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Abstract—Although great progress has been made in automatic
speech recognition, significant performance degradation still exists
in noisy environments. Recently, very deep convolutional neural
networks (CNNs) have been successfully applied to computer vi-
sion and speech recognition tasks. Based on our previous work on
very deep CNNs, in this paper this architecture is further developed
to improve recognition accuracy for noise robust speech recogni-
tion. In the proposed very deep CNN architecture, we study the
best configuration for the sizes of filters, pooling, and input feature
maps: the sizes of filters and poolings are reduced and dimensions
of input features are extended to allow for adding more convolu-
tional layers. Then the appropriate pooling, padding, and input
feature map selection strategies are investigated and applied to the
very deep CNN to make it more robust for speech recognition. In
addition, an in-depth analysis of the architecture reveals key char-
acteristics, such as compact model scale, fast convergence speed,
and noise robustness. The proposed new model is evaluated on two
tasks: Aurora4 task with multiple additive noise types and channel
mismatch, and the AMI meeting transcription task with significant
reverberation. Experiments on both tasks show that the proposed
very deep CNNs can significantly reduce word error rate (WER)
for noise robust speech recognition. The best architecture obtains
a 10.0% relative reduction over the traditional CNN on AMI, com-
petitive with the long short-term memory recurrent neural net-
works (LSTM-RNN) acoustic model. On Aurora4, even without
feature enhancement, model adaptation, and sequence training, it
achieves a WER of 8.81%, a 17.0% relative improvement over the
LSTM-RNN. To our knowledge, this is the best published result on
Aurora4.

Index Terms—Convolutional neural networks, very deep CNNs,
robust speech recognition, acoustic modeling.

I. INTRODUCTION

W E have witnessed significant progress in automatic
speech recognition (ASR) in the last few years due to

the introduction of deep neural network (DNN) based acoustic
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models [1]–[3]. These advancements have reduced word error
rate (WER) to a level that has passed the threshold for adop-
tion in many close-talk scenarios, such as voice search on a
smart phone and dictation in an office room, where the signal-
to-noise ratio (SNR) is relatively high. However, these systems
still perform poorly in noisy environments, such as scenarios
with additive noise or convolutional distortions [4], and noise
robustness is still a critical issue for making ASR systems widely
adopted in real scenarios. The performance degradation prob-
lem is magnified under the distant talking condition [5], where
speech signal strength is lower, leading to low SNR and making
the system susceptible to additive noise and reverberation.

Several technologies within the DNN framework [6]–[8] have
been proposed to handle the difficult problem of mismatch
between training and testing in the noisy speech recognition
scenario, and some improvements have been obtained, how-
ever, there is still a large performance gap when compared to
the close-talking scenario with high SNR. More recently, some
other novel neural networks structures have been explored, of
which convolutional neural networks (CNNs) is one of the most
important types. CNNs have been shown to be better than a
classic fully connected feed-forward DNN on several tasks [9],
[10]. CNNs have several advantages: First, speech spectrogram
have local correlations in both time and frequency, and CNNs
are well suited to model those correlations explicitly through
a local connectivity, whereas DNNs have relatively more diffi-
culty to encode this information. Second, translational invari-
ance, such as frequency shift due to speaking styles or speaker
variations, can also be more easily captured by CNNs than by
DNNs [11]–[14].

The effect of CNNs was first verified in image classifica-
tion [11], [12], [15] and then applied to speech recognition
[9], [11], [13], [14], [16], [17]. Most of the previous CNN ap-
proaches for speech recognition have only used up to 2 convolu-
tional layers, and [9] tried to increase to 3 convolutional layers
but obtained deteriorated performance. Based on such previous
work, the configuration described in [14] is usually utilized for
CNN modeling in speech recognition, with 2 convolutional lay-
ers plus 4 fully connected layers. Recently, the computer vision
community [18]–[21] has found that the performance of image
classification can be improved by using a substantially increased
number of convolutional layers with carefully designed topol-
ogy. Specifically, VGGNet [19] is constructed using very simple
building blocks, such as convolutional layers with 3 × 3 filters
and 2 × 2 pooling layers, and shows impressive performance.

These results on image processing suggest investigating very
deep CNNs for speech recognition. Our previous work in [22]
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implemented a very deep CNN with many convolutional layers
for speech recognition for the first time, and achieved a signifi-
cant improvement in WER. The work in [23] has since applied
a similar idea and verified the effectiveness of very deep CNNs.

This initial work [22], [23] has motivated further exploration
of the very deep CNN structure, including application to noisy
scenarios. As described above, noise robustness is still a critical
issue for speech recognition in most real applications, where ad-
ditive noise, channel distortions and reverberation exist [4], [5].
In this work, we develop a very deep CNN for acoustic modeling,
and study various design aspects of the architecture in detail for
the noisy scenario. Comprehensive investigation and in-depth
analysis of the model are performed. The proposed very deep
CNNs are evaluated on two tasks for robust speech recogni-
tion: Aurora4 noisy speech recognition with additive noise and
channel distortion [24], and AMI distant speech recognition in a
reverberant scenario [5], where the speech signals are captured
by microphones located farther away from the speaker. The re-
sults show that very promising performance can be achieved on
both tasks with the proposed new model, even without using
front-end denoising [25], [26] or model adaptation [27]–[29].

The rest of this paper is organized as follows. In Section II the
conventional CNN is revisited, and the basic structure and expla-
nation are presented. In Section III a novel CNN architecture,
named very deep CNNs, is presented and some fundamental
principles are given. Section IV explores the design aspects of
these very deep CNNs in detail, with comparisons to other ap-
proaches. The experimental results for the additive noisy task
Aurora4 and reverberant task AMI are reported in Section V,
with conclusions in Section VI.

II. REVIEW OF CONVOLUTIONAL NEURAL NETWORKS

Traditional CNNs for speech recognition consist of several
convolutional layers and pooling layers, followed by several
fully-connected layers for acoustic modeling. The additional
convolutional and pooling layers are the main differences of
CNNs compared to DNNs.

A convolutional layer does the convolutions on feature maps
of the previous layer using filters, and then adds a bias scalar
to the corresponding feature map, followed by a non-linear
operation.

Feature maps are the basic units of convolutional layers and
pooling layers. The typical speech inputs, with static, delta and
double delta features, can be represented as 3 feature maps and
each of them can be viewed as an image-map with a size of
#times × #freqs, usually 11 × 40, where #times is the
context window size of the input features and #freqs is the
dimension of the frequency-based features. FBANK features
have been shown to be more effective than MFCC and PLP for
CNN usage in speech processing, due to two reasons: 1) there
is correlation information at the frequency scale represented
in the FBANK features which can be utilized by convolution
operations, and 2) each pooling operates on ordered-frequency
feature maps, which decreases the resolution in a meaningful
way. In contrast, the DCT transform of the MFCC will break
this property.

A convolution can be viewed as an operation applied to the
feature map using a filter, where both the feature map and the
filter can be represented as matrices. The process can be regarded
as moving the filter from the left top corner of the feature map
to the right bottom corner step by step (the step size is also a
hyper-parameter, but in this work this is fixed to 1). The covered
area of the feature map during this process is called a receptive
field, and the size is equivalent to the size of the filter. At each
step, the receptive field performs a dot product with the filter and
gives one output, and all the outputs gathered during the process
will form a new feature map. The left part of Fig. 1 gives one
example of this convolution operation, and the complete process
of a convolutional layer is expressed as Equation (1).

h(l) = σ
(
W(l) ∗ h(l−1) + b(l)

)
(1)

whereh(l−1) andh(l) are feature maps in two consecutive layers.
The convolution operation (denoted as ∗) is performed within the
filter W(l) and the feature map h(l−1) . The bias b(l) is added and
finally the activation function σ(·), typically sigmoid or ReLU,
will be applied to generate the outputs of the convolutional
layer. Equation (1) shows the simplest situation where only one
feature map exists in the previous layer. When multiple feature
maps are present in the previous layer, the results of convolution
operations are accumulated first before adding the bias.

The number of parameters of convolutional layers is relatively
small because the filter is shared among all receptive fields in
one feature map. So the parameters number of one convolutional
layer can be calculated as

#params(l) = filter size(l) × m(l) × m(l−1) (2)

where m(l) is the number of feature maps in the lth layer.
A pooling layer performs down-sampling on the feature maps

of the previous layer and generates new ones with a reduced
resolution. Several pooling strategies have been investigated
[14], including max-pooling, stochastic-pooling [30] and Lp -
pooling, with similar performance. In this work, max-pooling is
used in all CNN models. A 1 × 2 max-pooling on one feature
map is illustrated as the right part of Fig. 1.

Currently the most popular configuration for CNNs used in
speech recognition is that of [14], which has 2 convolutional
layers with 256 feature maps in each, using a 9 × 9 filter with
1 × 3 pooling in the 1st convolutional layer and a 3 × 4 filter in
the 2nd convolutional layer without pooling. This setup is used
as the baseline CNN in this paper.

III. VERY DEEP CONVOLUTIONAL NEURAL NETWORKS

Some previous work shows that when stacking more fully-
connected layers (more than 7 hidden layers) in normal DNNs
for speech recognition, the accuracy is not further improved [31],
[32]. Previous attempts increasing the number of CNN layers
from 2 to 3 also gave a degradation [9]. However, the recent
work in image shows that the accuracy of image classification
can be improved by increasing the number of convolutional
layers with carefully tuned architecture [18], [19].

Our previous work in [22] introduced very deep CNNs
into speech recognition for conversational telephone speech,



QIAN et al.: VERY DEEP CNNS FOR NOISE ROBUST SPEECH RECOGNITION 2265

Fig. 1. Example of convolution and pooling (left: convolution; right: max-pooling).

showing the promising potential of this kind of deep model
for speech recognition. Based on this initial work on the very
deep CNNs, the models are further developed to improve the
application in noisy scenarios.

Before a detailed architecture description, we first present
some fundamental considerations regarding very deep CNNs
for speech recognition:

1) As opposite to the traditionally used 9 × 9 or 3 × 4 filter
and 1 × 3 pooling in speech recognition [9], the very
deep CNNs for speech recognition proposed in this work
use filters of 3 × 3 (sometimes 1 × 3 and 3 × 1), with
pooling size constrained to 1 × 2 or 2 × 2. The stride of
convolution is set to 1 and only non-overlapping pooling
is used. These are the smallest reasonable sizes for filter
and pooling as shown in [19], which make it possible to
increase the number of convolutional layers.

2) Compared to computer vision tasks, the size of neural
network inputs in speech recognition is relatively small.
Both the context window size and the FBANK dimension
are typically much smaller than image inputs1. Accord-
ingly, in addition to the adjustment of the size of filters
and pooling, the input size needs to be enlarged appropri-
ately to allow more convolution and pooling operations.
All the proposed very deep CNNs in this work only one
input feature map, i.e. the static feature map, is used un-
less otherwise noted using three input feature maps with
dynamic features.

3) For very deep CNNs, a pooling layer is added after at least
two convolutional layers. The feature map size before the
first fully-connected layer is set to a relatively small value
in our proposed model, either 1 × 3 or 1 × 2. The number
of feature maps is increased gradually and doubled after
some pooling layers. For the model configurations in this
paper, the number of feature maps is increased gradually
from 64 to 128 to 256.

4) In addition to the convolutional layers and pooling layers,
4 fully-connected layers are added, followed by a softmax
output layer.

Following these fundamental principles, the proposed very
deep CNNs are designed and the detailed exploration will be
described in the next section. Topologies are listed in Table I.

1Normally using 11 × 40 inputs in speech, 40-dim FBANK features with 11
consecutive frames.

IV. ARCHITECTURE

In this section, the architectures of the proposed very deep
CNNs will be described in detail. The vd6 model configuration
is shown in Table I. This model shares the same context window
size and feature dimension, i.e. 11 × 40 as the traditional CNN
introduced in [9]. Following the fundamental principle on the
small size of filter and pooling described in Section 3, 5 convo-
lutions are performed in time, and 6 convolutions and 2 poolings
are performed in frequency, which results in a deep CNN with
6 convolutional layers and 2 pooling layers.

Based on the vd6 model, further developments are explored.
The structures of all models discussed in this work are illustrated
in Fig. 2. In this figure, color indicates type of pooling layer,
and border styles indicates padding strategies.

A. Experimental Setup on Aurora4

To investigate the behavior of the very deep CNNs for noise
robust speech recognition, different structures are implemented
and compared on the standard Aurora4 task. More details,
including the data corpus, model configuration and training
pipeline, are given in Section V-A and Section V-B.

Aurora4 [24] is a medium vocabulary task based on the Wall
Street Journal (WSJ0) [33]. It contains 16 kHz speech data in
the presence of additive noises and linear convolutional chan-
nel distortions, which were introduced synthetically to clean
speech derived from the WSJ0 database. The multi-condition
training set with 7138 utterances from 83 speakers includes a
combination of clean speech and speech corrupted by one of
six different noises at 10-20 dB SNR, some from the primary
Sennheiser microphone and some from the secondary micro-
phone. Similar to the training data, the same types of noise and
microphones are used to generate the test set, grouped into 4
subsets: clean, noisy, clean with channel distortion, and noisy
with channel distortion, which are referred to as A, B, C, and
D, respectively. The GMM-HMM system is first built and then
used to generate the senone alignments for later neural network
training2. The task-standard WSJ0 bigram language model is
used for decoding.

2In this task, the alignments are generated from the synchronized clean-
condition training set of Aurora4, and more details could be found in
Section V-B.
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TABLE I
DETAILED CONFIGURATIONS OF VERY DEEP CNNS WITH DIFFERENT CONTEXT WINDOWS AND FEATURE DIMENSION SIZES. M ×N REFERS TO A

CONVOLUTIONAL LAYER, AND [M ×N ] REFERS TO A MAX-POOLING LAYER, WHERE M AND N INDICATE THE SIZES FOR TIME AND FREQUENCY RESPECTIVELY

Model vd6 time-ext freq-ext vd10 full-ext CNN CNN2

Input map size 11 × 40 17 × 40 11 × 64 17 × 64 21 × 64 11 × 40 17 × 64
#(conv. layers) 6 8 10 10 10 2 2
64 feature maps 1 × 3 3 × 3 1 × 3 1 × 3 3 × 3 – –

3 × 3 3 × 3 1 × 3 1 × 3 3 × 3
[1 × 2] [1 × 2] [1 × 2] [1 × 2] [1 × 2]

128 feature maps 3 × 3 3 × 1 1 × 3 3 × 3 3 × 3 – –
3 × 3 3 × 3 1 × 3 3 × 3 3 × 3

[1 × 2] 3 × 3 1 × 3 3 × 3 3 × 3
[1 × 2] 3 × 3 3 × 3 3 × 3

[1 × 2] [1 × 2] [1 × 2]
256 feature maps 3 × 3 3 × 1 3 × 3 3 × 3 3 × 3 9 × 9 13 × 13

3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 [1 × 3] [1 × 4]
3 × 3 3 × 3 3 × 3 3 × 3 3 × 4 5 × 6

3 × 3 3 × 3 3 × 3
Output map size 1 × 3 1 × 8

Fig. 2. Architecture of very deep CNNs.

B. Context Window Extension

Compared to computer vision, where the input features are
large enough to allow stacking many building blocks in the very
deep CNNs, a typical size of input features in speech recognition
is 11 × 40, which is too small to stack with more convolutional
layers and pooling layers. Accordingly, context window exten-
sion and feature dimension extension are explored in this and the
next section respectively. Related models are listed in Table I.

In traditional DNN or CNN configurations, the context win-
dow size is typically 11. Using this context window size, con-
volutions can be performed in time 5 times with a filter size of
3, as in vd6. In this work, the context window size is extended
to 17 and further to 21, which allows 8 and 10 convolutions to
be performed in time respectively.

For model time-ext, the context window size is extended
to 17, and 8 convolutional layers are stacked. Shown in the first
three lines of Table II, the first line is the traditional baseline

CNN with 2 convolutional layers and the other two lines are the
proposed very deep CNNs. Increasing the number of convolu-
tional layers can obtain a large improvement, and time-ext
with context window extension, which stacks more convolu-
tional layers, gets another significant improvement compared to
vd6. Moreover most of the gain is obtained from subsets B, C
and D, which indicates that more convolutional layers with ap-
propriate context window extension is reasonable and effective
for noise robust speech recognition.

C. Feature Dimension Extension

Based on the 40-dim FBANK features for CNNs, at most
6 convolutions and 2 poolings can be performed in frequency,
leading to the vd6 model. In this work, the FBANK features
are extended to 64-dim, so that 4 more convolutions can be
performed in frequency. For model freq-ext, the feature
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TABLE II
WER (%) COMPARISONS OF THE MODELS HAVING VARIOUS CONTEXT

WINDOW AND FEATURE DIMENSION EXTENSIONS. F INDICATES THE SIZE ON

FREQUENCY AXIS AND T INDICATES THE SIZE ON TIME AXIS. L INDICATES THE

NUMBER OF CONVOLUTIONAL LAYERS IN THE MODEL

Model T × F L A B C D AVG

CNN 11 × 40 2 4.11 7.00 6.33 16.09 10.64
vd6 11 × 40 6 3.94 6.86 6.33 15.56 10.34
time-ext 17 × 40 8 3.72 6.57 5.83 14.79 9.84
freq-ext 11 × 64 10 3.79 6.51 6.26 15.19 10.02
vd10 17 × 64 10 4.13 6.62 5.92 14.53 9.78
full-ext 21 × 64 10 4.04 6.23 5.40 13.86 9.28
CNN2 17 × 64 2 4.20 7.36 6.84 16.36 10.96

dimension is extended, and 10 convolutional layers are stacked.
Shown as the fourth line of Table II, this larger feature dimension
increases the CNN depth, giving a small but clear performance
gain that is smaller than that from the context window extension.

Finally the input extension is performed in both time and fre-
quency leading to a 17× 64 input. The resulting model is named
vd10 to indicate it has 10 convolutional layers.vd10 in Table II
shows that the benefits from time-ext and freq-ext can
be combined. In addition, thefull-extmodel further extends
this from 17 × 64 to 21 × 64, so that 2 more convolution opera-
tions can be performed in time giving 10 convolution operations
in both time and frequency. The results in Table II show that the
extension in time is still helpful within the proposed very deep
CNN architecture.

To confirm that the performance gain is mainly from the
increased convolutional depth and not from the extended in-
put features, a model with the same wider input features
(17 × 64) but shallow convolutional layers (2 convolutional lay-
ers) is developed. This configuration is shown in the last column
of Table I, with the results given in the last line of Table II. The
results confirm that simply enlarging the size of input features
is not helpful in the traditional shallow CNN structure, whereas
very deep CNNs do benefit from the increased convolutional
depth.

The results in Table II show that a large improvement can be
obtained by increasing the convolutional layer from 2 (baseline
CNN) to 6 (vd6), and further to 10 (vd10 or full-ext).
Most of the contributions are in the three noisy subsets B, C and
D, demonstrating the effect of the proposed very deep CNNs for
noise robust speech recognition.

Considering the computational load and the latency in real-
time applications, the very deep CNN model vd10 with
17 × 64 inputs shows a good trade-off between accuracy and
real-time calculation, and is selected for the further development
in the remainder of this work.

D. Pooling in Time

As shown in Table I, these very deep CNN models all use
pooling in frequency and do no pooling in time. As shown in
[9], pooling in time may result a degradation in the system per-
formance. It is believed that pooling in time without overlap can
be seen as sub-sampling the signal in time, and with overlapping

TABLE III
WER (%) COMPARISON OF THE MODELS WITH OR WITHOUT POOLING IN TIME

Model A B C D AVG

vd10 4.13 6.62 5.92 14.53 9.78
vd10-tpool 3.68 6.46 6.13 15.03 9.91

Fig. 3. Example of convolution with padding in one dimension.

can be seen as a way to smooth out the signal, which is another
form of regularization [9].

To investigate whether pooling in time for very deep CNNs
with a wider input and a deeper structure is still unhelpful, more
experiments are conducted. As shown in Fig. 2, the vd10-
tpool is a model with 2 additional temporal poolings applied
(temporal convolutions are adapted to keep the sizes of input
and output feature maps unchanged). The results in Table III
show that pooling in time has no additional contribution beyond
the very deep CNN vd10, a similar conclusion to that for the
traditional CNNs [9].

E. Padding in Feature Maps

In most work on CNNs for speech recognition, including our
previous work [22] on very deep CNNs and the work on tra-
ditional CNNs [9], [14], [34], the convolutions are performed
without padding. However for computer vision [18], [19], con-
volutions are usually performed after zero-padding in feature
maps. It can save the size of feature maps so that it is useful to
increase the depth. In [19], the size of feature maps is reduced
only after pooling layers. Padding of feature maps can better
utilize the border information of feature maps by the neural net-
work, which is beneficial for the final performance. Recently,
[35] had some investigations on this topic. Fig. 3 gives an ex-
ample of convolution with padding in one dimension. The size
of the padding dimension can be preserved after the convolution
operation.

In this work, we tried to use padding in very deep CNNs for
speech recognition. Based on the model vd10, various padding
strategies are implemented. Model vd10-fpad pads only in
frequency, allowing more pooling operations in frequency, as
shown in Fig. 2. In addition, padding in both dimensions is
also applied, indicated as vd10-fpad-tpad. In this model,
considering that pooling is a necessary approach to reduce the
feature map size to a reasonable value when doing padding in
time, so pooling in time is also applied. The modelvd10-fpad
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TABLE IV
WER (%) COMPARISON OF THE MODELS WITH DIFFERENT

PADDING STRATEGIES

Model A B C D AVG

CNN 4.11 7.00 6.33 16.09 10.64
vd10 4.13 6.62 5.92 14.53 9.78
vd10-fpad 3.57 6.17 5.31 14.24 9.38
vd10-fpad-tpad 3.27 5.61 5.32 13.52 8.81

TABLE V
WER (%) COMPARISON OF THE MODELS USING ONE CHANNEL OR

THREE CHANNELS AS INPUTS

Model # A B C D AVG

vd6 1 3.94 6.86 6.33 15.56 10.34
3 4.13 7.14 6.16 15.60 10.48

vd10 1 4.13 6.62 5.92 14.53 9.78
3 3.90 6.93 6.26 14.75 10.01

vd10-fpad-tpad 1 3.27 5.61 5.32 13.52 8.81
3 3.79 6.11 5.60 13.62 9.13

# Indicates the Number of Input Feature Channels

and vd10-fpad-tpad are illustrated as the last two columns
of Fig. 2.

Table IV shows the results of very deep CNNs with different
padding strategies, compared to baseline shallow CNN. Model
vd10-fpad is significantly better than vd10, and vd10-
fpad-tpad padding in both time and frequency shows a fur-
ther improvement. These results demonstrate that padding in
feature maps for very deep CNNs is important, possibly bene-
fiting from better encoding on the border information. The ad-
ditional time pooling may have some joint impact with padding,
however, it is challenging to completely separate the influences
from padding and pooling, which may need more research in
future.

Model vd10-fpad-tpad is the best proposed architecture
using very deep CNNs for noise robust speech recognition.
Compared to the traditional CNN, the very deep CNN containing
up to 10 convolutional layers with appropriate padding and
pooling strategies achieves a very large improvement.

F. One Channel vs. Three Channels Based Input Feature Maps

All the proposed very deep CNNs are using one channel fea-
ture map as input, i.e. the static FBANK features. Considering
that most published work uses three channels for speech recog-
nition (including the dynamic features, Δ and ΔΔ), the number
of input channels are compared for very deep CNNs in the noisy
scenario, and the results are shown in Table V.

It is interesting to find that the one channel based very deep
CNNs are consistently better than the models using three chan-
nels under all architecture types in this noisy scenario. This
conclusion is different from that of prior work using shallow
CNN models [9]. One possible explanation would be that the
dynamic features may have less information than the static fea-
tures, and that this knowledge can be better extracted from the
raw static features directly by the very deep CNNs. Some in-

TABLE VI
COMPARISON OF MODEL PARAMETERS SIZE

Model #Params #Conv. #Neck #MLP

DNN 23.67M – – 23.67M
CNN 17.62M 0.85M 4.19M 12.58M
vd6 15.29M 1.14M 1.57M 12.58M
vd10 16.74M 2.59M 1.57M 12.58M
vd10-fpad 16.22M 2.59M 1.05M 12.58M
vd10-fpad-tpad 17.30M 2.62M 2.10M 12.58M

formation, previously captured by dynamic features, can also
be well captured using very deep CNNs with a wider context
window.

Moreover, the analysis is made on the feature maps for the
noisy data. One same noisy speech frame (more accurately it is
the same context window of frames) with three channels (static,
Δ and ΔΔ respectively, and with 17× 64 in each channel) is se-
lected from Aurora4 as illustrated in Fig. 4(a). Selected feature
maps of the first convolutional layer are illustrated in Fig. 4(b)
and (c), where the same one noisy speech frame with one chan-
nel or three channels is propagated through the model vd10-
fpad-tpad. We can see that the energy is more concentrated
in the first layer feature maps when only using one channel in-
puts, whereas the energy distribution is more distributed using
dynamic features. This observation may give another explana-
tion on the results of Table V in noisy scenarios.

G. Model Parameters Size

The number of parameters is compared across models in
Table VI. The DNN (6-layer) and CNN (2-cnn-layer + 4-mlp-
layer) lines are also shown as baselines. The parameters are
grouped into 3 types: #Conv indicates the parameters belonging
to convolutional layers, #Neck indicates the parameters between
the narrowed outputs of the full CNN block to the first fully-
connected layer, and #MLP indicates the remaining parameters
within the fully-connected layers. Softmax layer parameters are
not included as they are the same for all models. 2048 hidden
nodes are used for all the fully-connected layers in both DNN
and CNN. The DNN and traditional shallow CNN use 11 ×
120 FBANK static features with Δ and ΔΔ, and the new very
deep CNNs use 11 × 40 static FBANK features for vd6 and
17 × 64 static FBANK features for vd10. The statistics show
that convolution-related parameters (#Conv and #Neck) occupy
only a rather small fraction of the total parameters.

It is observed that although the number of convolutional layers
is increased significantly in the proposed very deep CNNs, the
total parameter size is even smaller than the baseline CNN and
DNN. The #Conv parameter increases slowly acompanied with
the more convolutional layers, and the #Neck parameter has
almost the same size due to the small neck value designed
in our proposed very deep CNNs. The compact model size
demonstrates another characteristic of the proposed very deep
CNNs.
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Fig. 4. One speech frame is selected to show the influence of one or three input channels. (a) Illustration of all three channels (i.e. static, Δ and ΔΔ features)
of the selected frame. (b) Illustration of some feature maps of the first convolutional layer, using one channel as input. (c) Illustration of some feature maps of the
first convolutional layer, using three channels as inputs.

Fig. 5. Convergence curve comparison of different models: LSTM, traditional
shallow CNN and the proposed very deep CNN.

H. Convergence of Very Deep CNNs

In the experiments, another interesting observation is that the
proposed very deep CNNs converge faster than other model
types. Fig. 5 gives the convergence curve comparison within
the proposed very deep CNNs, the traditional shallow CNN
and the LSTM-RNN. Stochastic gradient descent (SGD) based
back-propagation (BP) algorithm is used for all training. Results
show that the very deep CNNs converge the fastest, at about 6
iterations. In contrast, it usually takes about 12–14 iterations
for the traditional shallow CNN and LSTM-RNN to converge.
Accordingly although very deep CNNs need more computations
in each iteration (9.5 times more computations compared to the
baseline CNN), they need fewer training epochs (approaching
half of other deep models). Based on this observation and our
experiments, the very deep CNNs take comparable time for
model training.

I. Noise Robustness of Very Deep CNNs

Finally we do an in-depth analysis on the effect of very deep
CNNs in noisy scenarios. The individual input static feature

Fig. 6. One speech frame is selected to show the influence of additive noise and
channel distortion. Illustration of static features of the same frame in Aurora4
from four conditions A, B, C and D in order.

maps (17 × 64) of the same single frame across four conditions
in Aurora4 are illustrated in Fig. 6, denoted as A, B, C and D
from left to right.

Compared to the clean data of A, the additive noise in B blurs
the spectrum. Convolutional noise with channel distortion in C
filters out some frequency bands but keeps the remainder almost
unchanged. The mixture of both additive noise and channel
distortion, shown as D, combines these impacts on the spectrum.

To better understand how the CNN processes noisy speech,
each condition of this selected frame is propagated through the
best performing model vd10-fpad-tpad. The outputs of the
1st convolutional layer and the 6th convolutional layer for A, B,
C and D are plotted in Figs. 7 and 8, respectively. From Fig. 7
we can see that the feature maps after the 1st convolutional
layer still inherit most of the properties from the inputs, and
there are similar differences comparing the noisy data B, C,
D to clean data A in both Figs. 6 and 7. If the feature maps
from A are considered as the clean templates, the differences to
the corrupted feature maps (B, C and D) are still obvious after
only one convolutional layer processing. However, after the
6th convolutional layer illustrated in Fig. 8, we observe that the
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Fig. 7. Selected feature maps of the first convolutional layer using the same single frame from 4 different conditions in Aurora4.

Fig. 8. Selected feature maps of the sixth convolutional layer using the same single frame from 4 different conditions in Aurora4.

feature maps from the three noisy conditions now look much like
those in A. The differences between the corrupted noisy data and
clean data are reduced significantly. Based on this observation,
very deep CNNs seem to remove the noise embedding and de-
noise gradually across the stacked convolutional layers, which
makes it especially useful for noise robust speech recognition.

To further verify this observation, the differences between
noisy feature maps and clean feature maps are measured for
all convolutional layers. Using data in the test, we compute the
averaged mean square error (MSE) to evaluate the differences
between the three noisy conditions and the clean condition. The

MSE values after all convolution operations and pooling oper-
ations are shown in Fig. 9. The convolutional layers in these
very deep CNNs seem to have distinct functions. The first four
convolutional layers, which gradually increase the MSE, seem
to construct the speech representations, while the higher six
convolutional layers, which rapidly reduce the MSE, seem to
perform denoising. (Note that there is an MSE increment after
each max-pooling, and it is reasonable. Most of the outputs dis-
carded by max-pooling are very small values (near zero), so the
accumulated squared error decreases slightly from the preced-
ing convolutional layer. However the total outputs number in
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Fig. 9. The mean square error (MSE) variation of different layers of the very
deep CNN (vd10-fpad-tpad is used) is illustrated. The MSE is calculated
between layer outputs using noisy inputs (B, C and D, respectively) and clean
inputs (A).

TABLE VII
THE MEAN SQUARE ERROR (MSE) OF OUTPUTS BEFORE THE FINAL SOFTMAX

OPERATION OF DIFFERENT MODELS IS CALCULATED

Model B C D

CNN 3.0282 2.3778 5.1597
vd6 2.9182 2.3515 4.3358
vd10 2.5510 2.0103 4.0397
vd10-fpad 2.2857 2.0037 3.7599
vd10-fpad-tpad 1.7611 1.4873 2.9115

The MSE is Calculated Between the Outputs Using
Noisy Inputs (B, C and D, Respectively) and Clean
Inputs (A)

pooling layer is reduced to 1/2 or 1/4 by 1 × 2 pooling or 2 × 2
pooling, so the final Mean Squared Error will increase rapidly in
each pooling operation, which is calculated as the accumulated
squared error divided by the number of nodes in that layer.)
In contrast, in the CNN block the gap between the noisy and
clean features is reduced gradually. This further demonstrates
the embedded denoising process in the very deep CNNs, and
that additional convolutional layers are helpful. Moreover com-
paring within the curves B, C and D, the MSE in D is higher
than the other two, which means that D condition with both
additive noise and channel mismatch is more difficult to remove
the noise by the model. This observation is also consistent with
the final WER on the different testing conditions, as shown in
Table IV.

Finally, the MSE comparison between the noisy features and
the clean features is evaluated for different CNN models, with
results shown in Table VII. We use the final linear transformed
outputs before the softmax operation to calculate the MSE be-
tween the noisy conditions (B, C and D) and the clean condition
A for each different model. Results show that the MSE is grad-
ually reduced as the number of convolutional layers increased,
which supports the denoising ability of very deep CNNs. The
MSE results are also consistent with the final WER, with smaller

MSE values corresponding to an improved performance in noisy
scenarios.

V. EXPERIMENTS

The proposed very deep CNNs are evaluated on two most in-
teresting tasks for noise robust speech recognition: the Aurora4
task in which multiple noise types and channel mismatch exist,
and the AMI meeting transcription task in which reverberation
is the main concern.

A. Experimental Setup

The GMM-HMM systems are first built to generate the
senone alignments for later neural network training. In both
tasks, the GMM-HMM system is built with Kaldi [36] us-
ing the standard recipes. All neural network models, including
DNN/CNN/LSTM, are trained using CNTK [37], running on
one K20 GPU card. The first iteration is trained with a relatively
small learning rate and zero momentum. On the subsequent iter-
ations, the learning rate starts at 0.01 for DNN/CNN and 1.0 for
LSTM, with a momentum of 0.9. The learning rate halves when
validation loss stops decreasing. The standard testing pipelines
in the Kaldi recipes are used for decoding and scoring. For bet-
ter comparison, several baselines are constructed for both tasks,
including DNN, CNN and LSTM.

1) The baseline DNN and CNN systems use the 40-dim
FBANK features with Δ/ΔΔ and an 11-frame context
window. The baseline DNN consists of 6 hidden layers
of 2048 nodes. The baseline CNN utilizes the classical
CNN configuration as in [14], with 2 convolutional layers
each having 256 feature maps. The first layer has 9 × 9
filters and 1 × 3 pooling, and the second has 3 × 4 filters
without pooling. Four fully-connected hidden layers with
2048 nodes in each layer are added after the CNN block.
The final softmax layers of both DNN and CNN models
have the same number of senones as the HMM model,
and the minibatch is set to 256 in training.

2) The LSTM-RNN acoustic model has achieved great suc-
cess recently [34], [38], [39], with good performance on
several tasks. Accordingly, the LSTM-RNN is also used
for comparison in noisy scenarios. The baseline LSTM
system uses a single frame of 40-dim FBANK features
with a 5 frame shift as input, and the model has 3 LSTMP
[38] layers, where each LSTMP layer has 1024 memory
cells and 512 hidden nodes in the projection. The truncated
BPTT is utilized to train the LSTM model with the chunk
size set to 20 frames, and 40 utterances are processed in
parallel to form a mini-batch. To ensure the stability of
training, the gradient is clipped to the range of [−1, 1]
during the parameter update.

Most of the pipeline for very deep CNNs training is the same
as the baseline, and the detailed neural network configuration
and structural design are described in the previous sections. Re-
cently researchers from IBM and NYU have also developed a
very deep CNN structure for speech recognition [23], with good
results on telephone transcription similar to our previous work
[22]. For better comparison, the best model architecture recently
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TABLE VIII
WER (%) COMPARISON OF DIFFERENT MODELS ON AURORA4

Model A B C D AVG

DNN 4.17 7.46 7.19 16.57 11.11
CNN 4.11 7.00 6.33 16.09 10.64
LSTM 3.92 7.21 6.63 15.94 10.68
vd6 3.94 6.86 6.33 15.56 10.34
vd10 4.13 6.62 5.92 14.53 9.78
vd10-fpad 3.57 6.17 5.31 14.24 9.38
vd10-fpad-tpad 3.27 5.61 5.32 13.52 8.81
IBM-VGG 3.92 6.15 5.34 14.20 9.38

proposed in [23] is also constructed, with 10 convolutional lay-
ers and 3 input channels, 17 × 40 in each channel (Full details
can be found in [23]). This model is indicated as IBM-VGG in
this paper.

All neural networks developed in this work were trained using
cross-entropy criterion (CE) with stochastic gradient descent
(SGD) based backpropagation (BP) algorithm.

B. Evaluation on Aurora4

Aurora4 [24] is a medium vocabulary task based on the Wall
Street Journal (WSJ0) [33]. It contains 16 kHz speech data in the
presence of additive noise and linear convolutional distortion,
introduced synthetically to clean speech derived from the WSJ0
database. Two training sets were designed for this task: one is a
clean-condition training set consisting of 7138 utterances from
83 speakers recorded by the primary Sennheiser microphone,
the other is the multi-condition training set also comprising
7138 utterances, which is time-synchronized with the clean-
condition training set. Half of the multi-condition training set is
recorded on the primary Sennheiser microphone and the other
half is recorded on several different secondary microphones.
Both halves in the multi-condition training set include a com-
bination of clean speech and speech corrupted by one of six
different noises (street traffic, train station, car, babble, restau-
rant and airport) at 10–20 dB SNR.

The evaluation set is derived from the WSJ0 5K-word closed
vocabulary test set, which consists of 330 utterances from 8
speakers. This test set was recorded by the primary microphone
and one secondary microphone. Each of these two parts is then
corrupted by the same six noises used in the training set at
5-15 dB SNR, creating a total of 14 test sets. Notice that the
types of noise are common across the training and test sets but
SNRs of the data are not. These 14 test sets can then be grouped
into 4 subsets: clean, noisy, clean with channel distortion, and
noisy with channel distortion, which will be referred to as A, B,
C, and D, respectively.

The GMM-HMM system consists of 3K states trained using
maximum likelihood estimation with the MFCC-LDA-MLLT-
FMLLR features. After building the GMM-HMM, forced-
alignment is performed to get the senone labels using the syn-
chronized clean-condition training set. The task-standard WSJ0
bigram language model is used for decoding.

Results are summarized in Table VIII. The CNN baseline is
consistent with the previous published work in [40]. Ours is

∼ 0.3% better, perhaps due to using more tied-states, i.e. 3K
vs. 2K.

Both CNN and LSTM models get a large improvement over
the normal feed-forward DNN, and the shallow CNN is compet-
itive with the LSTM-RNN on this noisy task with additive noise
and channel mismatch, which shows the advantage of CNN in
the noisy scenario. Compared to the shallow CNN baseline, the
performance can be improved substantially by increasing the
number of convolutional layers, and appropriate padding and
pooling strategies are helpful in very deep CNNs. Our best con-
figuration achieves significant improvements on all subsets, and
also gets a better performance thanIBM-VGG. Some hypotheses
may explain the reasons that the proposed model vd10-fpad-
tpad is better than IBM-VGG. First, extended feature dimen-
sion with 64 FBanks in our architecture enables the model to
better encode frequency knowledge compared to the 40 FBanks
in IBM-VGG. Second, only a single input feature map is used
in our very deep CNNs, which is demonstrated more useful for
noise robust speech recognition based on our experiments, and
in contrast IBM-VGG utilizes 3 input channels including dy-
namic features. Third, in our architecture three 2 × 2 pooling
operations are applied at the top part of the model following
every two convolution operations. This design makes the sizes
in time and frequency of the feature maps more balanced, and
it is better for modeling, e.g. the map sizes are respectively
17 × 32, 17 × 16, 8 × 8, 4 × 4, 2 × 2 after each pooling op-
eration in the proposed vd10-fpad-tpad. In addition, this
design also results in a smaller neck size of the map size on the
top (2 × 2, the narrowed layer within the whole CNN block and
the first fully-connected layer), which can contribute to a more
compact model scale.

On Aurora4, the proposed best very deep CNN architecture
achieves a WER of 8.81%, which is a 17.0% relative improve-
ment over the LSTM-RNN. To our best knowledge this is also
the best published result on Aurora4 without model adapta-
tion, and even achieves similar performance to approaches using
adaptation [29], [41].

C. Evaluation on AMI

The AMI corpus contains around 100 hours of meetings
recorded in meeting rooms with specifically equipped instru-
ments at three locations in Europe (Edinburgh, IDIAP, TNO)
[5]. The acoustic signal was captured and synchronized with
multiple microphones including individual head microphones
(IHM, close-talk), lapel microphones, and one or more micro-
phone arrays. For the data recorded by microphone arrays, there
are two data sets, single distant microphone (SDM) and multiple
distant microphones (MDM), where SDM used data recorded by
one of the microphone array, and MDM was processed by a stan-
dard beamforming algorithm in the Kaldi recipe [42] to generate
a single channel data set. Considering that the beamforming al-
gorithm has been the standard front-end signal enhancement
for distant speech recognition using microphone array, in this
work, the beamformed MDM dataset is used for very deep
CNNs evaluation. The AMI corpus is partitioned into about 80
hours as training set, 9 hours as development set and 9 hours as
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TABLE IX
WER (%) COMPARISON OF THE PROPOSED VERY DEEP CNNS ON AMI MDM

CONDITION WITH DIFFERENT INPUT SIZES. F INDICATES THE SIZE OF THE

FREQUENCY AXIS AND T INDICATES THE SIZE OF THE TIME AXIS

Model T × F L dev eval

vd6 11 × 40 6 46.5 51.1
time-ext 17 × 40 8 45.5 50.1
freq-ext 11 × 64 10 45.7 50.7
vd10 17 × 64 10 44.8 49.3
full-ext 21 × 64 10 44.5 49.0

L Indicates the Number of Convolutional Layers
in the Model

TABLE X
WER (%) COMPARISON OF THE PROPOSED VERY DEEP CNNS ON AMI MDM

CONDITION WITH DIFFERENT POOLING AND PADDING STRATEGIES

Model # Pooling Padding dev eval

vd10 3 F – 45.7 50.5
vd10 1 F – 44.8 49.3
vd10-tpool 1 F & T – 45.0 49.6
vd10-fpad 1 F F 43.7 48.2
vd10-fpad-tpad 1 F & T F & T 42.5 46.9

F Indicates the Frequency Axis and T indicates the Time Axis. #
Indicates the Number of Input Channels

evaluation set (the development set and evaluation set for MDM
are referred as dev and eval respectively) as suggested in [17].
For decoding, the 50K-word AMI dictionary and a trigram lan-
guage model are used, which is interpolated between the one
created using the AMI training transcripts and the one using the
Fisher English corpus.

The officially released Kaldi recipe was followed to build
an MFCC-LDA-MLLT-SAT GMM-HMM model. This model
uses 39-dim MFCC features and has roughly 4K tiedstates and
80K Gaussians. We then use this acoustic model to generate the
senone alignment for neural network training.

The size of input features is also investigated for the very
deep CNNs in the reverberant scenario, with results shown in Ta-
ble IX. It is observed that extensions on both time and frequency
are helpful for accuracy, and the time-extension is slightly more
effective than that on frequency, as with in Aurora4. In addition,
the larger context can better encode temporal knowledge which
is especially useful for reverberation. The extended input fea-
tures enable us to construct the model with more convolutional
layers, giving a significant improvement.

As with Aurora4, the vd10 is used as the suitable trade-
off, and the effect of other designs, including pooling, padding,
and input channel are investigated and compared for distant
speech recognition. The results in Table X show that appropriate
pooling and padding strategies are also very critical for the
very deep CNNs in distant speech recognition: time pooling
without padding is not useful, and padding on features maps is
helpful for very deep CNNs. The best configuration with pooling
and padding on both time and frequency achieves another large
improvement based on vd10. Moreover, consistent with the
results for Aurora4, the dynamic input features add no more
contributions on the very deep CNNs in the reverberant scenario.

Fig. 10. Spectrogram comparison of the synchronized close-talk and distant
speech in AMI to show the influence of distant condition.

TABLE XI
WER (%) COMPARISON OF DIFFERENT MODELS ON AMI MDM CONDITION

Model dev eval

DNN 47.5 52.3
CNN 46.3 51.3
LSTM 42.9 46.6
vd10-fpad-tpad 42.5 46.9
IBM-VGG 42.9 47.4

To better explain the superiority of very deep CNNs on dis-
tant speech recognition, the related feature maps are illustrated
in Figs. 10–12. Fig. 10 shows the original input spectral feature
comparison of the synchronized close-talk feature and distant
corrupted feature. The spectral contamination from the rever-
beration is obvious, giving low SNR. Then one same single
synchronized frame is selected from the close-talk and distant
speech (one frame in the utterance shown in Fig. 10), and is prop-
agated through the proposed very deep CNN vd10-fpad-
tpad. The feature map outputs of the 1st convolutional layer
and 6th convolutional layer are visualized in Figs. 11 and 12.
Taking the feature maps from the close-talk speech as the clean
templates and doing the comparison from distant to close-talk,
the differences are still obvious after the 1st convolutional layer
processing, however, they are reduced significantly after the 6th
convolutional layer. The feature map outputs of the 6th convolu-
tional layer from the distant speech look similar to those from the
close-talk speech. This observation is consistent with that in Au-
rora4 with additive noise and channel mismatch, with the very
deep CNNs restraining the reverberation and de-reverberation
gradually across multiple convolutional layers, which makes it
more effective for distant speech recognition.

Finally the baseline systems and the new proposed very
deep CNN are summarized in Table XI on AMI distant speech
recognition, including IBM-VGG. Both CNN and LSTM are
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Fig. 11. Selected feature maps of the first convolutional layer using the synchronized frame from close-talk and distant conditions in AMI. (a) Close-Talk,
(b) Distant.

Fig. 12. Selected feature maps of the sixth convolutional layer using the synchronized frame from close-talk and distant conditions in AMI. (a) Close-Talk,
(b) Distant.

significantly better than DNN, and LSTM performs particularly
superior in this task, since long-time information encoded in
LSTM-RNN is especially useful for modelling reverberation.
Compared to the shallow CNN, the performance is improved
significantly by the proposed very deep CNN, achieving com-
petitive performance with the LSTM-RNN and better than the
IBM-VGG. On AMI distant speech recognition, the proposed
very deep CNN obtains a 10.0% relative WER reduction over a
traditional CNN.

VI. CONCLUSION

Inspired by recent work in image processing, we propose very
deep CNNs, which have more convolutional layers than tradi-
tional CNNs, for noise robust speech recognition. Compared to
the traditional CNN strcuture in speech recognition, the sizes
of filters and poolings are constrained to be small and the input
feature maps are made larger. This adjustment enables us to
increase the number of convolutional layers up to 10. Detailed
analysis on pooling, padding and input feature maps selection
are performed. Results show that time pooling without padding
is not useful, but that padding on both dimensions of feature
maps is effective for very deep CNNs. Compared to the tradi-
tional input feature channel usage with dynamic features, very
deep CNNs only using the static features are more effective for
noise robust speech recognition. The in-depth analysis of deep
CNNs reveals that they have the ability to perform de-noising or
de-reverberation gradually across multiple convolutional layers,
which is particularly useful for noise robust speech recognition.
In addition to superior performance, the proposed model has

other advantages, such as compact model size and faster train-
ing convergence speed.

The proposed new model is evaluated on two noisy tasks:
Aurora4 with additive noise and channel mismatch, and AMI
meeting transcription mainly with reverberation. The very deep
CNN obtains a 10.0% relative reduction over a traditional CNN
on AMI, with accuracy competitive to an LSTM-RNN acoustic
model. On Aurora4, it achieves a WER of 8.81%, which is
a 17.0% relative improvement over the LSTM-RNN. That is
a very promising system performance for noise robust speech
recognition.
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