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 

Abstract—Ultra-Thin-Barrier (UTB) AlGaN/GaN 

heterostructure is utilized for fabrication of normally-OFF GaN 

metal-insulator-semiconductor high-electron-mobility transistors 

(MIS-HEMTs). The sheet resistance of 2-D electron gas (2DEG) 

in the UTB Al0.22Ga0.78N(5-nm)/GaN heterostructure is effectively 

reduced by SiNx passivation grown by low-pressure chemical-

vapor-deposition (LPCVD), from 2570 to 334 Ω/□. The 

fabricated Al2O3/AlGaN/GaN MIS-HEMTs exhibit normally 

OFF behavior with good VTH uniformity and low VTH-hysteresis. 

20 mm-gate-width power devices featuring a low RON of 0.75 Ω 

(ID,MAX = 6.5 A) are also demonstrated on the platform. 

 
Index Terms—Normally-OFF, GaN MIS-HEMTs, ultra-thin-

barrier AlGaN/GaN heterostructure, LPCVD-SINx passivation. 

I. INTRODUCTION 

lGaN/GaN metal-insulator(oxide)-semiconductor high-

electron-mobility transistors (MIS/MOS-HEMTs) with 

partially or fully recessed gate, have emerged as promising 

candidates for next-generation normally-OFF power switching 

devices [1-6]. With polarization-induced high density and 

mobility 2-D electron gas (2DEG) at AlGaN/GaN hetero-

interface, lower on-resistance (RON) can be achieved compared 

with Si-based MOSFETs [7]. However, precise thickness 

control of the recessed AlGaN barrier, typically being etched 

down to less than 6 nm [8], is one of the most challenging 

steps toward high performance gate-recessed normally-OFF 

AlGaN/GaN MIS-HEMTs. Self-terminated recess process and 

structures, such as inserting an etch-stopping layer [3] and 

selectively oxidation of the AlGaN barrier layer [9, 10], are 
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highly desirable. A double-channel MOS-HEMT structure 

with good barrier-over-recess tolerance has also been 

developed recently [11].   

To overcome the controllability issue of gate recess, ultra-

thin-barrier (UTB) AlGaN/GaN heterostructures have also 

been proposed [12-13]. Natural normally-OFF operation can 

be realized, but the HEMTs/MIS-HEMTs suffer from high 

RON owing to the low 2DEG density in gate-source and gate-

drain access region. Passivation dielectrics like SiO2 and SiNx 

are able to restore the 2DEG to a comparable density as that in 

conventional AlGaN/GaN heterostructures, while their 

physical origin remains to be investigated. With UTB-

AlGaN/GaN heterostructures, the gate-recess etching of the 

AlGaN barrier is transferred to etching of the passivation layer 

using fluorine-based plasmas (if passivation is done first), and 

the AlGaN barrier can be a good etch-stopping layer.  

In this work, high VTH-uniformity, low RON normally-OFF 

GaN MIS-HEMTs are fabricated on an UTB-AlGaN/GaN 

heterostructure, with RON being effectively reduced by SiNx 

passivation grown by low-pressure chemical-vapor-deposition 

(LPCVD).   

II. DEVICE FABRICATION  

The schematic cross section of the fabricated normally-OFF 

Al2O3/AlGaN/GaN MIS-HEMTs is depicted in Fig. 1(a). The 

UTB-AlGaN/GaN heterostructure wafer used in this work was 

grown by metal organic chemical vapor deposition (MOCVD) 

on 4-inch Si substrate. The AlGaN barrier consists of a ~4-nm 

Al0.22Ga0.78N layer and ~1-nm AlN interface enhancement 

layer (IEL), as shown in Fig. 1(b). The as-grown wafer yields 

a 2DEG density of 2.7×10
12

 cm
-2

 and a sheet resistance of 
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Fig. 1. (a) Schematic device structure of normally-OFF Al2O3/AlGaN/GaN 

MIS-HEMTs fabricated on UTB AlGaN/GaN heterostructures. (b) TEM 

cross-sectional view of the device’s gate corner.  
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2570 Ω/□ (Table I). While after 80-nm LPCVD-SiN 

passivation, the 2DEG density is remarkably increased to 

9.5×10
12

 cm
-2

, and the sheet resistance is reduced to 334 Ω/□. 

The corresponding 2DEG mobility is increased from 869 to 

1980 cm
2
/V·s, which suggests a good AlGaN(AlN)/GaN 

interface with insignificant roughness scattering [14]. 

A net positive charges of 4.56×10
12 

cm
-2

 is confirmed to be 

present at the LPCVD-SiNx/III-nitride interface, as determined 

by capacitance-voltage (C-V) characterizations of 

Metal/LPCVD-SiNx/III-nitride MIS diodes with various SiNx 

thickness. If considering the negative polarization charges on 

AlGaN surface, the positive charges introduced by the 

LPCVD-SiNx passivation is about 3.26×10
13

 cm
-2

 [15-16]. 

Doping effect of Si source used in LPCVD may be responsible 

for such high induced positive charges, which brings down the 

surface potential of the ultra-thin AlGaN barrier from 1.35 to 

0.49 eV, as confirmed by the simulated energy band diagram 

shown in Fig. 2 [17]. The reduction of surface potential of 

AlGaN barrier by LPCVD-SiNx, contributes to an effectively 

enhanced 2DEG density in UTB AlGaN/GaN heterostructures 

(Fig. 2). 

Prior to the 80-nm LPCVD-SiNx passivation, the UTB-

AlGaN/GaN heterostructure wafer was first cleaned with 

standard RCA treatment. Then source-drain passivation was 

etched away by low power CHF3/SF6 plasmas in an 

inductively-coupled-plasma (ICP) system, followed by wet 

treatment of the exposed AlGaN barrier surface in a diluted 

HCl. Then a Ti/Al/Ni/Au ohmic metal stack was evaporated 

and annealed at 830 
o
C in N2 ambient after liftoff. After 

plenary isolation, the contact resistance is extracted to be 1.34 

Ω·mm, which could be reduced by additional pre-ohmic 

recess etching of the AlGaN barrier before metal evaporation 

[18]. The passivation layer in the gate region was also etched 

with the same F-based plasmas. After HCl/NH4OH wet 

cleaning of the etched surface, 30-nm Al2O3 gate dielectric 

was deposited by ALD with in-situ remote-plasma 

pretreatments (RPP), followed by post-dielectric annealing [5]. 

Ni/Au bilayer was finally evaporated as the gate electrodes. 

Fig. 1(b) shows the cross-sectional TEM of the fabricated gate. 

Slight etching of the AlGaN barrier (~1.5 nm) is observed. 

III. RESULTS AND DISCUSSION 

Fig. 3(a) shows the output characteristics of the fabricated 

MIS-HEMTs with LG/LGD of 2/10 μm. A maximum ID of 661 

mA/mm and RON of 9.0 Ω·mm are achieved at gate bias of +12 

V. VTH of the fabricated devices is extracted to be 0.27 V at VDS 

= 1 V, under a current criterion of ID = 1 μA/mm (Fig. 3(b)). 

Owing to the as-grown ultra-thin AlGaN barrier, intentional 

recess etching of the AlGaN barrier is eliminated, contributing 

to improved VTH controllability and uniformity. A small 

standard deviation of 0.15 V is achieved by sampling of 30 

devices across the whole wafer, as shown in the inset of Fig. 

3(b).  

Thanks to the RPP before ALD-Al2O3, the deep states at 

Al2O3/AlGaN interface are remarkably suppressed [5]. The 

clockwise VTH-hysteresis of the MIS-HEMTs decreases from 

0.28 to 0.11 V as the drain bias increases from 0.1 to 10 V, as 

shown in Fig. 3(c) and its inset. Such reduction may be caused 

by field-assisted detrapping at high VDS. Residual interface 

states and, plasma-induced lattice damage to the AlGaN barrier 

0 5 10 15 20

0

100

200

300

400

500

600

700 E-mode thin-barrier MIS-HEMTs

9.0 mm

L
G
/W

G
=2/50 m, L

SD
=15m, L

GD
=10 m

(a)

I D
 (

m
A

/m
m

)

V
DS

 (V)

V
GS

: 0 ~ 12 V, 2 V step

-2 0 2 4 6 8 10
1E-8

1E-6

1E-4

0.01

1

100

30 samples

(b)

I D
 (

m
A

/m
m

)

V
GS

 (V)

V
DS

 = 1 V

0.0 0.2 0.4 0.6
0

3

6

9

12

V
TH

 (V)

 

 

C
o

u
n

ts

V
TH

 = 0.27 0.15 V

 

-4 -2 0 2 4 6 8 10 12
1E-9

1E-7

1E-5

1E-3

0.1

10

1000

100000

-1.0 -0.5 0.0 0.5 1.0
1E-7

1E-5

1E-3

0.1
I
D

V
TH

@1A/mm

I
G

V
GS

 (V)

V
TH

I
G

(c)

I D
 &

 I
G
 (

m
A

/m
m

)
V

GS
 (V)

Double mode

 V
DS

=0.1V (V
TH

=0.28V)

 V
DS

=1V (V
TH

=0.16V)

 V
DS

=10V (V
TH

=0.11V)

 
Fig. 3. (a) dc I-V characteristics of the fabricated normally-OFF 

Al2O3/AlGaN/GaN MIS-HEMTs. (a) dc output characteristics. (b) dc transfer 
characteristics and threshold voltage uniformity measured at VDS = 1 V. (c) 

VTH-hysteresis characteristics in transfer measurements at various VDS. 

TABLE I Electrical properties of the 2DEG in UTB Al0.22Ga0.78N(5-

nm)/GaN heterostructure with 80-nm LPCVD-SiNx passivation 

 

80-nm LPCVD-SiN 
passivation 

2DEG Sheet 
resistance 

(Ω/□) 

2DEG sheet 
density 
(e/cm2) 

2DEG 
mobility 
(cm2/V·s) 

Before passivation (Hall) 2570 2.7×1012 869 
After passivation (Hall) 334 9.5×1012 1980 
After passivation (TLM) 325 --- --- 
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Fig. 2. Simulated conduction-band of the UTB Al0.22Ga0.78N/AlN(5-nm)/GaN 

heterostructure with and without LPCVD-SiN passivation. 
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during dry etching of LPCVD-SiNx, are the possible origins for 

the hysteresis that needs to be optimized. 

Assisted by the thick Al0.07Ga0.93N buffer, a high vertical 

breakdown voltage (VBD) of 695 V is also realized on the 

GaN-on-Si wafer (Fig. 4(a)). Using a leakage criterion of 1 

μA/mm, three-terminal VBD of the fabricated MIS-HEMTs 

(LGD = 10 μm), is measured to be 1089 V with substrate 

floating. It is source-to-drain leakage that triggers the 

breakdown (Fig. 4(b)). The corresponding VBD for devices 

with LGD = 5 μm is 617 V. 

Pulsed I-V measurements were used to characterize the 

current collapse in the fabricated normally-OFF MIS-HEMTs, 

as shown in Fig. 5(a). The pulse period and width used are 

10 μs and 200 ns, respectively. The dynamic RON is increased 

by about 10% at quiescent bias of (0, 60V), compared with the 

(0, 0) reference. It is probably due to interface traps caused by 

re-oxidation of the RCA-treated AlGaN barrier surface during 

transferring into the LPCVD chamber [19], or border/bulk 

traps in the LPCVD-SiNx passivation layer. With the 

improved VTH controllability, 20 mm-gate-width normally-

OFF AlGaN/GaN MIS-HEMTs, featuring a low RON of 0.75 Ω 

(ID,MAX = 6.5 A), are also demonstrated on the LPCVD-SiNx-

passivated UTB-AlGaN/GaN heterostructure (Fig. 5(b)). 

IV. CONCLUSION 

High performance normally-OFF Al2O3/AlGaN/GaN MIS-

HEMTs featuring good VTH-uniformity were fabricated on 

UTB-AlGaN/GaN heterostructure, adopting LPCVD-SiN 

passivation for efficient RON reduction. An 80-nm LPCVD-

SiNx passivation layer remarkably reduces 2DEG sheet 

resistance of an Al0.22Ga0.78N(5-nm)/GaN heterostructure from 

2570 to 334 Ω/□. 650V/0.75Ω normally-OFF power devices 

are successfully demonstrated on the UTB-AlGaN/GaN 

heterostructure, which is promising for fabrication of high-

yield normally-OFF GaN-based MIS-HEMTs.  
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Fig. 5. (a) Pulsed ID-VDS characteristics of the fabricated normally-OFF 

Al2O3/AlGaN/GaN MIS-HEMTs from various quiescent bias point (VGSQ, 
VDSQ). The pulse period and width are 10 μs and 200 ns respectively. (b) I-V 

characteristics of a fabricated 20-mm-gate-width devices.  
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Fig. 4. (a) Two-terminal vertical breakdown characteristics of the GaN-on-Si 

wafer. (b) Three-terminal breakdown characteristics of the fabricated 

normally-OFF Al2O3/AlGaN/GaN MIS-HEMTs.  
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