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Abstract

Optical coherence tomography (OCT)

angiography has drawn much attention in

the medical imaging field. Binarization

plays an important role in quantitative analysis of eye with optical coherence

tomography. To address the problem of few training samples and contrast-limited

scene, we proposed a new binarization framework with specific-patch SVM

(SPSVM) for low-intensity OCT image, which is open and classification-based

framework. This new framework contains two phases: training model and

binarization threshold. In the training phase, firstly, the patches of target and

background from few training samples are extracted as the ROI and the back-

ground, respectively. Then, PCA is conducted on all patches to reduce the dimen-

sion and learn the eigenvector subspace. Finally, the classification model is

trained from the features of patches to get the target value of different patches. In

the testing phase, the learned eigenvector subspace is conducted on the pixels of

each patch. The binarization threshold of patch is obtained with the learned

SVM model. We acquire a new OCT mice eye (OCT-ME) database, which is pub-

licly available at https://mip2019.github.io/spsvm. Extensive experiments were

performed to demonstrate the effectiveness of the proposed SPSVM framework.

KEYWORD S

binarization threshold, contrast-limited image, OCT mice eye database, optical coherence
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1 | INTRODUCTION

Optical coherence tomography angiography (OCTA) [1]
is a light-based and non-invasive imaging technique, and
can get image of tissue in vivo at micrometer resolutions.
OCTA has been widely used in medical diagnostics, such
as diabetic retinopathy (DR), multiple sclerosis (MS),
multiple sclerosis (MS), glaucoma and age-related macu-
lar degeneration (AMD) [2–4]. In practical researches, it
is critical to get high-quality OCTA images, which has
applications in clinical trials to monitor disease

progression. For example, vessel area density (VAD) is
the most widely used OCTA measurement, which uses
the binarized image to quantify the percentage of the
image occupied by ROI as a fraction of the whole image.

Plenty of studies have focused on the quantitative
analysis of retinal vascular and choriocapillaris OCTA
images in recent years [5–7]. Machine learning methods
have seen substantial growth in the processing of bio-
medical images, including the biomedical image recon-
struction, image denoising and disease classification [8–
10]. Binarization is a fundamental task in analysis of
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retinal image in vivo by optical coherence tomography
(OCT) [9, 11–16], which has been widely applied for sim-
ple quantification of area and more complex vessel ana-
lyses [17, 18].

The binarization methods can be divided into two cat-
egories: global threshold and local threshold. (1) Global
threshold-based methods are effective and simple, which
are suitable for the pixels with large difference, including
Otsu [19–22], Iterative binarization [23–25]; (2) the local
threshold methods can obtain the optimal threshold
for the subimage of samples, including Niblack [26, 27],
K-means [28, 29]. Although these algorithms are simple
and fast, they are sensitive to noise.

Recently, many deep-learning-based methods have been
presented for OCTA images and focused on the retinal ves-
sel segmentation. Specifically, the convolutional neural net-
works (CNNs) have achieved great success in biomedical
image processing [30]. Plenty of networks employ a UNet
architecture as the backbone and get good performance for
segmentation. UNet is based on an encoder-decoder archi-
tecture and utilizes the skip connections to extract effective
features. It can integrate the high-level semantic feature
maps from the decoder and corresponding low-level feature
maps from the encoder [31].

1.1 | Motivation

Inspired by literature [32], to observe the distribution of
the ROI and background, we select two areas of the tissue
and background respectively, and extract the pixel fea-
tures from them by patch in Figure 1A. As shown in
Figure 1B, one can observe that the feature distributions
of the ROI (marked in red) and the background (marked
in blue) are overlapped to some extent, which will be dif-
ficult to distinct them directly. For low-intensity or
uneven illumination images, the effective binarization-
thresholding methods are desirable for the complex

scene. Motivated by the above analysis, we intend to
design an approach, which can overcome the contrast-
limited problem and make full use of patch features for
few-shot learning.

1.2 | Contribution

The main contributions in this paper are 3-fold:

1. A novel binarization framework based on specific-
patch classification is proposed in this paper, which
can handle the low-intensity OCT image. With the
learned eigenvector subspace by PCA, we can get
the features of each patch from testing samples. With
the learned SVM model, the threshold of any patches
can be adaptively obtained. The specific-patch frame-
work can make full use of small number of samples
and extract many ROIs from each sample.

2. We capture an OCT mice eye (OCT-ME) database, which
has 50 images in total. Each image is 2048 � 2048 pixels.
Intensity of some tissues in most images is very low,
which will be difficult to binarization.

3. Comprehensive experiments are conducted on OCT-
ME database. The results demonstrate the effective-
ness of the proposed approach.

The remaining of this paper is organized as follows.
A proposed framework of binarization techniques is
described in Section 2. In Section 4, comprehensive
experiments are conducted. Finally, a conclusion of this
work is summarized in Section 4.

2 | PROPOSED METHOD

In this section, we first introduce the proposed method
specific-patch SVM. Then we describe the overview of

(A) (B)

FIGURE 1 The feature spatial

distribution of patches from the ROI and

background. (A) The representative

sample. (B) The illustration of pixels

distribution for the ROI and

background. Feature1 is from the first

dimension of each patch and feature2 is

from the second dimension of each

patch
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image preparation and feature extraction. Finally, we
detail the SVM based methods for binarization threshold.

2.1 | Binarization pipeline based on
specific-patch SVM

To get binarization threshold of the low-intensity eye
image in vivo by OCT, we propose a new framework spe-
cific-patch SVM based on classification, which can obtain
threshold for each patch by the way of machine learning.
The basic idea is shown in Figure 2. There exist two
phases in the framework.

1. In the training phase, we first select a few samples
as training set, which can include normal and very
low-intensity images. As shown in Figure 2A, we
select some typical patches as ROI to extract the fea-
tures by Gabor filters. The patches in red rectangle
are ROI and others in yellow rectangle are back-
ground. To get effective features, PCA is utilized to
get important vectors of all patches, and the feature
eigenvector subspace can be learned in Figure 2B.
SVM can learn a separating hyperplane from train-
ing data, which can distinct the pixels of ROI and
background.

2. In the testing phase, we first split all patches from the
testing sample in Figure 2D. The feature of each patch
can be got by the Gabor filter bank in Figure 2E. The
low-dimension features can be got with the learned
eigenvector subspace of PCA in Figure 2F. With the

learned SVM model from the trained samples, we can
obtain the binarization threshold of each patch for an
OCT image. The final binarization image of mice eye
is shown in Figure 2G.

2.2 | Image preparation

1. Specific-patch selection. In the novel framework, we
manually select the ROI and background from a few
training samples by specific patch are shown in
Figure 2A. The size of ROI(background) ranges from
[23 � 35] to [109 � 95] pixels. We select the low-
intensity areas of any tissue (such as corneal and iris)
as the ROI marked with 1 and the areas not belonged
to tissues as the background marked with �1. Then
we extract the Gabor features from the selected sub-
images by patch, whose size is 10 � 10 pixels. The
procedure of specific-patch selection is shown in Fig-
ure 3. We select very low-intensity and normal areas
at the ROI from the training samples respectively.

2. Gabor extraction. The effective feature can be
extracted from samples with rich texture by Gabor fil-
ters bank [33], which has been widely used for classifi-
cation and recognition [34–36]. We analyze the ROI
areas from the OCT samples in Figure 4. We select the
ROI from the original sample as Figure 4A. The pixel
distribution is shown in Figure 4B. One can see that
there exists very rich texture in the ROI area.
Figure 4C shows that the Gabor features of the

FIGURE 2 The flowchart of our proposed method specific-patch SVM. (A) The selected ROI and background with red and yellow

rectangle respectively; (B) The spatial distribution of ROI and background, and the learned eigenvector subspace by PCA; (C) Training the

classification model by SVM; (D) The testing images with patches; (E) Features extracted by Gabor filter bank; (F) The feature of patches

with the learned eigenvector subspace; (G) The binarization image by the trained SVM model
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selected areas are extracted by Gabor filter bank,
which can be calculated as follows:

G x,y,θ,μ,σð Þ¼ 1
2πσ2

exp �x2þ y2

2σ2

� �
exp zf g, ð1Þ

z¼ 2πi μxcosθþμysinθð Þ, ð2Þ

where σ represents the standard deviation of the
Gaussian envelope. i¼ ffiffiffiffiffiffiffi�1

p
. θ denotes the orientation of

Gabor filters, and μ is the frequency of the sinusoidal
wave. As shown in Figure 4C, we extract the orientation
and scale features from patches of samples by controlling
θ and σ in the Gabor filter bank, respectively. The dimen-
sion of Gabor features is high. For example, the Gabor
feature dimension of 10 � 10 patch at 6 orientations and
4 scales achieves 2400 in Figure 4C. Therefore, we can
get the principal component of features by the algorithm
of dimension reduction.

3. Dimension reduction. As above analysis, the dimen-
sions of original feature directly extracted from

samples are often high. Principal components analysis
(PCA) is a wide and effective method for reducing
dimension and learning eigenvector subspace, which
can improve the performance of algorithm. The basic
idea of PCA is to learn an eigenvector subspace and
map the high-dimension features to the low-dimen-
sion features. There exist principal components in the
high-dimension features, which can improve the
effectiveness of the original features. With the learned
eigenvector subspace, we can get effective representa-
tion of tested samples. We abstract the calculating
procedure of PCA as the following function:

Sproj ¼FPCA Xð Þ, ð3Þ

where Sproj represents the projection subspace from the
training set. FPCA �ð Þ is the function for calculating proce-
dure of PCA. X denotes the covariance matrix of the
training samples. The low-dimension feature xf can be
obtained by STproj �x. And x is the Gabor features of the
training (or testing) sample.

FIGURE 3 The procedure of specific-patch selection. We select the ROI (in red rectangle) and background (in orange rectangle) areas

from samples respectively. The patches of the ROI and background are marked as +1 and �1, respectively

(A) (B) (C)

FIGURE 4 The distribution of specific ROI and Gabor features. (A) Selecting the ROI from sample; (B) The pixel distribution of ROI;

(C) The Gabor filter bank at 6 orientations and 4 scales; (D) The patch feature of specific ROI with the Gabor filter bank
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2.3 | Training SVM Model

SVM (support vector machine) has been widely used for
pattern recognition [37–39] and classification [40–42].
The basic idea is to project the input vectors into a new
feature space, which can obtain a separating hyperplane
from the training samples.

Given a training set D¼ x1,y1ð Þ, x2,y2ð Þ,…, xn,ynð Þf g,
yi∈ �1,þ1f g, for our training model, xi is the ith
feature of patch. yi is the label of the ith patch, which is
written as yi ¼WTxiþb, where W ¼ w1;w2;…;wdð Þ is the
normal vector, which decides the direction of hyperplane.
b is the displacement value, which presents the distance
between the hyperplane and the coordinate origin. The

separating hyperplane can identify the features as the
corresponding classes.

The goal related to (W , b) can be written as follows:

min
W ,b

1
2

Wk k2

s:t: yi W
Txiþb

� �
≥ 1, i¼ 1,2,…,nð Þ:

ð4Þ

We will get the optimal separating hyperplane from
the training set to classify the background and fore-
ground by Eq. (5).

WT �xiþb> ¼ 1, yi ¼ 1;

WT �xiþb< ¼�1, yi ¼�1:

(
ð5Þ

If yi ¼ 1, it means that this patch (xi) is classified as
the ROI; otherwise, the current patch (xi) is classified as
the background. The optimal solutions of W and b can be
obtained by using the algorithm in literature [43]. Our
framework includes the training and testing phase. We
conclude the procedure of our framework as Algorithm 1.

3 | EXPERIMENTS

3.1 | Experimental setup

3.1.1 | Materials

We capture the database of mouse eyes by the custom-
ized spectral-domain optical coherence tomography (SD-
OCT) system in Figure 5. A total of 50 images taken from
mice in vivo are recorded by OCT. The size of each image
is 2048 � 2048 pixels. The eye of mouse generally con-
tains four tissues, such as retina, lens, iris and cornea. As
shown in Figure 6A, one can see that the background
(in yellow rectangle) and foreground (in red rectangle) of
some tissues are low intensity. This dataset has been
released publicly.* The ground-truth samples were manu-
ally made by our experts in Figure 6B, which are aided
with our self-developed software. This software is a spe-
cialized tool to make the ground truth from original sam-
ples under complex scene. Our latest tool (named as
MakeGT1.3) for ground truth is developed in C# under .
netframework2.0. We can update it according to new
requirements, which can be download at URL (see foot-
note 1). In practice, our tool can provide several types of
service for making ground truth in Figure 7, such as cell
segmentation, the connected region of tissues, vascular
segmentation and so on. The final ground-truth samples
should be advised by experts.

ALGORITHM 1 The procedure of our
proposed framework

Input: The original OCT image.
Output: The binarized image.
1. Training Phase
(1) Labeling the training samples. We con-

struct the training set by marking the ROI as 1
and the background as �1 in Figure 3.

(2) Extracting the Gabor Features. The
Gabor features of specific patches are extracted
by Gabor filter bank Eq. (1);

(3) Learning subspace. The projection sub-
space Sproj can be obtained by Eq. (3) from the
Gabor features.

(4) Training SVM. SVM is used to classify
the ROI and background. The optimizing proce-
dure can be obtained by Formula (4).

2. Testing Phase
(1) Partitioning the patches. We partition

the whole image by patch with 10 � 10 pixels as
shown in Figure 2D.

(2) Extracting the Gabor Features. The
Gabor feature of each patch can be obtained
by Eq. (1).

(3) Reducing Dimension. The low-
dimension features can be calculated by the
eigenvector subspace Sproj, which is learned
by Eq. (3).

(4) Thresholding image. With the learned
SVM model from the trained samples, we can
classify each patch of the testing OCT image.
With the mathematical morphology, the output
image is dilated and eroded. The final binarized
image is shown in Figure 2G.
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3.1.2 | Evaluation setting

To assess the binarization thresholding performance of the
proposed method, we adopt the evaluation metrics as follows:
F1-score [44], dice coefficient, sensitivity and specificity [45].

We select 5 images for the training set and 45 images
for the testing set randomly. According to the contrast
curve of the testing images, one sample is selected for
every nine samples in Figure 8.

3.2 | F1-score

F1-score is also called as F-measure. F1-score is the
weighted harmonic average of precision and recall [44].
It is a common evaluation standard and often used to
evaluate the quality of classification models. The F1-score
can be computed as follows:

Fβ ¼
β2þ1
� �

P �R
β2 �PþR

, ð6Þ

where P is the precision and R denotes recall. β is a tun-
ing parameter. P(precision) = TP/(TP+FP), where TP
notes the number of correctly classified pixels of ROI. FP
is the number of false positives. R(Recall) = TP/(TP
+FN), where FN is false negative. When β¼ 1, it is the
most common F1-score. F1-score can provide an evalua-
tion with precision and recall. The higher F1-score is, the
more effective the model is.

The quantitative comparisons of F1-score, precision
and recall are shown in Table 1. One can observe that
our approach achieves the highest F1-score values on the
testing samples. The R values of ours are over 70%. It
means that our approach can recognize more areas of
ROI than the competitive methods, that is, the highest
rate of true positive of ROI. Furthermore, we extract the
edge of ROI from the ground truth and cover the results
of the representative method and SPSVM with it in Fig-
ure 9. One can observe that our method can correctly
detect more pixels of ROI (inside the red edge of the gro-
und truth) than the other method (in Figure 9E). How-
ever, our method identifies many false positive pixels by

FIGURE 5 Schematic diagram of SD-OCT system. The super luminescent diode (SLD) is centered at 840 nm and the full width at half

maximum of 50 nm

(A) (B)

FIGURE 6 The structure of mouse

eye. It contains several tissues in the

eyes, such as retina, lens, iris and

cornea. (A) The original sample of

mouse eye. The area in yellow rectangle

is background and one in red rectangle

is ROI; (B) The corresponding ground-

truth image
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red arrows in Figure 9F, which belong to the back-
ground in fact. The reason is that our method classifies
the pixels in boundary area as ROI. This suggests that
more effective features are learned to identify the ROI
correctly.

3.3 | Further performance comparison

To achieve further and objective evaluation of the perfor-
mance of the proposed method, we utilize the evaluation
metrics [45] as follows:

(A)

(B)

(C)
FIGURE 8 The contrast of the

testing samples in ascending order

0 5 10 15 20 25 30 35 40 45

Sample Index

0

20

40

60

80

100

120

140

C
on

tra
st

 V
al

ue

FIGURE 7 The illustration of our

tool for making ground truth. In each

row the left is the original image with

MakeGT and the right is the partial

results by our tool. (A) The ground truth

of eye tissues by MakeGT; (B) The cell

segmentation by MakeGT; (C) The

vascular segmentation by MakeGT
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TABLE 1 F1-score (precision/recall)(%) of different algorithms on the selected testing images

Image Iteration Otsu K-means Ours

#1 39.79(64.18/28.83) 35.18(64.36/24.21) 23.82(60.72/14.82) 68.22(57.93/82.94)

#2 58.53(66.83/52.06) 50.64(72.74/38.84) 56.71(68.89/48.17) 60.37(48.72/79.35)

#3 51.16(66.14/41.72) 39.15(64.99/28.01) 46.61(63.31/36.89) 60.27(47.71/81.81)

#4 52.31(68.09/42.47) 46.31(70.06/34.57) 54.23(67.22/45.45) 65.07(52.89/85.64)

#5 57.68(60.92/54.76) 46.51(64.44/36.37) 48.69(63.01/39.67) 58.63(43.95/88.03)

Avg. 51.89(65.23/43.97) 43.55(67.32/32.41) 46.01(64.63/37.01) 62.55(50.24/83.46)

Note: Best results are in bold.

(A)

(B)

(C)

(D)

(E)

(F)

FIGURE 9 The detail of identified

ROI. (A) The partial ROI of ground

truth. (B) The edge of ROI. (C) and

(D) The result of OTSU and ours are

covered by the edge (in red color) of the

ground truth, respectively. (E) The detail

of (C). (F) The detail of (D)

(A) (B) (C) (D) (E) (F)

FIGURE 10 The original samples, the ground truth and the results of different methods. (A) the original samples; (B) the ground-truth

samples. (C–E): The results by the Iteration, Otsu and K-means methods. (F) The results by specific-patch SVM. One can see that the

brightness of the original samples is low. The ROI areas of tissues are remained in the ground-truth samples
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• Sensitivity = TP/(TP + FN);
• Specificity = TN/(TN + FP);
• Dice coefficient = 2 � TP/(FP + FN + 2 � TP), where

TN is the number of true negative pixels, and FN is
false negative.

As shown in Figure 10, we show five testing examples
of segmentation results for comparison. In Table 2, we
report quantitative evaluation results of the comparative
methods using the sensitivity, specificity and dice coeffi-
cient. Our method has achieved the highest rate of sensi-
tivity among the comparative methods. It achieves
83.46% sensitivity, and 62.55% dice coefficient. This
means that our method can correctly identify most pixels
of ROIs in Figure 10F. As shown in Figure 10C–E, the
other methods cannot detect many pixels of ROIs. The
specificity of our method is 93.77%, which is the lowest
among all methods. It means that our method identifies
many pixels of the background or noise areas as the ROI.

3.4 | Detail analysis

Figure 11 shows the local-area results of the proposed
method and the competitive methods. Figure 11A is the

detail of the original image. The intensity of some tissues
is low. Figure 11B shows the ground truth of the original
sample. One can see that our method achieves relatively
high performance in the low-intensity areas. The compet-
itive methods get low performance. The reasons are as
follows: (a) The areas of tissues are far less than the back-
ground areas, which will result in the imbalanced ratio
between the ROI and background. For the global thresh-
old methods, such as Otsu [19, 22], they cannot exactly
count the numbers of ROI and background respectively.
(b) The pixels intensity of some tissues is very close to the
background. The fixed threshold methods can obtain the
threshold of the entire image. However, they cannot
adaptively calculate these low-intensity areas.

TABLE 2 The results of different methods on the OCT-ME

database

Methods Sensitivity Specificity Dice coefficient

Iteration 43.97 98.23 51.89

Otsu 32.41 98.84 43.55

K-means 34.65 98.65 42.39

Ours 83.46 93.77 62.55

Note: Best results are in bold.
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FIGURE 11 The details of the original sample, the ground truth and the results with different methods. (A) The original sample; (B)

the ground-truth image. (C–E) The results by the Iteration, Otsu and K-means methods. (F) The result by our specific-patch SVM

TABLE 3 Three metric rate (%) of different PCA numbers

PCA Number Sensitivity Specificity
Dice
Coefficient

4 93.49 91.94 62.41

6 90.61 92.74 63.31

8 89.31 93.31 64.36

10 85.64 94.15 65.07

12 86.13 93.98 64.91

14 88.43 93.47 64.44

16 85.28 94.13 64.95

18 93.61 91.32 60.81

20 92.41 92.49 63.46

22 92.22 92.41 63.14

24 92.41 92.23 62.71

26 94.37 90.97 60.25

28 85.74 93.96 64.63

30 90.49 92.68 63.09

Note: Best results are in bold.
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K-means can learn the different clusters for local
areas by setting K as different values. However, the
binarized image only includes two types of pixels, that is,
white pixels and black pixels. When K = C (C means the
number of clusters), we classify the pixels in cluster with
K ≥ C as the white pixels (ROI) while the pixels in cluster
with K < C belong to the background. In this work,
K = 3. As shown in Figure 11E, only a few pixels of ROI
are caught with K-means. As shown in Figures 11F and
10F, most pixels of tissues can be caught by our specific-
patch SVM.

3.5 | Effect on feature dimension

In our framework, there exist several hyper parameters,
such as, the number of PCA, the patch size and morphol-
ogy parameters. In this section, we analyze the dimen-
sions of features. In this work, PCA is conducted on the
reduction dimension of features. The number of PCA
ranges from 4 to 30 while fixing the other parameters.
The quantitative results on the PCA number are summa-
rized in Table 3 and Figure 12A. One can see that the
sensitivity achieves 94.37% when the number of PCA is
26. The specificity and dice coefficient achieves 94.15%
and 65.07% respectively when the number of PCA is 10.
In this work, we select the number of PCA as 10.

3.6 | Effect on patch size

For few-shot scene, we extract patches from few training
samples and label every patch as the background or ROI.
In this section, the patch sizes range from 4 � 4 (pixels)
to 20 � 20 (pixels) while the other parameters are fixed.
The Gabor filters cannot work when the size is less than
4 � 4 pixels. Some details of organs will be lost when the
size is bigger than 20 � 20 pixels. The quantitative results
on the patch sizes are shown in Table 4 and Figure 12B.
When the patch size is 18 � 18 pixels, the sensitivity

FIGURE 12 The rate curves of

three metrics with PCA numbers and

patch sizes

TABLE 4 The rate (%) of different patch sizes

Patch Size Sensitivity Specificity Dice coefficient

4 � 4 87.25 92.37 60.66

6 � 6 85.38 92.99 61.51

8 � 8 82.63 93.51 61.64

10 � 10 85.64 94.15 65.07

12 � 12 78.31 94.11 61.48

14 � 14 80.78 93.66 61.13

16 � 16 78.12 94.01 61.38

18 � 18 89.57 91.93 62.55

20 � 20 86.01 92.78 61.21

Note: Best results are in bold.
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achieves 89.57%. When the patch size is 10 � 10 pixels,
the specificity and dice coefficient achieve the highest.
Therefore, we select the patch size as 10 � 10 pixels.

3.7 | Morphology analysis

There usually exist some disconnected region and noises
in the output image generated by the trained model. Dila-
tion/erosion is a morphological transformation operator
used to increase/decrease the size of the ROI in an image.

To dilate/erode an image, we define a kernel matrix
which is made of ones and slide the kernel through the
image. The image size of OCT-ME achieves 2048 � 2048
pixels. Therefore, the sizes of dilation/erosion are also
big. In Table 5, the dice coefficient achieves the highest
when the kernels of dilation and erosion are around
30 and 25, respectively. When the kernel sizes of dilation
and erosion are equal, there will be more disconnected
regions. In the experiments, the kernel sizes of erosion
are usually smaller than those of dilation.

3.8 | Performance on the skin database

To further validate the performance of our model, we
select one representative database skin cancer, which is
taken from the Kaggle competition in 2017 [46, 47]. This
database contains 2000 samples in total. It consists of 1250
training samples, 150 validation samples, and 600 testing
samples. The size of each sample is 700 � 900 pixels. The
results of different methods are shown in Table 6 and Fig-
ure 13. One can see that the sensitivity, specificity and dice
coefficient of our model achieve 92.14%, 96.61% and 75.71%
respectively. The specificity of ours is better than others.
With lots of samples, the deep-learning methods, that is,
UNet and R2U-Net, obtain better performance.

3.9 | Deep-learning model analysis

Recently, plenty of deep-learning methods have been pres-
ented for image processing and machine vision. Our
framework can utilize many kinds of features. In this sec-
tion, we will utilize the deep-learning features to train the
SPSVM model. As shown in Figure 14, we embed the fully
connected neural (FCN) network into our framework. The
parameters of FCN are shown in Table 7. We extract the
patches by the way of specific-patch selection in Figure 3.
The input layer contains 10 � 10 pixels, which is fed into
the network. The final layer contains two outputs, which
represents the ROI and background. To make the network
converge faster, the common standard cross-entropy loss
function is used to be identity loss.

For the hyperparameters, we empirically set the
learning rate to 0.001 and the epochs to 200. In the train-
ing phase, we design a fully connected neural network to
extract deep-learning feature of specific patches. Deep
features are reduced by PCA. Finally, SVM is trained
with the deep-learning features. In the testing phase,
firstly, deep-learning features of testing samples are
extracted by the trained network FCN, and then reduced
by PCA. Finally, the binarization image by the trained
SVM model.

TABLE 5 The dice coefficient rate (%) of different sizes of

morphology operator

Dilation Erosion Dice coefficient

20 10 56.56

20 15 62.13

30 10 49.29

30 15 54.24

30 20 59.37

30 25 63.42

40 10 43.71

40 15 47.77

40 20 52.21

40 25 56.95

40 30 60.95

40 35 62.58

50 10 39.28

50 15 42.61

50 20 46.33

50 25 50.39

50 30 54.79

50 35 58.78

50 40 60.92

50 45 60.97

Note: Best results are in bold.

TABLE 6 The results of different methods on the skin database

Methods Sensitivity Specificity Dice coefficient

Iteration 69.35 88.68 63.53

Otsu 66.73 88.91 63.61

K-means 57.82 86.61 37.83

UNet 94.79 92.63 84.76

R2U-Net 94.14 93.13 86.08

Ours 92.14 96.61 75.71

Note: Best results are in bold.
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3.10 | Performance comparison

To achieve further evaluation of the comparative
methods, we utilize the representative evaluation metrics
and the popular method UNet.† The results of different

methods on the OCT-ME database are shown in Table 8.
UNet-num notes the model trained by the given number
of samples, that is, “UNet-5” means that we train the
UNet with five samples. We can see that the sensitivity of
our framework with deep-learning features achieves the

(A)

(B)

(C)

(D)

(E)

(F)

FIGURE 13 The results demonstrate the qualitative assessment of the proposed SPSVM for skin cancer segmentation task. From left to

right: the input skin samples, the ground truth, the results of segmentation
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highest. The specificity and dice coefficient of ours are
lower than UNet. Three metrics of ours are higher than
FCN. It shows that our framework embedding deep-
learning features is effective.

4 | CONCLUSIONS

In this paper, we have proposed a novel binarization frame-
work based on specific-patch classification to address the
low-intensity OCT image. Specifically, we can extract the
features of each patch from testing samples with the
learned eigenvector subspace by PCA. We can extract
plenty of patches to train the specific-patch SVM model,
which can get the adaptive threshold values for the ROI
and background. The novel specific-patch framework can
provide the new mode to the binarization work in future. It
will be suitable for OCT image segmentation and statistics.

We carefully capture an OCT mice eye (OCT-ME) data-
base. Every image is low-intensity. We conduct comprehen-
sive experiments on OCT-ME database. The experimental
results demonstrate the effectiveness of the proposed
approach.
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ENDNOTES

* https://mip2019.github.io/spsvm.
† https://github.com/Andy-zhujunwen/UNet-ZOO.

FIGURE 14 The flowchart of our

specific-patch SVM with deep-learning

features. There include the training

phase and testing phase

TABLE 7 The architecture of FCN and the parameters for the

full connected layers

Layers Parameters

Input 100

Full connected layer 1 900

Full connected layer 2 600

Full connected layer 3 300

Full connected layer 4 100

Output(softmax) 2

TABLE 8 The results of different methods on the OCT-ME

database

Methods Sensitivity Specificity
Dice
coefficient

Iteration 43.97 98.23 51.89

Otsu 32.41 98.84 43.55

K-means 34.65 98.65 42.39

UNet-5 92.25 97.94 83.69

UNet-10 88.17 98.06 82.17

UNet-20 89.09 98.35 84.61

UNet-30 91.47 98.14 84.47

UNet-45 92.93 97.64 82.58

FCN 91.84 90.96 69.30

Ours+DeepFea 92.96 94.74 71.28

Note: Best results are in bold.
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