𝑖 − 𝝍 𝑗 )𝑾𝐴

1 )⊤√
|𝒛𝑖𝑾𝑅

1 |
, (6)

where𝑾𝑅
1 and𝑾𝑅

2 ∈ R𝑑×𝑑 are the trainable transformation ma-

trices. The denominator
√
|𝒛𝑖𝑾𝑅

1 | is the parameter to scale the dot
product attention. We assume that 𝒛𝑖𝑾𝑅

1 , 𝒛𝑖𝑾
𝑅
2 are independent

with mean 0 and variance 1, and the dot 𝒛𝑖𝑾𝑅
1 · 𝒛𝑖𝑾𝑅

2 has mean 0
and variance |𝒛𝑖𝑾𝑅

1 |.
To make coefficients easily comparable across different nodes,

we normalize them across all nodes with a softmax function such
that for each node 𝑧𝑖 , the cumulative coefficients from 𝑧𝑖 to all of the
nodes in 𝑍 is equal to 1. Then the normalized attention coefficients
are leveraged to calculate the final output representations 𝒑𝑖 for
each node 𝑧𝑖 . Here 𝒑𝑖 ∈ R𝑑 is a 𝑑-dimension vector, which is a
linear combination of the features corresponding to 𝑧𝑖 ’s first-order
neighbors and their relative time. Formally,

𝒑𝑖 =
𝑙∑
𝑗=1

𝑒𝑖 𝑗

(
𝒛 𝑗𝑾

𝑅
3 +

(
𝝍𝑖 − 𝝍 𝑗

)
𝑾𝐴

2

)
(7)

where𝑾𝑅
3 ∈ R𝑑×𝑑 is a trainable transformation matrix.

We employ multi-head operation [28] to stabilize the learning
process of attention, which has been proved is helpful to improve
the performance through different representation sub-spaces. In
particular, we split𝑾𝑅

1 ,𝑾
𝑅
2 ,𝑾

𝑅
3 into 𝑛 parts, and then execute 𝑛

independent relative temporal attention nets for the sequence of
the item node embeddings 𝒁 . Then we concatenate the 𝑛 outputs
into P = [𝑷1, · · · , 𝑷𝑛]. Here the 𝑖th element 𝑷𝑖 is the output of the
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𝑖th relative temporal attention net, a matrix that is composed of the
representations for all of the nodes. Note that here the relative time
information has been propagated into each node representation.
By doing this, the output of the whole Relative Temporal Module
can be formulated as follows:

𝑪 = FFN(𝒁 +P) = ReLU
(
(𝒁 + [𝑷1; 𝑷2; · · · ; 𝑷𝑛])𝑾𝐶

)
+ 𝒃, (8)

where the output matrix 𝑪 ∈ R |𝑆𝑢 |×𝑑 , the trainable matrix𝑾𝐶 ∈
R𝑑×𝑑 and the biased vector 𝒃 ∈ R𝑑 . Here FFN(·) is a feed-forward
network with a ReLU activation. By residual connectingP with the
original input 𝒁 , we propagate the low-level features into a higher
level. After a stack of 𝑁 identical relative temporal module blocks,
we receive 𝑪𝑁 as the next downstream network’s input with the
same size as 𝒁 .

To summarize, the relative temporal attention net can make full
use of all the edges associatedwith relative time tomake predictions,
and the relationship between each pair of items can be calculated
directly. Note that conventional RNN-based methods only calculate
the dependency between successive items, and the dependencies
between non-adjacency items cannot be modeled straightforwardly,
which may result in unsatisfactory results.

3.3 Decoder Module
Then we employ a fully-connected layer to transform 𝑪𝑁 into a
vector 𝒙 , where 𝒙 ∈ R𝑑 .We then need a downstream network to pre-
dict the probability that each candidate item should be returned or
not with 𝑥 . Most of existing methods [41] utilize a fully-connected
layer to determine the scores. Thus they need at least 𝑑 ×𝑚 param-
eters, where𝑚 is the number of the candidate items. Since usually
𝑚 is a very large number, we have to reserve a large space to store
these extra parameters, which could increase the time and space
costs significantly. In this study, we adopt an alternative bi-linear
decoding scheme [18] to compute a similarity score between the
representations of the current user and each candidate item, which
is formulated as follows:

𝑠𝑐𝑜𝑟𝑒𝑖 = E(𝑠𝑢𝑖 )
⊤ B 𝒙, (9)

where B ∈ R𝑑×𝑑 is a trainable matrix, and E(𝑰𝑖 ) is the candidate
item’s embedding. This approach can significantly reduce the num-
ber of the parameters from 𝑑 ×𝑚 to 𝑑 ×𝑑 , where 𝑑 is usually much
smaller than𝑚. Then we softmax these similarity score to acquire
the probability for each item to be purchased.

3.4 Loss Function
Self-attention [28] just leverages the position information of the
sequence. State-of-the-art methods like ATRank [41] directly en-
code the absolute time information for embedding. None of them
can consider the relative time information (time intervals), which
could be extremely important in sequential recommendations. Our
time-related loss function is designed as follows.

ℓ𝑡 =

𝑙∑
𝑖=1

∥𝝍𝑙+1 − 𝝍𝑖 ∥2
|𝑡𝑙+1 − 𝑡𝑖 |

(10)

where | | · | |2 is the L2 norm of a vector, and here ∥𝝍𝑙+1 − 𝝍𝑖 ∥ calcu-
lates the distance between the time embeddings 𝝍𝑙+1 and 𝝍𝑖 from
Equation (3). Divided by the time interval between two absolute

time stamps, ℓ𝐴 could distinguish same orders of items with differ-
ent intervals, which provides more accurate time information for
sequential recommendations. In addition, we also use the negative
logarithm of likelihood to form a binary cross-entropy loss:

ℓ𝑟 =
∑
𝑢

∑
𝑖∈𝐼+𝑢

− log(𝑠𝑐𝑜𝑟𝑒𝑢𝑖 ) +
∑
𝑢

∑
𝑗 ∈𝐼−𝑢

− log(1 − 𝑠𝑐𝑜𝑟𝑒𝑢𝑗 )), (11)

where 𝐼+𝑢 is the set of 𝑢’s purchased items (arranged in purchasing
orders). Following previous works [4, 27], for each target item 𝑖 , we
randomly sample several (5 in our experiments) negative instances
in the second term.

Our total loss L consists of three terms: the prediction loss ℓ𝑟 ,
the auto-encoder loss ℓ𝑎 in Equation (5) and the temporal loss ℓ𝑡 in
Equation 10, which are combined linearly as follows:

L = ℓ𝑟 + 𝛽ℓ𝑎 + 𝛾ℓ𝑡 , (12)

where 𝛽 and 𝛾 are the trade-off parameters. With the temporal loss
𝛾ℓ𝐴 , our model can produce better representations of the temporal
information than state-of-the-art methods.

3.5 Discussion
In this section, we show that TASER is a general framework for
sequential recommendations. It is essentially a generalization of
ATRank [41] and SASRec [15].

ATRank [41] can be viewed as a special case of TASER without
the temporal mechanisms such as the absolute time group auto-
encoder, the relative time module and the temporal loss function.
In ATRank, the encoding of the input is simply 𝒛𝒊 = E(𝑢) + E(𝑠𝑢

𝑖
) +

𝒕𝒆𝑖 + 𝒕𝒆𝑙+1. By removal of the relative time information in TASER,
the coefficient 𝑒𝑖 𝑗 , the final representation 𝒑𝑖 and the loss in such
variant of TASER can be rewritten as follows:

𝑒𝑖 𝑗 = (𝒛𝑖𝑾𝑅
1 ) (𝒛 𝑗𝑾

𝑅
2 )

⊤, 𝒑𝑖 =
𝑙∑
𝑗=1

𝛼𝑖 𝑗 (𝒛 𝑗𝑾𝑅
3 ), L = ℓ𝑟

which is the same as ATRank.
SASRec [15] did not utilize any temporal information. The en-

coding of its input is 𝒛𝒊 = E(𝑢) + E(𝑠𝑢
𝑖
) + E(𝑖) + E(𝑙 + 1). The

representations of the attention mechanism and the loss function
for SASRec are the same as ATRank. Thus SASRec is generalized
by TASER as well.

4 EXPERIMENTAL SETTINGS
Our experiments aim to answer the following research questions:
RQ1 Does the proposed model achieve the state-of-the-art perfor-

mance in sequential recommendations?
RQ2 What are the effects of various components in the TASER

architecture?
RQ3 How does the temporal information of the sequence affect

the recommendation results?
RQ4 What are the effects of the key hyper-parameters?

4.1 Datasets
We conduct our experiments on the following datasets:
• LastFM2. It is a widely used music recommendation data. We
employ the 1K version in our experiments.

2https://www.lastfm.com
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Table 1: Statistics of the evaluation datasets. Inter. repre-
sents the number of interaction, Avg. means the average in-
teraction per user, Spa.(%) is the sparsity of these datasets,
and Rep.(%) calculates the proportion of repeat purchases,
which are the interactions indicating self-related time pat-
terns.

dataset Users Items Inter. Avg. Spa.(%) Rep.(%)
LastFM 943 12105 83272 88.305 0.729 7.633
Video 1000 3296 15849 15.849 0.481 0.520

Instrument 2129 20928 55382 26.013 0.120 3.270
Beauty 8934 27762 202307 22.644 0.304 2.621
Music 2893 13183 64320 22.233 0.169 4.520
Phone 11567 34086 344724 29.802 0.064 0.725
Cloth 39387 23033 278677 7.0756 0.323 1.930

• Amazon. This dataset contains a collection of user-item inter-
actions on Amazon spanning from May 1996 to July 2014. We
evaluate our model and its variants on six product categories, in-
cluding Instant Video, Musical Instrument, Beauty, Digital Music
and Cell Phone. For sequential recommendations, we select the
users with at least 10 purchasing records and the items with at
least 5 times of interactions for experiments.

The statistical details of these datasets are presented in Table 1,
including the numbers of the users, items, interactions, average
interactions per user (Avg. Inter. for short in the table), and the
sparsity of the dataset. In particular, the sparsity of the dataset is
defined as the ratio of the known ratings (ground-truth) in the data
matrix.

Following [4, 15, 27], we take the first 70% of interactions in each
user’s purchase sequence as the training set and use the next 10%
of interactions as the validation set to search the optimal hyper-
parameter settings for all models. The remaining 20% interactions
in each user’s sequence are used as the test set for evaluating a
model’s performance.

4.2 Evaluation Metrics
Let 𝑅1:𝑁𝑢 be a list of top 𝑁 predicted items for user 𝑢, where 𝑅𝑖𝑢 is
ranked at the 𝑖th position in 𝑅𝑢 based on its predicted score. Let 𝑅𝑢
be the test data with totally𝑀 users in our system. The following
metrics are used to evaluate the recommendation results:
F1-score:We adopt per-user averaging instead of global averaging
to achieve better interpretability [16]:

P@𝑁 =
1
𝑀

∑
𝑀

|𝑅1:𝑁𝑢 ∩ 𝑅𝑢 |
𝑁

R@𝑁 =
1
𝑀

∑
𝑀

|𝑅1:𝑁𝑢 ∩ 𝑅𝑢 |
|𝑅𝑢 |

F1@𝑁 =
1
𝑀

∑
𝑀

2P𝑢@𝑁 · R𝑢@𝑁

P𝑢@𝑁 + R𝑢@𝑁

(13)

NDCG: The normalized discounted cumulative gain evaluates rank-
ing performance by considering the right positions of correct items,
which can be formulated as follows:

NDCG@𝑁 =
1
𝑍
DCG@𝑁 =

1
𝑍

𝑁∑
𝑖=1

2𝑟𝑖 − 1
log2 (𝑖 + 1)

(14)

where 𝑟𝑖 ∈ {1, 0} is the ground-truth of the items indicatingwhether
the user purchased the target item or not in the Amazon datasets,
and whether the target user listen the song or not in LastFM. 𝑍 is
a normalization constant that is the maximum possible value of
DCG@𝑁 .

4.3 Baselines
We compare our method with the following baselines:

• POP. This is a non-personalized method, where all of the items
are ranked by their popularity for each user.

• BPR [23]. Bayesian personalized ranking is a state-of-the-art
method for non-sequential item recommendation.

• FPMC [24]. Factorized personalized Markov chains is a state-of-
the-art method for sequential recommendation based on Markov
chains. For our sequential recommendation problem, each basket
represents one item.

• GRU4Rec [14]. It is a session-based recommendation method
that uses RNN structured GRU for sequence recommendations.

• NARM [18]. It is a session-based recommendation model that
integrates an attention mechanism into RNN. It can capture both
the users’ sequential behaviors and their main purposes in each
session.

• Time-LSTM [43]. It is a variant of LSTM, which can model
users’ sequential actions, equipping LSTM with time gates to
model time intervals.

• ATRank. [41] It is an self-attention framework to model user
behaviors.

• TASER-Position. It is a variant of our TASER, which only uses
the position orders of the sequences instead of the temporal
information for prediction.

• TASER-Abs. It is another variant of the TASER that uses the
original self-attention without relative time in the relative tem-
poral module.

4.4 Implementation Details
The implementation details of our method are listed as follows. The
dimension𝑑 of all embedding latent vectors (|𝑑model |, |𝑑𝑆 |, |𝑑𝑢 |, |𝑑𝑇 |)
is determined by grid search in the range of {5, 10, 20, 30, 40, 50, 100}
in TASER and all of the baselines (if exists). We adopt 𝑛 = 5 multi-
heads and 𝑁 = 3 relative blocks in our relative temporal module.
All of the parameters are first randomly initialized according to the
uniform distribution, and then updated with stochastic gradient
descent (SGD). The learning rate of SGD is determined by grid
search in the range of {100, 10−1, 10−2, 10−3, 10−4}. Dropout rate is
tuned among {0, 0.3, 0.5, 0.7}. Batch Size is set as 32 for all methods.
The least length of the input sequence is set as 2 (including the target
item) for all datasets at first and could be extended to 20 maximally.
The target length 𝑅 is set to 1 for all datasets. The number of group
for auto-encoder |𝐺 | = 365. 𝛽 = 0.1and 𝛾 = 0.01 to balance different
terms in the loss function. All experiments were conducted on
4 NVIDIA Tesla P40 GPU with 24GB of on-board memory. For
all baselines, hyper-parameters are tuned with grid search with
validation set. In our experiments, each user’s purchasing records
are ordered in their purchasing time, and the first 70% items of each
user are used for training, while the remaining are used for testing.
We recommend 5 items (N = 5) for each user.

Session 8C: Sequential Recommendation  SIGIR ’20, July 25–30, 2020, Virtual Event, China

1464



Table 2: Summary of the performance for baselines and our models. POP and BPR are non-sequential baselines. FPMC,
GRU4Rec, NARM, Time-LSTM and ATRank are sequential baselines. The underlined numbers are the results achieved by
the best baseline. TASER, TASER-Position and TASER-Abs are our model and its two variants respectively. The bold numbers
are the best performance of each column, and all of the numbers in the table are percentages with % omitted.

dataset LastFM Video Instrument Beauty Music Phone Cloth
Measure@5(%) F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG

POP 3.474 16.162 1.226 5.106 0.923 5.110 0.776 4.504 1.002 5.230 0.856 4.523 0.622 4.350
BPR 4.833 20.043 1.278 6.112 1.006 4.860 0.807 4.543 1.021 5.317 0.893 4.741 0.636 4.380
FPMC 6.432 21.311 1.384 7.001 1.032 5.087 0.831 5.012 1.074 5.349 0.969 5.055 0.667 4.463

GRU4Rec 6.628 23.562 1.299 6.832 1.017 5.021 0.825 4.660 1.058 5.345 0.933 4.964 0.654 4.406
NARM 6.723 24.303 1.311 5.903 1.026 5.051 0.826 4.726 1.065 5.354 0.940 5.010 0.661 4.425

Time-LSTM 6.684 23.020 1.309 6.918 1.024 5.063 0.827 4.715 1.067 5.360 0.939 5.024 0.663 4.406
ATRank 6.895 25.246 1.375 6.962 1.030 5.095 0.834 4.941 1.071 5.344 0.965 5.045 0.696 4.463

TASER-Position 7.312 27.318 1.474 7.206 1.043 5.181 0.895 5.515 1.133 5.484 1.003 5.255 0.728 4.677
TASER-Abs 7.213 26.221 1.462 7.124 1.039 5.137 0.891 5.322 1.120 5.410 0.993 5.183 0.717 4.515
TASER 7.822 29.125 1.546 7.242 1.051 5.206 0.932 5.785 1.192 5.608 1.012 5.524 0.762 4.789

5 EXPERIMENTAL RESULTS
We firstly report the experimental results of our model against the
baselines to answer the research question RQ1, and then conduct
comprehensive ablation studies to response the research question
RQ2.We then utilize a case study to answer RQ3, and finally analyze
the effect of our hyper-parameters for RQ4.

5.1 Overall Performance (RQ1)
• POP and BPR have worse performances than sequential meth-
ods due to the loss of sequence information, which evidences
sequence information’s (e.g. position order and time) important
role in recommendation.

• For sequential methods, FPMC and ATRank outperform all other
baselines on 6 subcategories of Amazon dataset with 𝐹1 and
𝑁𝐷𝐶𝐺 , and ATRank and NARM perform the best on LastFM
among all the baselines. Such results demonstrate the promising
performance of the deep models in sequential recommendations.

• ATRank overcomes NARM on almost all of the datasets, indi-
cating that the pure attention mechanism is more efficient than
RNN and attention mechanism fusion methods in sequence rec-
ommendation.

• Encouragingly, TASER consistently and noticeably outperforms
all other baselines on all of the datasets. These results double
confirm that the temporal patterns are extremely important for
sequential recommendations.

• TASER achieves better performance than its variants TASER-
Position and TASER-Abs, and particularly our two variants can
perform better than all baselines on almost all datasets. Such
observations demonstrate the effectiveness of our proposed abso-
lute temporal module and relative temporal module for sequential
recommendations against conventional RNN-based techniques.

• It is interesting to see that the improvement of our model on
LastFM is larger than that on other datasets. The reason can be
that LastFM includes more repeat purchases than others. Our
model can effectively capture such pattern, resulting in more
significant gains on this dataset.

5.2 Ablation Study (RQ2)
In this section, we analyze the impacts of our components via an
ablation study to answer RQ2. Table 3 shows the performance of
TASER and its 5 variants on LastFM, Video and Instrument datasets
in term of 𝐹1@5. The results on other datasets are similar, and thus
we do not report their results due to the page limit. The variants
and their experimental results are listed as follows:

• (1) Use Position (TASER-Position): As described before, we replace
the time information in TASER with the position order. The ex-
perimental result demonstrates that the concepts of the absolute
and relative time patterns can be also applied to position orders.

• (2) Remove Relative Position from (1): Without the relative po-
sition information, the performance significantly drops, which
illustrate that the relative information is important to sequential
recommendation. This result further supports the conclusion that
the relative temporal module can effectively regularize TASER
to achieve better performance.

• (3) Only Use Position Embedding (SASRec): Missing the absolute
time group auto-encoder, relative temporal module and time-
related loss function, this variant performs the worst. We further
replace the position embedding with the following position en-
coding Equation 15. The experimental result turns out that the
position embedding representation yields no better result than
position encoding.

𝑃𝐸 (𝑝, 2𝑖) = sin 𝑡/100002𝑖/𝑑 ,

𝑃𝐸 (𝑝, 2𝑖 + 1) = cos 𝑡/100002𝑖/𝑑
(15)

Such results demonstrate that the temporal information is in-
dispensable for sequential recommendation against the position
orders.

• (4) Remove Relative Time propagation (TASER-Abs): As shown
in Tables 2 and 3, the relative temporal information has a great
impact on the recommendation results.

• (5) Remove Temporal Loss Function: The time-related loss function
improves the representation of time embedding significantly.
More details on this loss function are presented in Section 6.3.
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Table 3: Ablation analysis on three datasets in term of 𝐹1@5.

dataset LastFM Video Instrument
(0) Default 7.822 1.546 1.051
(1) Use P 7.312 1.474 1.043
(2) Remove RP 7.020 1.402 1.035
(3) Only Use PE 6.886 1.389 1.033
(4) Remove RT 7.213 1.426 1.039
(5) Remove TF 7.247 1.481 1.046

Figure 4: Visualization of two sequenceswith the same order
of actions but different times

5.3 Does Time Affects Sequential
Recommendation? (RQ3)

In this part, two case studies on the Amazon-Instrument dataset
are designed to clarify this question.

5.3.1 Change the time in the sequence. S1 and S2 are two similar
sequences. The only difference between the two is that the purchase
time of the third item in S1 and S2 are 21 and 23 respectively. The at-
tention maps H1 and H2 are visualized in the left of Figure 4. It can
be clearly observed that the huge discrepancy between the two heat
maps are still quite big. If we merely use position order instead of
the temporal information for predictions, H1 and H2 should be very
similar, as their inputs are the same. To further analyze the impact
of changing the time of the third item in the sequence, we plotted
the difference map associated with the third item, which demon-
strates the significant difference between the two. Furthermore,
the right side of the figure shows the recommended results for the
two sequences simultaneously. TASER captures the internal time
variation of the sequence and presents it on the recommendations.

5.3.2 Change the next purchase time. Few sequential recommen-
dation algorithms have studied the impact of different purchase
time on recommendations. To answer this question, we design a
set of experiments to study the effect of various next purchase time
on a sequence. Figure 5 records the top 5 recommendations of the
sequence 𝑆 at the time of 36, 40 and 48. At the time of 36, item 1
ranks the first and item 2 ranks the fourth. As time changes to 40,
item 1 falls to the fifth and item 2 rises to the first. When the time
is at 48, item 1 returns to the first place and item 2 falls by one
place. This result clearly shows that our TASER can recommend
different results as the next purchase time passes with the full and
quantitative modeling of time.

Figure 5: Changes in recommendation results at different
purchase times. The red numbers represent the different
next purchase time.

5.4 Model Analysis (RQ4)
In this section, we further analyze the important hyper-parameters
and the time-related loss function in our model.

5.4.1 Impact of sequence length. Figure 6 shows the impact of the
sequence length on LastFM and Amazon-Video. From the figure
we can see that our TASER achieves the best performance with
different lengths on the two datasets. For example, the best length
setting on LastFM is 5, while the number on Amazon-Video is 3.
Furthermore, the length that offers the best performance is posi-
tively related to the number of the user average interaction. For
example, the average interaction in LastFM is 88, which are much
larger than those in the Amazon datasets according to Table 1. Fur-
thermore, GRU4Rec and NARM outperform FPMC on LastFM. This
can be explained by the fact that both GRU4Rec and NARM are
multiple-step RNN-based methods, and thus are able to acquire
more sequential signals from long sequences [27] than the two-step
method FPMC. However, GRU4Rec and NARM perform worse than
FPMC on Video. Because these non-personalized RNN-based meth-
ods can easily get biased on training sets of Amazon and enlarge the
generalization error to some extent despite the use of regularization
and dropout as described in [14].

It is reasonable to infer that the attention mechanism can cap-
ture long-path dependencies between any pair of positions in the
sequence, evidencing that TASER and ATRank continuously outper-
form other methods irrespective of the sequence length. The models
are more efficient in learning the features on long sequences be-
cause within both models, the maximum length of the paths in the
attention map is always 1. TASER outperforms ATRank by at least
5% resulting from the relative temporal module, which positively
contributes to long sequence modeling. The fact that TASER still
outperforms other methods by at least 5% even when the sequence
length is more than 20, which indicates that our method can better
capture long-distance dependencies in long sequences.

5.4.2 Impact of Group Number. As discussed in section 3.3, we
adopt group auto-encoder to embed the absolute time, and the
parameter |𝐺 | controls the number of group embedding. Due to the
limited resources, instead of traversing, we selected several numbers
|𝐺 | = 0, 7, 30, 90, 365, 500 in our experiments (corresponding to the
days in a week, a moth, a quarter and a year), where |𝐺 | = 0 means
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(a) LastFM (b) Amazon-video

Figure 6: Performance under different number of sequence
length.

it uses the most basic bucketization without group embedding. As
shown in Figure 7(a), when |𝐺 | = 7, our model performs worse
than the basic bucketization. As |𝐺 | increases, the performance
of our model improves, and constantly outperforms the basic one.
The effect of group embedding is limited when the number of
group is small, which may result from too much noises introduced
into embedding. The model’s performance achieves climax when
|𝐺 | = 365 and declines after that. The increase of the parameter
reduces the performance when it is too large. The experimental
results are the best when |𝐺 | is equal to 365, the days in a year. It
can be concluded that the user’s purchase behaviors are related to
the actual time period and the group embedding has advantages in
dealing with absolute time compared to mere time bucketization.

5.4.3 Impact of Temporal Loss. To determine the effect of the tem-
poral loss function, we design a comparative experiment between
ATRank and TASER-Bucket (a TASER variant without the group
embedding module for absolute time and relative time matrix).
Thus, the only difference between TASER-Bucket and ATRank is
that the former has the temporal loss while the latter does not,
which is exhibited in Section 3.4. By modeling the temporal infor-
mation quantitatively in the time-space, as shown in Figure 7(b),
the performance significantly improves.

6 RELATEDWORK
Our work is essentially an integration of temporal information
and sequential recommendation. Below, we present a review of the
related work on these two research directions.

6.1 Sequential Recommendation
Many models have been proposed to utilize user history in a se-
quential manner for future behavior prediction and recommenda-
tion. Factorized personalized Markov chains (FPMC) [24] integrates
matrix factorization with Markov chains for next-basket recom-
mendation which embeds the adjacent behaviors’ information into
item latent factors.

In order to model sequential behaviors, [12] propose a sparse
sequential recommendation approach with Markov chains and [44]
propose a sequential recommender based on Markov chains with
probabilistic decision-tree models. [14] and [26] model short-term
preferences for session-based recommendations using RNN through
previous user clicks and purchase behaviors. [18, 21] further com-
bine attention mechanism and RNN. What is more, [4, 27] use

(a) Group Embedding (b) Optimization Function

Figure 7: (a) Performance under different number of |𝐺 | (b)
Performance comparison with different optimization func-
tions.

memory networks and CNN [10] for sequential recommendation.
Unlike above sequential models that use convolutional or recurrent
modules, [28] is purely based on self-attention and [1, 15, 39, 41]
extent self-attention into recommendation.

In addition to e-commerce, sequential recommendations have
been also applied to a variety of application scenarios, such as
music recommendations [3, 11, 33], POI recommendations [7, 9],
browsing recommendations [40] and so on. Existing models typ-
ically implicitly prioritize the user’s previous records into orders
based on timestamps, without distinguishing the different roles
that the time information may play in predicting current interests.
However, in this work, we use the temporal attention network to
store and manipulate each user’s previous interactions, which helps
to enhance the expressiveness of sequence recommendation.

6.2 Temporal Information in Recommendation
Meanwhile, temporal information is an important contextual in-
formation for recommendation. Both [20] and [42] mention the
importance of time recommendations in e-commerce platforms.

In collaborative filtering-based methods, modeling temporal in-
formation has been already employed in [6, 17, 34, 36] to prove its
susses. [19] uses the temporal information of micro-blogs to find
semantically and temporally relevant topics in order to profile user
interest drifts with an implicit information network. [2] provides
explicit continuous-time random process models of the creation of
users and topics, and of the evolution of their interests. [37] inves-
tigates the temporal dynamics of user interests in tagging systems
and propose a temporal interests model for tracking users’ interests.
[35] proposes to design a tensor factorization approach to capture
the temporal dynamics of users’ preferences over time which treats
time as an additional dimension. [8, 32] have expanded the latent
factor based models to characterize the dependency and transition
between users’ current latent vector via social networks.

Recently, recurrent network-based methods achieve a great suc-
cess formany temporal tasks. Some pioneeringworks [22, 25, 31, 38]
adopt RNN for temporal recommendations. [43] uses the time inter-
val to explore relationship of adjacent objects and [41] integrates
time as a feature into the model by bucketize timestamp. Our work
differs from these works by modeling the absolute and relative tem-
poral patterns between user behavior sequences and user interests
in temporal recommendation.

Session 8C: Sequential Recommendation  SIGIR ’20, July 25–30, 2020, Virtual Event, China

1467



7 CONCLUSION
In this paper, we aim to leverage the absolute time patterns and
relative time patterns in user’s behaviors sequence for sequen-
tial recommendation. A novel neural network framework named
TASER are proposed, where the temporal patterns are captured
by an absolute temporal module and a relative temporal module
respectively, and a time-aware constraint is adopted into the loss
function to obtain better representation of the temporal information.
We conduct extensive experiments on seven datasets to verify the
effectiveness of TASER on modeling temporal patterns. Experimen-
tal results show that TASER is able to achieve better performance
noticeably, compared to the state-of-the-arts.
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