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Abstract

Long-term traffic prediction is highly challenging due to the
complexity of traffic systems and the constantly changing na-
ture of many impacting factors. In this paper, we focus on the
spatio-temporal factors, and propose a graph multi-attention
network (GMAN) to predict traffic conditions for time steps
ahead at different locations on a road network graph. GMAN
adapts an encoder-decoder architecture, where both the en-
coder and the decoder consist of multiple spatio-temporal
attention blocks to model the impact of the spatio-temporal
factors on traffic conditions. The encoder encodes the input
traffic features and the decoder predicts the output sequence.
Between the encoder and the decoder, a transform attention
layer is applied to convert the encoded traffic features to gen-
erate the sequence representations of future time steps as
the input of the decoder. The transform attention mechanism
models the direct relationships between historical and future
time steps that helps to alleviate the error propagation prob-
lem among prediction time steps. Experimental results on two
real-world traffic prediction tasks (i.e., traffic volume predic-
tion and traffic speed prediction) demonstrate the superior-
ity of GMAN. In particular, in the 1 hour ahead prediction,
GMAN outperforms state-of-the-art methods by up to 4% im-
provement in MAE measure. The source code is available at
https://github.com/zhengchuanpan/GMAN.

Introduction
Traffic prediction aims to predict the future traffic conditions
(e.g., traffic volume or speed) in road networks based on
historical observations (e.g., recorded via sensors). It plays
a significant role in many real-world applications. For ex-
ample, the accurate traffic prediction can help transportation
agencies better control the traffic to reduce traffic conges-
tion (Lv et al. 2018; Zheng et al. 2019).

The traffic conditions at nearby locations are expected to
impact each other. To capture such spatial correlations, Con-
volutional neural networks (CNN) are widely used (Zhang,
Zheng, and Qi 2017; Yao et al. 2018; 2019). Meanwhile, The
traffic condition at a location is also correlated with its his-
torical observations. Recurrent neural networks (RNN) are
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Figure 1: Complex spatio-temporal correlations. (a) Sensors
in a road network. (b) Dynamic spatial correlations: sensors
1 and 2 are not always highly correlated, although they are
close in the road network; non-linear temporal correlations:
the traffic condition of sensor 3 at time step t + l + 1 may
be more correlated to that of distant time steps (e.g., t − 1)
rather than recent time steps (e.g., t+ l).

widely applied to model such temporal correlations (Ma et
al. 2015; Song, Kanasugi, and Shibasaki 2016).

Recent studies formulate the traffic prediction as a graph
modeling problem, since the traffic conditions are restricted
on road network graphs (Li et al. 2018b; Yu, Yin, and
Zhu 2018; Wu et al. 2019b). Using graph convolutional
networks (GCN) (Defferrard, Bresson, and Vandergheynst
2016), these studies achieve promising results for short-term
(5∼15 minutes ahead) traffic prediction. However, the long-
term (up to a few hours ahead (Hou and Li 2016)) traffic
prediction still lacks a satisfactory progress in the literature,
mainly due to the following challenges.
1) Complex spatio-temporal correlations.
• Dynamic spatial correlations. As shown in Figure 1, the

correlations of traffic conditions among sensors in a road
network change significantly over time (e.g., before and
during peak hours). How to dynamically select relevant
sensors’ data to predict a target sensor’s traffic conditions
in long-term horizon is a challenging issue.

• Non-linear temporal correlations. Also in Figure 1, the
traffic condition at a sensor may fluctuate tremendously
and suddenly (e.g., because of an accident), affecting the
correlations between different time steps. How to adap-
tively model the non-linear temporal correlations when
the time goes further into the future remains a challenge.
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2) Sensitivity to error propagation. In the long-term hori-
zon, small errors in each time step may amplify when pre-
dictions are made further into the future. Such error propa-
gations make predictions into far future highly challenging.

To address the aforementioned challenges, we propose a
Graph Multi-Attention Network (GMAN) to predict traffic
conditions on a road network graph over time steps ahead.
Here, the traffic conditions refer to observations over a traffic
system that can be reported in numeric values. For illustra-
tion purpose, we focus on traffic volume and traffic speed
predictions, although our model could be applied to predic-
tions of other numerical traffic data.

GMAN follows the encoder-decoder architecture, where
the encoder encodes the input traffic features and the de-
coder predicts the output sequence. A transform attention
layer is added between the encoder and the decoder to con-
vert the encoded historical traffic features to generate future
representations. Both the encoder and the decoder are com-
posed of a stack of ST-Attention blocks. Each ST-Attention
block is formed by a spatial attention mechanism to model
the dynamic spatial correlations, a temporal attention mech-
anism to model the non-linear temporal correlations, and a
gated fusion mechanism to adaptively fuse the spatial and
temporal representations. The transform attention mecha-
nism models direct relationships between historical and fu-
ture time steps to alleviate the effect of error propagation.
Experiments on two real-world datasets confirm that GMAN
achieves state-of-the-art performances.

The contributions of this work are summarized as follow:
• We propose spatial and temporal attention mechanisms to

model the dynamic spatial and non-linear temporal corre-
lations, respectively. Moreover, we design a gated fusion
to adaptively fuse the information extracted by spatial and
temporal attention mechanisms.

• We propose a transform attention mechanism to trans-
form the historical traffic features to future representa-
tions. This attention mechanism models direct relation-
ships between historical and future time steps to alleviate
the problem of error propagation.

• We evaluate our graph multi-attention network (GMAN)
on two real-world traffic datasets, and observe 4% im-
provement and superior fault-tolerance ability over state-
of-the-art baseline methods in 1 hour ahead prediction.

Related Work
Traffic Prediction Traffic prediction has been extensively
studied in past decades. Deep learning approaches (e.g.,
long short-term memory (LSTM) (Ma et al. 2015)) show
more superior performance in capturing temporal correla-
tions in traffic conditions, compared with traditional time-
series methods (e.g., auto-regressive integrated moving av-
erage (ARIMA) (Makridakis and Hibon 1997)) and machine
learning models (e.g., support vector regression (SVR) (Wu,
Ho, and Lee 2004), k-nearest neighbor (KNN) (Zheng and
Su 2014)). To model spatial correlations, researchers apply
convolutional neural networks (CNN) to capture the depen-
dencies in Euclidean space (Zhang, Zheng, and Qi 2017;
Yao et al. 2018; 2019). Recent studies formulate the traffic

prediction on graphs and employ graph convolutional net-
works (GCN) to model the non-Euclidean correlations in the
road network (Li et al. 2018b; Lv et al. 2018). These graph-
based models generate multiple steps ahead predictions via
a step-by-step approach and may suffer from error propaga-
tion between different prediction steps.

Deep Learning on Graphs Generalizing neural networks
to graph-structured data is an emerging topic (Bronstein et
al. 2017; Wu et al. 2019a). A line of studies generalize CNN
to model arbitrary graphs on spectral (Defferrard, Bresson,
and Vandergheynst 2016; Kipf and Welling 2017; Li et al.
2018a) or spatial (Atwood and Towsley 2016; Hamilton,
Ying, and Leskovec 2017; Chen, Ma, and Xiao 2018) per-
spective. Another line of studies focus on graph embedding,
which learns low-dimensional representations for vertices
that preserve the graph structure information (Grover and
Leskovec 2016; Cui et al. 2019). (Wu et al. 2019b) integrates
WaveNet (van den Oord et al. 2016) into GCN for spatio-
temporal modeling. As it learns static adjacency matrices,
this method faces difficulties in capturing dynamic spatial
correlations.

Attention Mechanism Attention mechanisms have been
widely applied to various domains due to their high effi-
ciency and flexibility in modeling dependencies (Vaswani
et al. 2017; Shen et al. 2018; Du et al. 2018). The core idea
of attention mechanisms is to adaptively focus on the most
relevant features according to the input data (Cheng et al.
2018). Recently, researchers apply attention mechanisms to
graph-structured data (Velikovi et al. 2018) to model spatial
correlations for graph classification. We extend the attention
mechanism to graph spatio-temporal data prediction.

Preliminaries
We denote a road network as a weighted directed graph
G = (V, E ,A). Here, V is a set of N = |V| vertices repre-
senting points (e.g., traffic sensors) on the road network; E is
a set of edges representing the connectivity among vertices;
and A ∈ RN×N is the weighted adjacency matrix, where
Avi,vj represents the proximity (measured by the road net-
work distance) between vertex vi and vj .

The traffic condition at time step t is represented as a
graph signal Xt ∈ RN×C on graph G, where C is the num-
ber of traffic conditions of interest (e.g., traffic volume, traf-
fic speed, etc.).

Problem Studied Given the observations at N vertices
of historical P time steps X = (Xt1 , Xt2 , ..., XtP ) ∈
RP×N×C , we aim to predict the traffic conditions of
the next Q time steps for all vertices, denoted as Ŷ =

(X̂tP+1
, X̂tP+2

, ..., X̂tP+Q
) ∈ RQ×N×C .

Graph Multi-Attention Network
Figure 2 illustrates the framework of our proposed graph
multi-attention network (GMAN), which has an encoder-
decoder structure. Both the encoder and the decoder contain
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Figure 2: The framework of Graph multi-attention network
(GMAN). (a) GMAN consists of a spatio-temporal embed-
ding (STE), an encoder and a decoder both with L ST-
Attention blocks (STAtt Block), a transform attention layer
(TransAtt), and two fully-connected layers (FCs). (b) The
spatio-temporal embedding contains a spatial embedding
and a temporal embedding. (c) The ST-Attention block com-
bines spatial and temporal attention mechanisms via gated
fusion.

L ST-Attention blocks (STAtt Block) with residual connec-
tions (He et al. 2016). Each ST-Attention block is composed
of spatial and temporal attention mechanisms with gated fu-
sion. Between the encoder and the decoder, a transform at-
tention layer is added to the network to convert the encoded
traffic features to the decoder. We also incorporate the graph
structure and time information into multi-attention mecha-
nisms through a spatio-temporal embedding (STE). In addi-
tion, to facilitate the residual connection, all layers produce
outputs of D dimensions. The modules are detailed next.

Spatio-Temporal Embedding
Since the evolution of traffic conditions is restricted by the
underlying road network (Lv et al. 2018), it is crucial to
incorporate the road network information into prediction
models. To this end, we propose a spatial embedding to
encode vertices into vectors that preserve the graph struc-
ture information. Specifically, we leverage the node2vec ap-
proach (Grover and Leskovec 2016) to learn the vertex rep-
resentations. In addition, to co-train the pre-learned vectors
with the whole model, these vectors are fed into a two-layer
fully-connected neural network. Then, we obtain the spatial
embedding, represented as eSvi ∈ RD, where vi ∈ V .

The spatial embedding only provides static representa-
tions, which could not represent the dynamic correlations
among traffic sensors in the road network. We thus further
propose a temporal embedding to encode each time step into
a vector. Specifically, let a day be with T time steps. We en-
code the day-of-week and time-of-day of each time step into
R7 and RT using one-hot coding, and concatenate them into

a vector RT+7. Next, we apply a two-layer fully-connected
neural network to transform the time feature to a vector RD.
In our model, we embed time features for both historical P
and future Q time steps, represented as eTtj ∈ RD, where
tj = t1, ..., tP , ..., tP+Q.

To obtain the time-variant vertex representations, we fuse
the aforementioned spatial embedding and temporal em-
bedding as spatio-temporal embedding (STE), as shown in
Figure 2(b). Specifically, for vertex vi at time step tj , the
STE is defined as evi,tj = eSvi + eTtj . Therefore, the STE
of N vertices in P + Q time steps is represented as E ∈
R(P+Q)×N×D. The STE contains both graph structure and
time information, and it will be used in spatial, temporal and
transform attention mechanisms.

ST-Attention Block
As shown in Figure 2(c), the ST-Attention block includes a
spatial attention, a temporal attention and a gated fusion. We
denote the input of the lth block asH(l−1), where the hidden
state of vertex vi at time step tj is represented as h(l−1)vi,tj . The
outputs of spatial and temporal attention mechanisms in the
lth block are represented asH(l)

S andH(l)
T , where the hidden

states of vertex vi at time step tj are denoted as hs(l)vi,tj and

ht
(l)
vi,tj , respectively. After the gated fusion, we obtain the

output of the lth block, represented as H(l).
For illustration purpose, we denote a non-linear transfor-

mation as:
f(x) = ReLU(xW + b), (1)

where W, b are learnable parameters, and ReLU (Nair and
Hinton 2010) is the activation function.

Spatial Attention The traffic condition of a road is af-
fected by other roads with different impacts. Such impact is
highly dynamic, changing over time. To model these prop-
erties, we design a spatial attention mechanism to adap-
tively capture the correlations between sensors in the road
network. The key idea is to dynamically assign different
weights to different vertices (e.g., sensors) at different time
steps, as shown in Figure 3. For vertex vi at time step tj , we
compute a weighted sum from all vertices:

hs
(l)
vi,tj =

∑
v∈V

αvi,v · h
(l−1)
v,tj , (2)

where V denotes a set of all vertices, αvi,v is the attention
score indicating the importance of vertex v to vi, and the
summation of attention scores equals to 1:

∑
v∈V αvi,v = 1.

At a certain time step, both the current traffic condi-
tions and the road network structure could affect the correla-
tions between sensors. For example, a congestion on a road
may significantly affect the traffic conditions of its adjacent
roads. Motivated by this intuition, we consider both traffic
features and the graph structure to learn the attention score.
Specifically, we concatenate the hidden state with the spatio-
temporal embedding, and adopt the scaled dot-product ap-
proach (Vaswani et al. 2017) to compute the relevance be-
tween vertex vi and v:

svi,v =
〈h(l−1)vi,tj ‖ evi,tj , h

(l−1)
v,tj ‖ ev,tj 〉√

2D
, (3)
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Figure 3: The spatial attention mechanism captures time-
variant pair-wise correlations between vertices.
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Figure 4: Group spatial attention computes both intra-group
and inter-group attention to model spatial correlations.

where ‖ represents the concatenation operation, 〈•, •〉 de-
notes the inner product operator, and 2D is the dimension of
h
(l−1)
vi,tj ‖ evi,tj . Then, svi,v is normalized via softmax as:

αvi,v =
exp(svi,v)∑

vr∈V exp(svi,vr )
. (4)

After the attention score αvi,v is obtained, the hidden state
can be updated through Equation 2.

To stabilize the learning process, we extend the spatial
attention mechanism to be multi-head ones (Vaswani et
al. 2017). Specifically, we concatenate K parallel attention
mechanisms with different learnable projections:

s(k)vi,v =
〈f (k)s,1 (h

(l−1)
vi,tj ‖ evi,tj ), f

(k)
s,2 (h

(l−1)
v,tj ‖ ev,tj )〉

√
d

, (5)

α(k)
vi,v =

exp(s
(k)
vi,v)∑

vr∈V exp(s
(k)
vi,vr )

, (6)

hs
(l)
vi,tj =‖Kk=1

{∑
v∈V

α(k)
vi,v · f

(k)
s,3 (h

(l−1)
v,tj )

}
, (7)

where f (k)s,1 (•), f (k)s,2 (•), and f (k)s,3 (•) represent three different
nonlinear projections (Equation 1) in the kth head attention,
producing d = D/K dimensional outputs.

When the number of vertices N is large, the time and
memory consumption is heavy as we need to compute N2

attention scores. To address this limitation, we further pro-
pose a group spatial attention, which contains intra-group
spatial attention and inter-group spatial attention, as shown
in Figure 4.
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Figure 5: The temporal attention mechanism models the
non-linear correlations between different time steps.

We randomly partition N vertices into G groups, where
each group contains M = N/G vertices (padding can be
applied if necessary). In each group, we compute the intra-
group attention to model the local spatial correlations among
vertices through Equations 5, 6 and 7, where the learnable
parameters are shared across groups. Then, we apply the
max-pooling approach in each group to obtain a single repre-
sentation for each group. Next, we compute the inter-group
spatial attention to model the correlations between different
groups, producing a global feature for each group. The local
feature is added to the corresponding global feature as the
final output.

In the group spatial attention, we need to computeGM2+
G2 = NM + (N/M)2 attention scores at each time step.
By letting the gradient to zero, we know when M =
3
√

2N , the number of attention scores reaches its minimum
2−1/3N4/3 � N2.

Temporal Attention The traffic condition at a location is
correlated with its previous observations, and the correla-
tions vary over time steps non-linearly. To model these prop-
erties, we design a temporal attention mechanism to adap-
tively model the non-linear correlations between different
time steps, as illustrated in Figure 5. Note that the tempo-
ral correlation is influenced by both the traffic conditions
and the corresponding time context. For example, a conges-
tion occurring in morning peak hours may affect the traffic
for a few hours. Thus, we consider both traffic features and
time to measure the relevance between different time steps.
Specifically, we concatenate the hidden state with the spatio-
temporal embedding, and adopt the multi-head approach to
compute the attention score. Formally, considering vertex vi,
the correlation between time step tj and t is defined as:

u
(k)
tj ,t =

〈f (k)t,1 (h
(l−1)
vi,tj ‖ evi,tj ), f

(k)
t,2 (h

(l−1)
vi,t ‖ evi,t)〉√

d
, (8)

β
(k)
tj ,t =

exp(u
(k)
tj ,t)∑

tr∈Ntj
exp(u

(k)
tj ,tr )

, (9)

where u(k)tj ,t denotes the relevance between time step tj and

t, β(k)
tj ,t is the attention score in kth head indicating the im-

portance of time step t to tj , f (k)t,1 (•) and f (k)t,2 (•) represent



3

1
2

3

1
2

3

1
2

3

1
2

... ... ...

Time

𝐻(𝑙−1)
 

𝑡𝑗  𝑡1  𝑡𝑃  𝑡 

𝐻(𝑙)
 

𝛾𝑡𝑗 ,𝑡1  𝛾𝑡𝑗 ,𝑡  𝛾𝑡𝑗 ,𝑡𝑃  

Figure 6: The transform attention mechanism models direct
relationships between historical and future time steps.

two different learnable transforms,Ntj denotes a set of time
steps before tj , i.e., only considers information from time
steps earlier than the target step to enable causality. Once
the attention score is obtained, the hidden state of vertex vi
at time step tj is updated as follows:

ht
(l)
vi,tj =‖Kk=1

{∑
t∈Ntj

β
(k)
tj ,t · f

(k)
t,3 (h

(l−1)
vi,t )

}
, (10)

where f (k)t,3 (•) represents a non-linear projection. The learn-
able parameters in Equations 8, 9 and 10 are shared across
all vertices and time steps with paralleled computing.

Gated Fusion The traffic condition of a road at a certain
time step is correlated with both its previous values and other
roads’ traffic conditions. As shown in Figure 2(c), we design
a gated fusion to adaptively fuse the spatial and temporal
representations. In the lth block, the outputs of the spatial
and temporal attention mechanisms are represented as H(l)

S

and H(l)
T , both have the shapes of RP×N×D in the encoder

or RQ×N×D in the decoder. H(l)
S and H(l)

T are fused as:

H(l) = z �H(l)
S + (1− z)�H(l)

T , (11)

with
z = σ(H

(l)
S Wz,1 +H

(l)
T Wz,2 + bz), (12)

where Wz,1 ∈ RD×D, Wz,2 ∈ RD×D and bz ∈ RD are
learnable parameters, � represents the element-wise prod-
uct, σ(•) denotes the sigmoid activation, z is the gate. The
gated fusion mechanism adaptively controls the flow of spa-
tial and temporal dependencies at each vertex and time step.

Transform Attention
To ease the error propagation effect between different pre-
diction time steps in the long time horizon, we add a trans-
form attention layer between the encoder and the decoder. It
models the direct relationship between each future time step
and every historical time step to convert the encoded traffic
features to generate future representations as the input of the
decoder. As shown in Figure 6, for vertex vi, the relevance
between the prediction time step tj (tj = tP+1, ..., tP+Q)
and the historical time step t (t = t1, ..., tP ) is measured via
the spatio-temporal embedding:

λ
(k)
tj ,t =

〈f (k)tr,1(evi,tj ), f
(k)
tr,2(evi,t)〉√

d
, (13)

(a) Xiamen (95 sensors) (b) PeMS (325 sensors)

Figure 7: Sensor distribution of Xiamen and PeMS datasets.

γ
(k)
tj ,t =

exp(λ
(k)
tj ,t)∑tP

tr=t1
exp(λ

(k)
tj ,tr )

. (14)

With the attention score γ(k)tj ,t, the encoded traffic feature is
transformed to the decoder by adaptively selecting relevant
features across all historical P time steps:

h
(l)
vi,tj =‖Kk=1

{∑tP

t=t1
γ
(k)
tj ,t · f

(k)
tr,3(h

(l−1)
vi,t )

}
. (15)

Equations 13, 14, and 15 can be computed in parallel across
all vertices and time steps, sharing the learnable parameters.

Encoder-Decoder
As shown in Figure 2(a), GMAN is an encoder-decoder
architecture. Before entering into the encoder, the histori-
cal observation X ∈ RP×N×C is transformed to H(0) ∈
RP×N×D using fully-connected layers. Then, H(0) is fed
into the encoder with L ST-Attention blocks, and produces
an output H(L) ∈ RP×N×D. Following the encoder, a
transform attention layer is added to convert the encoded
feature H(L) to generate the future sequence representa-
tion H(L+1) ∈ RQ×N×D. Next, the decoder stacks L ST-
Attention blocks upon H(L+1), and produces the output as
H(2L+1) ∈ RQ×N×D. Finally, the fully-connected layers
produce the Q time steps ahead prediction Ŷ ∈ RQ×N×C .

GMAN can be trained end-to-end via back-propagation
by minimizing the mean absolute error (MAE) between pre-
dicted values and ground truths:

L(Θ) =
1

Q

∑tP+Q

t=tP+1

∣∣∣Yt − Ŷt∣∣∣ , (16)

where Θ denotes all learnable parameters in GMAN.

Experiments
Datasets
We evaluate the performance of GMAN on two traffic pre-
diction tasks with different road network scales: (1) traf-
fic volume prediction on the Xiamen dataset (Wang et al.
2017), which contains 5 months of data recorded by 95 traf-
fic sensors ranging from August 1st, 2015 to December 31st,
2015 in Xiamen, China; (2) traffic speed prediction on the
PeMS dataset (Li et al. 2018b)), which contains 6 months
of data recorded by 325 traffic sensors ranging from January
1st, 2017 to June 30th, 2017 in the Bay Area. The distribu-
tions of sensors in two datasets are visualized in Figure 7.



Data Method 15 min 30 min 1 hour
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

X
ia

m
en

ARIMA 14.81 25.03 18.05% 18.83 33.09 22.19% 26.58 46.32 30.76%
SVR 13.05 21.47 16.46% 15.66 26.34 19.68% 20.69 35.86 26.24%
FNN 13.55 22.47 16.72% 16.80 28.71 19.97% 22.90 39.51 26.19%
FC-LSTM 12.51 20.79 16.08% 13.74 23.93 17.23% 16.02 29.57 19.33%
STGCN 11.76 19.94 14.93% 13.19 23.29 16.36% 15.83 29.40 18.66%
DCRNN 11.67 19.40 14.85% 12.76 22.20 15.99% 14.30 25.86 17.17%
Graph WaveNet 11.26 19.57 14.39% 12.06 21.61 15.39% 13.33 24.77 16.50%
GMAN 11.50 19.52 14.59% 12.02 21.42 15.14% 12.79 24.15 15.84%

Pe
M

S

ARIMA 1.62 3.30 3.50% 2.33 4.76 5.40% 3.38 6.50 8.30%
SVR 1.85 3.59 3.80% 2.48 5.18 5.50% 3.28 7.08 8.00%
FNN 2.20 4.42 5.19% 2.30 4.63 5.43% 2.46 4.98 5.89%
FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
Graph WaveNet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
GMAN 1.34 2.82 2.81% 1.62 3.72 3.63% 1.86 4.32 4.31%

Table 1: Performance comparison of different approaches for traffic prediction on Xiamen and PeMS datasets.

Data Preprocessing We adopt the same data preprocess-
ing procedures as in (Li et al. 2018b). In both datasets, a time
step denotes 5 minutes and the data is normalized via the Z-
Score method. We use 70% of the data for training, 10% for
validation, and 20% for testing. To construct the road net-
work graph, each traffic sensor is considered as a vertex and
we compute the pairwise road network distances between
sensors. Then, the adjacency matrix is defined as:

Avi,vj =

 exp(−
d2vi,vj
σ2

), if exp(−
d2vi,vj
σ2

) ≥ ε
0, otherwise

, (17)

where dvi,vj is the road network distance from sensor vi to
vj , σ is the standard deviation, and ε (assigned to 0.1) is the
threshold to control the sparsity of the adjacency matrix A.

Experimental Settings
Metrics We apply three widely used metrics to evaluate
the performance of our model, i.e., Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and Mean Ab-
solute Percentage Error (MAPE).

Hyperparameters Following the previous works (Li et al.
2018b; Wu et al. 2019b), we use P = 12 historical time
steps (1 hour) to predict the traffic conditions of the next
Q = 12 steps (1 hour). We train our model using Adam op-
timizer (Kingma and Ba 2015) with an initial learning rate
of 0.001. In the group spatial attention, we partition the ver-
tices into G = 19 groups in the Xiamen dataset and G = 37
groups in the PeMS dataset, respectively. The number of
traffic conditions on both datasets is C = 1. Totally, there
are 3 hyperparameters in our model, i.e., the number of ST-
Attention blocks L, the number of attention heads K, and
the dimensionality d of each attention head (the channel of

each layerD = K×d). We tune these parameters on the val-
idation set, and observe the best performance on the setting
L = 3, K = 8, and d = 8 (D = 64).

Baselines We compare GMAN with the following base-
line methods: (1) Auto-regressive integrated moving average
(ARIMA) (Makridakis and Hibon 1997); (2) Support vector
regression (SVR) (Wu, Ho, and Lee 2004); (3) Feedforward
neural network (FNN); (4) FC-LSTM (Sutskever, Vinyals,
and Le 2014), which is a sequence-to-sequence model
with fully-connected LSTM layers in both encoder and
decoder; (5) Spatio-temporal graph convolutional network
(STGCN) (Yu, Yin, and Zhu 2018) that combines graph
convolutional layers and convolutional sequence learning
layers; (6) Diffusion convolutional recurrent neural network
(DCRNN) (Li et al. 2018b) that integrates diffusion convo-
lution with sequence-to-sequence architecture; (7) Graph
WaveNet (Wu et al. 2019b) that combines graph convolu-
tion with dilated casual convolution.

For models ARIMA, SVR, FNN, and FC-LSTM, we use
the settings suggested by (Li et al. 2018b). For models
STGCN, DCRNN, and Graph WaveNet, we use the default
settings from their original proposals.

Experimental Results
Forecasting Performance Comparison Table 1 shows
the comparison of different methods for 15 minutes (3
steps), 30 minutes (6 steps), and 1 hour (12 steps) ahead
predictions on two datasets. We observe that: (1) deep learn-
ing approaches outperform traditional time series methods
and machine learning models, demonstrating the ability of
deep neural networks in modeling non-linear traffic data; (2)
among deep learning methods, graph-based models includ-
ing STGCN, DCRNN, Graph WaveNet, and GMAN gener-
ally perform better than FC-LSTM, indicating the road net-
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Figure 8: Fault-tolerance comparison.

work information is essential for traffic prediction; and (3)
GMAN achieves state-of-the-art prediction performances
and the advantages are more evident in the long-term hori-
zon (e.g., 1 hour ahead). We argue that the long-term traffic
prediction is more beneficial to practical applications, e.g.,
it allows transportation agencies to have more time to take
actions to optimize the traffic according to the prediction.

We also use the T-Test to test the significance of GMAN in
1 hour ahead prediction compared to Graph WaveNet. The
p-value is less than 0.01, which demonstrates that GMAN
statistically outperforms Graph WaveNet.

Fault Tolerance Comparison The real-time values of
traffic conditions may be missing partially, due to sensor
malfunction, packet losses during data transmission, etc. To
evaluate the fault-tolerance ability, we randomly drop a frac-
tion η (fault-ratio, ranging from 10% to 90%) of historical
observations (i.e., randomly replace η×N×P×C input val-
ues with zeros) to make 1 hour ahead predictions. As shown
in Figure 8, GMAN is more fault tolerant than state-of-the-
art methods. This shows that GMAN can capture the com-
plex spatio-temporal correlations from the “contaminated”
traffic data and adjust the dependencies from observations
to future time steps.

Effect of Each Component To investigate the effect of
each component in our model, we evaluate four variants
by removing spatial attention, temporal attention, gated fu-
sion, and transform attention from GMAN separately, which
are named as GMAN-NS, GMAN-NT, GMAN-NG, and
GMAN-NTr respectively. Figure 9 presents the MAE in
each prediction step of GMAN and the four variants. We
observe that GMAN consistently outperforms GMAN-NS,
GMAN-NT, and GMAN-NG, indicating the effectiveness
of spatial attention, temporal attention, and gated fusion in
modeling the complex spatio-temporal correlations. More-
over, GMAN performs better than GMAN-NTr, especially
in the long-term horizon, demonstrating that the transform
attention mechanism effectively eases the effect of error
propagation.

Computation Time We present the training time and in-
ference time of STGCN, DCRNN, Graph WaveNet, and
GMAN on the PeMS dataset in Table 2. During the train-
ing phase, GMAN has a similar speed with Graph WaveNet.
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Figure 9: MAE of each prediction step.

Method Computation Time
Training (s/epoch) Inference (s)

STGCN 51.35 94.56
DCRNN 650.64 110.52
Graph WaveNet 182.21 6.55
GMAN 217.62 9.34

Table 2: The computation time on the PeMS dataset.

DCRNN runs much slower than other methods due to the
time-consuming sequence learning in recurrent networks.
STGCN is the most efficient but shows poor prediction per-
formance (Table 1). In the inference phase, we report the to-
tal time cost on the validation data. STGCN and DCRNN is
less efficient as they need iterative computation to generate
the 12 prediction results. GMAN and Graph WaveNet could
produce 12 steps ahead predictions in one run and thus take
less time for inference.

In respect of the second best model Graph WaveNet as
suggested in Table 1, GMAN compares favorably to Graph
WaveNet in the long-term (e.g., 1 hour ahead) traffic pre-
dictions (Table 1) with similar computation costs for both
training and inference (Table 2).

Conclusion
We proposed a graph multi-attention network (GMAN) to
predict traffic conditions for time steps ahead on a road net-
work graph. Specifically, we proposed spatial and tempo-
ral attention mechanisms with gated fusion to model the
complex spatio-temporal correlations. We further designed
a transform attention mechanism to ease the effect of er-
ror propagation to improve the long-term prediction perfor-
mance. Experiments on two real-world datasets show that
GMAN achieves state-of-the-art results, and the advantages
are more evident as the predictions are made into far future.
In the future, we will apply GMAN to other spatio-temporal
prediction tasks, such as water consumption prediction.
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