
Under review as a conference paper at ICLR 2018

FEDERATED LEARNING: STRATEGIES FOR IMPROVING
COMMUNICATION EFFICIENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning is a machine learning setting where the goal is to train a high-
quality centralized model while training data remains distributed over a large num-
ber of clients each with unreliable and relatively slow network connections. We
consider learning algorithms for this setting where on each round, each client in-
dependently computes an update to the current model based on its local data, and
communicates this update to a central server, where the client-side updates are
aggregated to compute a new global model. The typical clients in this setting are
mobile phones, and communication efficiency is of the utmost importance.
In this paper, we propose two ways to reduce the uplink communication costs:
structured updates, where we directly learn an update from a restricted space
parametrized using a smaller number of variables, e.g. either low-rank or a random
mask; and sketched updates, where we learn a full model update and then com-
press it using a combination of quantization, random rotations, and subsampling
before sending it to the server. Experiments on both convolutional and recurrent
networks show that the proposed methods can reduce the communication cost by
two orders of magnitude.

1 INTRODUCTION

As datasets grow larger and models more complex, training machine learning models increasingly
requires distributing the optimization of model parameters over multiple machines. Existing ma-
chine learning algorithms are designed for highly controlled environments (such as data centers)
where the data is distributed among machines in a balanced and i.i.d. fashion, and high-throughput
networks are available.

Recently, Federated Learning (and related decentralized approaches) (McMahan & Ramage, 2017;
Konečný et al., 2016; McMahan et al., 2017; Shokri & Shmatikov, 2015) have been proposed as
an alternative setting: a shared global model is trained under the coordination of a central server,
from a federation of participating devices. The participating devices (clients) are typically large in
number and have slow or unstable internet connections. A principal motivating example for Feder-
ated Learning arises when the training data comes from users’ interaction with mobile applications.
Federated Learning enables mobile phones to collaboratively learn a shared prediction model while
keeping all the training data on device, decoupling the ability to do machine learning from the need
to store the data in the cloud. The training data is kept locally on users’ mobile devices, and the
devices are used as nodes performing computation on their local data in order to update a global
model. This goes beyond the use of local models that make predictions on mobile devices, by bring-
ing model training to the device as well. The above framework differs from conventional distributed
machine learning (Reddi et al., 2016; Ma et al., 2017; Shamir et al., 2014; Zhang & Lin, 2015; Dean
et al., 2012; Chilimbi et al., 2014) due to the very large number of clients, highly unbalanced and
non-i.i.d. data available on each client, and relatively poor network connections. In this work, our
focus is on the last constraint, since these unreliable and asymmetric connections pose a particular
challenge to practical Federated Learning.

For simplicity, we consider synchronized algorithms for Federated Learning where a typical round
consists of the following steps:

1. A subset of existing clients is selected, each of which downloads the current model.

1



Under review as a conference paper at ICLR 2018

2. Each client in the subset computes an updated model based on their local data.
3. The model updates are sent from the selected clients to the sever.
4. The server aggregates these models (typically by averaging) to construct an improved

global model.

A naive implementation of the above framework requires that each client sends a full model (or a full
model update) back to the server in each round. For large models, this step is likely to be the bottle-
neck of Federated Learning due to multiple factors. One factor is the asymmetric property of internet
connection speeds: the uplink is typically much slower than downlink. The US average broadband
speed was 55.0Mbps download vs. 18.9Mbps upload, with some internet service providers being
significantly more asymmetric, e.g., Xfinity at 125Mbps down vs. 15Mbps up (speedtest.net, 2016).
Additionally, existing model compressions schemes such as Han et al. (2015) can reduce the band-
width necessary to download the current model, and cryptographic protocols put in place to ensure
no individual client’s update can be inspected before averaging with hundreds or thousands of other
updates (Bonawitz et al., 2017) further increase the amount of bits that need to be uploaded.

It is therefore important to investigate methods which can reduce the uplink communication cost. In
this paper, we study two general approaches:

• Structured updates, where we directly learn an update from a restricted space that can be
parametrized using a smaller number of variables.
• Sketched updates, where we learn a full model update, then compress it before sending to

the server.

These approaches, explained in detail in Sections 2 and 3, can be combined, e.g., first learning a
structured update and sketching it; we do not experiment with this combination in this work though.

In the following, we formally describe the problem. The goal of Federated Learning is to learn a
model with parameters embodied in a real matrix1 W ∈ Rd1×d2 from data stored across a large
number of clients. We first provide a communication-naive version of the Federated Learning. In
round t ≥ 0, the server distributes the current model Wt to a subset St of nt clients. These
clients independently update the model based on their local data. Let the updated local models
be W1

t ,W
2
t , . . . ,W

nt
t , so the update of client i can be written as Hi

t := Wi
t −Wt, for i ∈ St.

These updates could be a single gradient computed on the client, but typically will be the result of
a more complex calculation, for example, multiple steps of stochastic gradient descent (SGD) taken
on the client’s local dataset. In any case, each selected client then sends the update back to the sever,
where the global update is computed by aggregating2 all the client-side updates:

Wt+1 = Wt + ηtHt, Ht :=
1
nt

∑
i∈St

Hi
t.

The sever chooses the learning rate ηt. For simplicity, we choose ηt = 1.

In Section 4, we describe Federated Learning for neural networks, where we use a separate 2D
matrix W to represent the parameters of each layer. We suppose that W gets right-multiplied, i.e.,
d1 and d2 represent the output and input dimensions respectively. Note that the parameters of a fully
connected layer are naturally represented as 2D matrices. However, the kernel of a convolutional
layer is a 4D tensor of the shape #input×width× height×#output. In such a case, W is reshaped
from the kernel to the shape (#input× width× height)×#output.

Outline and summary. The goal of increasing communication efficiency of Federated Learning is
to reduce the cost of sending Hi

t to the server, while learning from data stored across large number of
devices with limited internet connection and availability for computation. We propose two general
classes of approaches, structured updates and sketched updates. In the Experiments section, we
evaluate the effect of these methods in training deep neural networks.

In simulated experiments on CIFAR data, we investigate the effect of these techniques on the conver-
gence of the Federated Averaging algorithm (McMahan et al., 2017). With only a slight degradation
in convergence speed, we are able to reduce the total amount of data communicated by two orders of
magnitude. This lets us obtain a good prediction accuracy with an all-convolutional model, while in
total communicating less information than the size of the original CIFAR data. In a larger realistic

1For sake of simplicity, we discuss only the case of a single matrix since everything carries over to setting
with multiple matrices, for instance corresponding to individual layers in a deep neural network.

2A weighted sum might be used to replace the average based on specific implementations.

2



Under review as a conference paper at ICLR 2018

experiment on user-partitioned text data, we show that we are able to efficiently train a recurrent
neural network for next word prediction, before even using the data of every user once. Finally, we
note that we achieve the best results including the preprocessing of updates with structured random
rotations. Practical utility of this step is unique to our setting, as the cost of applying the random ro-
tations would be dominant in typical parallel implementations of SGD, but is negligible, compared
to the local training in Federated Learning.

2 STRUCTURED UPDATE

The first type of communication efficient update restricts the updates Hi
t to have a pre-specified

structure. Two types of structures are considered in the paper: low rank and random mask. It
is important to stress that we train directly the updates of this structure, as opposed to approxi-
mating/sketching general updates with an object of a specific structure — which is discussed in
Section 3.

Low rank. We enforce every update to local model Hi
t ∈ Rd1×d2 to be a low rank matrix of rank at

most k, where k is a fixed number. In order to do so, we express Hi
t as the product of two matrices:

Hi
t = Ai

tB
i
t, where Ai

t ∈ Rd1×k, Bi
t ∈ Rk×d2 . In subsequent computation, we generated Ai

t
randomly and consider a constant during a local training procedure, and we optimize only Bi

t. Note
that in practical implementation, Ai

t can in this case be compressed in the form of a random seed
and the clients only need to send trained Bi

t to the server. Such approach immediately saves a factor
of d1/k in communication. We generate the matrix Ai

t afresh in each round and for each client
independently.

We also tried fixing Bi
t and training Ai

t, as well as training both Ai
t and Bi

t; neither performed as
well. Our approach seems to perform as well as the best techniques considered in Denil et al. (2013),
without the need of any hand-crafted features. An intuitive explanation for this observation is the
following. We can interpret Bi

t as a projection matrix, and Ai
t as a reconstruction matrix. Fixing Ai

t
and optimizing for Bi

t is akin to asking “Given a given random reconstruction, what is the projection
that will recover most information?”. In this case, if the reconstruction is full-rank, the projection
that recovers space spanned by top k eigenvectors exists. However, if we randomly fix the projection
and search for a reconstruction, we can be unlucky and the important subspaces might have been
projected out, meaning that there is no reconstruction that will do as well as possible, or will be very
hard to find.

Random mask. We restrict the update Hi
t to be a sparse matrix, following a pre-defined random

sparsity pattern (i.e., a random mask). The pattern is generated afresh in each round and for each
client independently. Similar to the low-rank approach, the sparse pattern can be fully specified by
a random seed, and therefore it is only required to send the values of the non-zeros entries of Hi

t,
along with the seed.

3 SKETCHED UPDATE

The second type of updates addressing communication cost, which we call sketched, first computes
the full Hi

t during local training without any constraints, and then approximates, or encodes, the
update in a (lossy) compressed form before sending to the server. The server decodes the updates
before doing the aggregation. Such sketching methods have application in many domains (Woodruff,
2014). We experiment with multiple tools in order to perform the sketching, which are mutually
compatible and can be used jointly:

Subsampling. Instead of sending Hi
t, each client only communicates matrix Ĥi

t which is formed
from a random subset of the (scaled) values of Hi

t. The server then averages the subsampled updates,
producing the global update Ĥt. This can be done so that the average of the sampled updates is an
unbiased estimator of the true average: E[Ĥt] = Ht. Similar to the random mask structured update,
the mask is randomized independently for each client in each round, and the mask itself can be
stored as a synchronized seed.

Probabilistic quantization. Another way of compressing the updates is by quantizing the weights.

3



Under review as a conference paper at ICLR 2018

We first describe the algorithm of quantizing each scalar to one bit. Consider the update Hi
t, let

h = (h1, . . . , hd1×d2
) = vec(Hi

t), and let hmax = maxj(hj), hmin = minj(hj). The compressed
update of h, denoted by h̃, is generated as follows:

h̃j =

{
hmax, with probability hj−hmin

hmax−hmin

hmin, with probability hmax−hj

hmax−hmin

.

It is easy to show that h̃ is an unbiased estimator of h. This method provides 32× of compression
compared to a 4 byte float. The error incurred with this compression scheme was analysed for
instance in Suresh et al. (2017), and is a special case of protocol proposed in Konečný & Richtárik
(2016).

One can also generalize the above to more than 1 bit for each scalar. For b-bit quantization, we
first equally divide [hmin, hmax] into 2b intervals. Suppose hi falls in the interval bounded by h′
and h′′. The quantization operates by replacing hmin and hmax of the above equation by h′ and
h′′, respectively. Parameter b then allows for simple way of balancing accuracy and communication
costs.

Another quantization approach also motivated by reduction of communication while averaging vec-
tors was recently proposed in Alistarh et al. (2016). Incremental, randomized and distributed op-
timization algorithms can be similarly analysed in a quantized updates setting (Rabbat & Nowak,
2005; Golovin et al., 2013; Gamal & Lai, 2016).

Improving the quantization by structured random rotations. The above 1-bit and multi-bit quan-
tization approach work best when the scales are approximately equal across different dimensions.

For example, when max = 1 and min = −1 and most of values are 0, the 1-bit quantization
will lead to a large error. We note that applying a random rotation on h before the quantization
(multiplying h by a random orthogonal matrix) solves this issue. This claim has been theoretically
supported in Suresh et al. (2017). In that work, is shows that the structured random rotation can
reduce the quantization error by a factor of O(d/ log d), where d is the dimension of h. We will
show its practical utility in the next section.

In the decoding phase, the server needs to perform the inverse rotation before aggregating all the
updates. Note that in practice, the dimension of h can easily be as high as d = 106 or more, and
it is computationally prohibitive to generate (O(d3)) and apply (O(d2)) a general rotation matrix.
Same as Suresh et al. (2017), we use a type of structured rotation matrix which is the product of a
Walsh-Hadamard matrix and a binary diagonal matrix. This reduces the computational complexity
of generating and applying the matrix to O(d) and O(d log d), which is negligible compared to the
local training within Federated Learning.

4 EXPERIMENTS

We conducted experiments using Federated Learning to train deep neural networks for two different
tasks. First, we experiment with the CIFAR-10 image classification task (Krizhevsky, 2009) with
convolutional networks and artificially partitioned dataset, and explore properties of our proposed
algorithms in detail. Second, we use more realistic scenario for Federated Learning — the public
Reddit post data (Google BigQuery), to train a recurrent network for next word prediction.

The Reddit dataset is particularly useful for simulated Federated Learning experiments, as it comes
with natural per-user data partition (by author of the posts). This includes many of the characteristics
expected to arise in practical implementation. For example, many users having relatively few data
points, and words used by most users are clustered around a specific topic of interest of the particular
user.

In all of our experiments, we employ the Federated Averaging algorithm (McMahan et al., 2017),
which significantly decreases the number of rounds of communication required to train a good
model. Nevertheless, we expect our techniques will show a similar reduction in communication
costs when applied to a synchronous distributed SGD, see for instance Alistarh et al. (2016). For
Federated Averaging, on each round we select multiple clients uniformly at random, each of which
performs several epochs of SGD with a learning rate of η on their local dataset. For the structured

4



Under review as a conference paper at ICLR 2018

Figure 1: Structured updates with the CIFAR data for size reduction various modes. Low rank
updates in top row, random mask updates in bottom row.

updates, SGD is restricted to only update in the restricted space, that is, only the entries of Bi
t

for low-rank updates and the unmasked entries for the random-mask technique. From this updated
model we compute the updates for each layer Hi

t. In all cases, we run the experiments with a range
of choices of learning rate, and report the best result.

4.1 CONVOLUTIONAL MODELS ON THE CIFAR-10 DATASET

In this section we use the CIFAR-10 dataset to investigate the properties of our proposed methods
as part of Federated Averaging algorithm.

There are 50 000 training examples in the CIFAR-10 dataset, which we randomly partitioned into
100 clients each containing 500 training examples. The model architecture we used was the all-
convolutional model taken from what is described as “Model C” in Springenberg et al. (2014), for
a total of over 106 parameters. While this model is not the state-of-the-art, it is sufficient for our
needs, as our goal is to evaluate our compression methods, not to achieve the best possible accuracy
on this task.

The model has 9 convolutional layers, first and last of which have significantly fewer parameters
than the others. Hence, in this whole section, when we try to reduce the size the individual updates,
we only compress the inner 7 layers, each of which with the same parameter3. We denote this by
keyword ‘mode’, for all approaches. For low rank updates, ‘mode = 25%’ refers to the rank of the
update being set to 1/4 of rank of the full layer transformation, for random mask or sketching, this
refers to all but 25% of the parameters being zeroed out.

In the first experiment, summarized in Figure 1, we compare the two types of structured updates
introduced in Section 2 — low rank in the top row and random mask in the bottom row. The main
message is that random mask performs significantly better than low rank, as we reduce the size of
the updates. In particular, the convergence speed of random mask seems to be essentially unaffected
when measured in terms of number of rounds. Consequently, if the goal was to only minimize the
upload size, the version with reduced update size is a clear winner, as seen in the right column.

In Figure 2, we compare the performance of structured and sketched updates, without any quantiza-
tion. Since in the above, the structured random mask updates performed better, we omit low rank
update for clarity from this comparison. We compare this with the performance of the sketched up-
dates, with and without preprocessing the update using random rotation, as described in Section 3,
and for two different modes. We denote the randomized Hadamard rotation by ‘HD’, and no rotation
by ‘I’.

3We also tried reducing the size of all 9 layers, but this yields negligible savings in communication, while it
slightly degraded convergence speed.

5



Under review as a conference paper at ICLR 2018

Figure 2: Comparison of structured random mask updates and sketched updates without quantization
on the CIFAR data.

Figure 3: Comparison of sketched updates, combining preprocessing the updates with rotations,
quantization and subsampling on the CIFAR data.

The intuitive expectation is that directly learning the structured random mask updates should be
better than learning an unstructured update, which is then sketched to be represented with the same
number of parameters. This is because by sketching we throw away some of the information ob-
tained during training. The fact that with sketching the updates, we should converge to a slightly
lower accuracy can be theoretically supported, using analogous argument as carefully stated in (Al-
istarh et al., 2016), since sketching the updates increases the variance directly appearing in conver-
gence analysis. We see this behaviour when using the structured random mask updates, we are able
to eventually converge to slightly higher accuracy. However, we also see that with sketching the
updates, we are able to attain modest accuracy (e.g. 85%) slightly faster.

6



Under review as a conference paper at ICLR 2018

In the last experiment on CIFAR data, we focus on interplay of all three elements introduced in Sec-
tion 3 — subsampling, quantization and random rotations. Note that combination of all these tools
will enable higher compression rate than in the above experiments. Each pair of plots in Figure 3
focuses on particular mode (subsampling), and in each of them we plot performance with different
bits used in quantization, with or without the random rotations. What we can see consistently in
all plots, is that the random rotation improves the performance. In general, the behaviour of the
algorithm is less stable without the rotations, particularly with small number of quantization bits
and smaller modes.

In order to highlight the potential of communication savings, note that by preprocessing with the
random rotation, sketching out all but 6.25% elements of the update and using 2 bits for quantization,
we get only a minor drop in convergence, while saving factor of 256 in terms of bits needed to
represent the updates to individual layers. Finally, if we were interested in minimizing the amount
of data uploaded, we can obtain a modest accuracy, say 85%, while in total communicating less than
half of what would be required to upload the original data.

4.2 LSTM NEXT-WORD PREDICTION ON REDDIT DATA

We constructed the dataset for simulating Federated Learning based on the data containing publicly
available posts/comments on Reddit (Google BigQuery), as described by Al-Rfou et al. (2016).
Critically for our purposes, each post in the database is keyed by an author, so we can group the
data by these keys, making the assumption of one client device per author. Some authors have a
very large number of posts, but in each round of FedAvg we process at most 32 000 tokens per
user. We omit authors with fewer than 1600 tokens, since there is constant overhead per client in
the simulation, and users with little data don’t contribute much to training. This leaves a dataset of
763 430 users, with an average of 24 791 tokens per user. For evaluation, we use a relatively small
test set of 75 122 tokens formed from random held-out posts.

Based on this data, we train a LSTM next word prediction model. The model is trained to predict
the next word given the current word and a state vector passed from the previous time step. The
model works as follows: word st is mapped to an embedding vector et ∈ R96, by looking up the
word in a dictionary of 10 017 words (tokens). et is then composed with the state emitted by the
model in the previous time step st1 ∈ R256 to emit a new state vector st and an “output embedding”
ot ∈ R96. The output embedding is scored against the embedding of each item in the vocabulary
via inner product, before being normalized via softmax to compute a probability distribution over
the vocabulary. Like other standard language models, we treat every input sequence as beginning
with an implicit “BOS” (beginning of sequence) token and ending with an implicit “EOS” (end
of sequence) token. Unlike standard LSTM language models, our model uses the same learned
embedding for both the embedding and softmax layers. This reduces the size of the model by
about 40% for a small decrease in model quality, an advantageous tradeoff for mobile applications.
Another change from many standard LSTM RNN approaches is that we train these models to restrict
the word embeddings to have a fixed L2 norm of 1.0, a modification found to improve convergence
time. In total the model has 1.35M parameters.

In order to reduce the size of the update, we sketch all the model variables except some small
variables (such as biases) which consume less than 0.01% of memory. We evaluate using
AccuracyTop1, the probability that the word to which the model assigns highest probability is
correct. We always count it as a mistake if the true next word is not in the dictionary, even if the
model predicts ‘unknown’.

In Figure 4, we run the Federated Averaging algorithm on Reddit data, with various parameters that
specify the sketching. In every iteration, we randomly sample 50 users that compute update based
on the data available locally, sketch it, and all the updates are averaged. Experiments with sampling
10, 20, and 100 clients in each round provided similar conclusions as the following.

In all of the plots, we combine the three components for sketching the updates introduced in Sec-
tion 3. First, we apply a random rotation to preprocess the local update. Further, ‘sketch fraction’
set to either 0.1 or 1, denotes fraction of the elements of the update being subsampled.

In the left column, we plot this against the number of iterations of the algorithm. First, we can see
that the effect of preprocessing with the random rotation has significantly positive effect, particularly

7



Under review as a conference paper at ICLR 2018

Figure 4: Comparison of sketched updates, training a recurrent model on the Reddit data, randomly
sampling 50 clients per round.

1 4 16 64 256 512 1024

Number of clients trained per round

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A
cc

u
ra

cy
T
o
p
1

Effect of the number of clients per round for 1-bit quantization

500 rounds, HD, 1%

500 rounds, HD, 10%

500 rounds, I, 1%

500 rounds, I, 10%

2500 rounds, HD, 1%

2500 rounds, HD, 10%

2500 rounds, I, 1%

2500 rounds, I, 10%

Figure 5: Effect of the number of clients used in training per round.

with small number of quantization bits. It is interesting to see that for all choices of the subsam-
pling ratio, randomized Hadamard transform with quantization into 2 bits does not incur any loss in
performance. An important measure to highlight is the number of rounds displayed in the plots is
2000. Since we sample 50 users per round, this experiment would not touch the data of most users
even once! This further strengthens the claim that applying Federated Learning in realistic setting is
possible without affecting the user experience in any way.

In the right column, we plot the same data against the total number of megabytes that would need
to be communicated by clients back to the server. From these plots, it is clear that if one needed to
primarily minimize this metric, the techniques we propose are extremely efficient. Of course, neither
of these objectives is what we would optimize for in a practical application. Nevertheless, given the
current lack of experience with issues inherent in large scale deployment of Federated Learning, we
believe that these are useful proxies for what will be relevant in a practical application.

Finally, in Figure 5, we study the effect of number of clients we use in a single round on the conver-
gence. We run the Federated Averaging algorithm for a fixed number of rounds (500 and 2500) with
varying number of clients per round, quantize updates to 1 bit, and plot the resulting accuracy. We
see that with sufficient number of clients per round, 1024 in this case, we can reduce the fraction of
subsampled elements down to 1%, with only minor drop in accuracy compared to 10%. This sug-
gests an important and practical tradeoff in the federated setting: one can select more clients in each
round while having each of them communicate less (e.g., more aggressive subsampling), and obtain
the same accuracy as using fewer clients, but having each of them communicate more. The former
may be preferable when many clients are available, but each has very limited upload bandwidth —
which is a setting common in practice.

8



Under review as a conference paper at ICLR 2018

REFERENCES

Rami Al-Rfou, Marc Pickett, Javier Snaider, Yun-hsuan Sung, Brian Strope, and Ray Kurzweil. Conversational
contextual cues: The case of personalization and history for response ranking. arXiv:1606.00372, 2016.

Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Randomized quantization for
communication-optimal stochastic gradient descent. arXiv:1610.02132, 2016.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy preserving machine
learning. In ACM Conference on Computer and Communications Security (ACM CCS), 2017.

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam: Building an
efficient and scalable deep learning training system. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pp. 571–582, 2014.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior, Paul Tucker,
Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In NIPS, pp. 1223–1231, 2012.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting parameters in deep learning. In
NIPS, pp. 2148–2156, 2013.

Mostafa El Gamal and Lifeng Lai. On randomized distributed coordinate descent with quantized updates.
arXiv:1609.05539, 2016.

Daniel Golovin, D. Sculley, H. Brendan McMahan, and Michael Young. Large-scale learning with less ram via
randomization. In ICML, 2013.

Google BigQuery. Reddit comments dataset. BigQuery, 2016. https://bigquery.cloud.google.
com/dataset/fh-bigquery.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Jakub Konečný and Peter Richtárik. Randomized distributed mean estimation: Accuracy vs communication.
arXiv:1611.07555, 2016.

Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization: Dis-
tributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Chenxin Ma, Jakub Konečný, Martin Jaggi, Virginia Smith, Michael I Jordan, Peter Richtárik, and Martin
Takáč. Distributed optimization with arbitrary local solvers. Optimization Methods & Software, 32(4):
813–848, 2017.

H. Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine learning without cen-
tralized training data. https://research.googleblog.com/2017/04/federated-learning-collaborative.html, 2017.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

M.G. Rabbat and R.D. Nowak. Quantized incremental algorithms for distributed optimization. IEEE Journal
on Selected Areas in Communications, 23(4):798–808, 2005.

Sashank J Reddi, Jakub Konečný, Peter Richtárik, Barnabás Póczós, and Alex Smola. AIDE: Fast and commu-
nication efficient distributed optimization. arXiv:1608.06879, 2016.

Ohad Shamir, Nathan Srebro, and Tong Zhang. Communication-efficient distributed optimization using an
approximate Newton-type method. In ICML, pp. 1000–1008, 2014.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, 2015.

speedtest.net. Speedtest market report. http://www.speedtest.net/reports/united-states/,
August 2016.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity:
The all convolutional net. arXiv:1412.6806, 2014.

9

https://bigquery.cloud.google.com/dataset/fh-bigquery
https://bigquery.cloud.google.com/dataset/fh-bigquery
http://www.speedtest.net/reports/united-states/


Under review as a conference paper at ICLR 2018

Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan McMahan. Distributed mean estimation
with limited communication. In Proceedings of the 34th International Conference on Machine Learning,
pp. 3329–3337, 2017.

David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in Theoretical
Computer Science, 10(12):1–157, 2014. ISSN 1551-305X. doi: 10.1561/0400000060.

Yuchen Zhang and Xiao Lin. DiSCO: Distributed optimization for self-concordant empirical loss. In ICML,
pp. 362–370, 2015.

10


	Introduction
	Structured Update
	Sketched Update
	Experiments
	Convolutional Models on the CIFAR-10 Dataset
	LSTM Next-Word Prediction on Reddit Data


