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ABSTRACT
Click-through rate (CTR) prediction plays a critical role in recom-
mender systems and other applications. Recently, modeling user
behavior sequences attracts much attention and brings great im-
provements in the CTR field. Many existing works utilize attention
mechanism or recurrent neural networks to exploit user interest
from the sequence, but fail to recognize the simple truth that a
user’s real-time interests are inherently diverse and fluid. In this
paper, we propose DisenCTR, a novel dynamic graph-based dis-
entangled representation framework for CTR prediction. The key
novelty of our method compared with existing approaches is to
model evolving diverse interests of users. Specifically, we construct
a time-evolving user-item interaction graph induced by histori-
cal interactions. And based on the rich dynamics supplied by the
graph, we propose a disentangled graph representation module
to extract diverse user interests. We further exploit the fluidity of
user interests and model the temporal effect of historical behaviors
using Mixture of Hawkes Process. Extensive experiments on three
real-world datasets demonstrate the superior performance of our
method comparing to state-of-the-art approaches.
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• Information systems → Recommender systems.
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1 INTRODUCTION
Click-through rate (CTR) prediction plays a vital role in numerous
information retrieval (IR) scenarios like recommendation, online
advertising and web search [3, 4]. It aims to predict the probability
that a user will click on a specific item. Since the quality of CTR not
only influences the overall revenue of the whole platform, but also
directly affects user experience and satisfaction, it is prevailing to
understand user’s real-time intentions in the CTR prediction task.

Users in online platforms always interact with items chronolog-
ically. Therefore, the modeling of users’ historical interaction se-
quence in CTR prediction has drawn the attention of both academic
and industrial communities [5, 14, 23–25]. Sequential methods such
as DIN [25] use attention-based methods to capture relative inter-
ests from the user behavior sequence with regard to candidate items.
DIEN [24] further utilizes a two-layer recurrent neural network
structure (RNN) to capture the evolution of user interest. DSIN [5]
leverages users’ multiple historical sessions and employs a self-
attention layer as well as RNN structure to model users’ inter- and
intra-session interests. However, when historical interactions are
sparse, these methods have difficulty in capturing the users’ real
intentions. A user would be anchored to a certain behavioral pat-
tern that is extant in his/her sparse interaction history, without
exploring his/her latent interests, which can be more complex.
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Graphs have been used to alleviate data sparsity issue in recom-
mendation. To better capture the collaborative signal, graph neural
networks (GNNs) [7, 10, 15] have been applied in the constructed
user-item graph. NGCF [16] and LightGCN [9] use neighborhood
embedding propagation to exploit high-order user-item relations
on graph-structured data. As for CTR models, Fi-GNN [13] repre-
sents multi-field features as graph and explicitly models relations
among features via a GNN framework. GIN [12] constructs a co-
occurrence item graph and adopts multi-layer graph diffusion to
mine user intention. DE-GNN [6] leverages both feature graph and
user-item interaction graph to alleviate feature and behavioral spar-
sity. Despite the great success made by these GNN-based methods,
they cannot effectively capture users’ real-time interests, especially
when users’ interests are diverse and evolving with time.

Actually, in real-world applications, different users are distinct
in terms of their interests and the same user may also be interested
in various kinds of items due to diverse interests [1, 11, 17, 18, 20,
21]. For instance, when a user clicks on an ink cartridge during
weekdays, and browses for clothing at weekends, he/she is probably
displaying the different aspects of his/her interests. Moreover, these
different aspects of a user’s interests keep evolving, as we would
not be surprised to see the user’s taste for clothes change to catch
up with the season’s trends. Therefore, capturing the dynamics of
these diverse interests is important for user behavior modeling.

To tackle the above challenges, we borrow the idea of disentan-
gled representation learning [19, 20] and propose a novel dynamic
graph-based disentangled representation framework for CTR pre-
diction (DisenCTR), which models evolving diverse interests of
users. Specifically, we construct a novel time-evolving user-item
interaction graph to capture dynamic sequential behaviors of users.
Instead of compressing diverse user interests into one single vec-
tor, our model learns disentangled user representations that reflect
diverse interests of users in the constructed graphs and calculates
CTR with Mixture of Hawkes Process (MHP), which has great mer-
its in capturing both the temporal excitation effects of historical
behaviors and the multiple interests within the behavior sequence.

We summarize our main contributions as follows:
• We construct a novel dynamic sequential user-item graph to
capture evolving user interests. To the best of our knowledge,
this work is the first dynamic-graph-based multi-interest CTR
prediction framework.

• We propose to extract multiple user interests with disentangled
representation learning on graphs, and model the multi-aspect
temporal excitation effects of past behaviors using Mixture of
Hawkes Process.

• We conduct extensive experiments on three real-world CTR
benchmarks for CTR prediction. Our model consistently out-
performs strong baselines, achieving state-of-the-art performance
on all three benchmark datasets.

2 THE PROPOSED MODEL
2.1 Problem Formulation
In CTR prediction, let U = {𝑢1, . . . , 𝑢𝑀 } denote the set of𝑀 users,
andV = {𝑣1, . . . , 𝑣𝑁 } denote the set of 𝑁 items. The historical user-
item interactions can be defined as E = {(𝑢, 𝑣, 𝜏)}, where each tuple
represents a user 𝑢 interacting with an item 𝑣 associated with a

timestamp 𝜏 ∈ R+. Each user has a sequence of historical behaviors
𝐻𝑢 = [ℎ𝑢1 , ℎ

𝑢
2 , . . . , ℎ

𝑢
𝑇
], in which ℎ𝑢

𝑖
stands for the 𝑖-th behavior

record of user 𝑢 sorted by timestamp. The goal of CTR prediction
is to predict the probability for target user 𝑢 to click target item 𝑣

given 𝑢’s historical behaviors, formulated as: 𝑦𝑢𝑣 = 𝑓 (𝑢, 𝑣 |𝐻𝑢 ;𝜃 ),
where 𝑓 is the learned function with parameters 𝜃 .

2.2 Dynamic Sequential Graph Construction
Given the target user𝑢 and his/her historical behavior sequence𝐻𝑢 ,
we construct a time-evolving sequential graph up to current time
𝑡 , which combines the multi-hop connectivity in graphs as well as
fine-grained temporal dependency in sequences and is constructed
using breadth-first search. Specifically, suppose nodes at (𝑙)-hop
are all users (vice versa for items), and the set of interactions with
neighboring item nodes at (𝑙 + 1)-hop can be defined as:

G (𝑙+1)
𝑢,𝑡 = {(𝑢 ′, 𝑣, 𝜏) |𝜏 < 𝑡 ′, (𝑢 ′, 𝑣, 𝜏) ∈ E, (·, 𝑢 ′, 𝑡 ′) ∈ G (𝑙)

𝑢,𝑡 }, (1)

where G (0)
𝑢,𝑡 ,G

(1)
𝑢,𝑡 are initialized as {(𝑢, 𝑡)} and𝑢’s interactions with

𝐻𝑢 respectively, 𝜏 < 𝑡 ′ is considered to make sure interaction time
𝑡 ′ of centroid node 𝑢 ′ at (𝑙)-hop is posterior to its neighbors’ at
(𝑙 + 𝑙)-hop. We set 0 ≤ 𝑙 ≤ 𝐿 to collect 𝐿 hops neighborhood of
𝑢. Combining all depths of neighbors, we construct the dynamic
sequential graph G𝑢,𝑡 = {G (0)

𝑢,𝑡 ,G
(1)
𝑢,𝑡 , . . . ,G

(𝐿)
𝑢,𝑡 }, which represents

all the evolving high-order interactions with 𝑢 up to time 𝑡 .

2.3 Dynamic Graph Disentangling Layer
To capture the diverse interests of users from historical user behav-
iors, we propose the dynamic graph disentangling layer for the con-
structed graph. As shown in Figure 1, there are three components
in the layer. By stacking 𝐿 layers, we can disentangle user/item rep-
resentation into different components and aggregate multiple hops
of neighbor information to enrich the corresponding components,
which are further used for CTR prediction.

2.3.1 Disentangled Embedding Transformation. Since different in-
terests always represent distinct semantics, we first transform fea-
tures of user/item into disentangled representation. Specifically, for
each user/item node in the graph, we would like its representation
to be segmented into𝐾 components representing different interests,
i.e., 𝑒𝑢 = {𝑐𝑢,1, 𝑐𝑢,2, . . . , 𝑐𝑢,𝐾 }. To achieve this goal, we project the
feature of node 𝑥𝑢/𝑣 into 𝐾 latent spaces to make each component
extract distinct semantics from the node feature, take user 𝑢 for
example (vice versa for item 𝑣):

𝑐𝑢,𝑘 = 𝜎 (𝑊𝑘 · 𝑥𝑢 ), (2)

where𝑊𝑘 ∈ R𝑀× 𝑑
𝐾 is the weight of the 𝑘-th component, 𝑑 is the

total representation dimension, and 𝜎 is the activation function.

2.3.2 Disentangled Embedding Propagation. For different compo-
nents of the representation, we define a set of scoring matrices
𝑆 = {𝑆𝑘 |∀𝑘 ∈ {1, . . . , 𝐾}} for 𝐾 different latent components, where
each entry 𝑆𝑘 (𝑢, 𝑣) denotes the intention of user𝑢 to item 𝑣 under in-
terest 𝑘 . We uniformly initialize each scoring matrix as 𝑆0

𝑘
(𝑢, 𝑣) = 1

and the weight can be iteratively updated.
At iteration 𝑖 ∈ {1, . . . , 𝐼 }, we perform embedding propagation

under each component. For target user/item node in G𝑢,𝑡 , we aggre-
gate embeddings from its neighbors to update its 𝑘-th component
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Disentangled Embedding Transformation

Figure 1: Illustration of dynamic graph disentangling layer.

representation. We first calculate the intention distribution over all
interests by normalizing 𝑆 via the softmax function:

𝑆𝑖
𝑘
=

exp 𝑆𝑖
𝑘
(𝑢, 𝑣)∑𝐾

𝑘′=1 exp 𝑆
𝑖
𝑘′
(𝑢, 𝑣)

. (3)

This distribution serves as an attention score, which illustrates
which interest is the main driving force behind a specific user inter-
action (𝑢, 𝑣, 𝜏). Then, we update target node’s 𝑘-th component with
the weighted sum of its neighborhood’s corresponding components.
Take user 𝑢 as an example:

𝑐𝑖
𝑢,𝑘

=
∑︁
𝑣∈N𝑢

𝑆𝑖
𝑘
(𝑢, 𝑣)√︃

𝐷𝑡
𝑘
(𝑢) · 𝐷𝑡

𝑘
(𝑣)

· 𝑐𝑖−1
𝑣,𝑘
, (4)

where 𝑐𝑖
𝑢,𝑘

is the refined 𝑘-th component, and 𝑐0
𝑢,𝑘

is set to 𝑐𝑢,𝑘 .
Because different nodes can have varying numbers of neighbors,
we normalize the component against the degree of user 𝑢, 𝐷𝑡

𝑘
(𝑢) =∑

𝑣′∈N𝑢 𝑆
𝑖
𝑘
(𝑢, 𝑣 ′), and the degree of item 𝑣 ,𝐷𝑡

𝑘
(𝑣) = ∑

𝑢′∈N𝑣 𝑆
𝑖
𝑘
(𝑢 ′, 𝑣).

N𝑢 and N𝑣 are the neighbors of 𝑢 and 𝑣 respectively.

2.3.3 Iterative Intention Update. Intuitively, for the target user,
historical items driven by the same interest tend to have similar
representations under the corresponding component, which could
further magnify the click preference between them. We hence itera-
tively adjust the scoring matrices based on the refined components:

𝑆𝑖+1
𝑘

(𝑢, 𝑣) = 𝑆𝑖
𝑘
(𝑢, 𝑣) + 𝑐𝑖

𝑢,𝑘

⊤ tanh(𝑐𝑖
𝑣,𝑘

), (5)

where 𝑐𝑖
𝑢,𝑘

⊤ tanh(𝑐𝑖
𝑣,𝑘

) measures the affinity between refined 𝑐𝑖
𝑢,𝑘

and 𝑐𝑖
𝑣,𝑘

, and tanh is a nonlinear activation function.
Convergence Analysis. The essence of iterative propagation

is an inference mechanism that enriches the 𝑘-th component of
target node with the most relevant neighbors. Thus, it is equivalent
to an expectation maximization (EM) algorithm for the mixture
model. Let 𝑍 = {𝑐𝑢,𝑘 }𝐾𝑘=1 be the enriched representation of target
user 𝑢, 𝐶 = {𝑐𝑣,𝑘 |∀𝑣 ∈ N𝑢 }𝐾𝑘=1. The EM algorithm maximizes
𝑝 (𝐶;𝑍 ) = ∑

𝑆 𝑝 (𝐶, 𝑆 ;𝑍 ), and the log-likelihood is formulated as:

ln 𝑃 (𝐶;𝑍 ) =
∑︁
𝑆

𝑞(𝑆) ln 𝑃 (𝐶, 𝑆 ;𝑍 )
𝑞(𝑆) +

∑︁
𝑆

𝑞(𝑆) ln 𝑞(𝑆)
𝑝 (𝑆 |𝐶;𝑍 ) , (6)

u
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Figure 2: Illustration of MHP based CTR prediction.

where the first term is the evidence lower bound ELBO(𝐶, 𝑆 ;𝑍 ) and
the second term is the Kullback-Leibler (KL) divergence with non-
negative value. Our model alternatively updates 𝑞(𝑆) and 𝑍 by a)
setting optimal𝑞(𝑆) to 𝑝 (𝑆 |𝐶 ;𝑍 ) so that ELBO(𝐶, 𝑆 ;𝑍 ) = ln 𝑃 (𝐶 ;𝑍 )
for current𝐶 and 𝑍 in E step and b) maximizing ELBO w.r.t. 𝑍 in M
step. Thus, for 𝑖-th iteration, ln 𝑃 (𝐶 ;𝑍 (𝑖) ) ≥ ELBO(𝐶 ; 𝑆 (𝑖) , 𝑍 (𝑖) ) ≥
ELBO(𝐶; 𝑆 (𝑖) , 𝑍 (𝑖−1) ) = ln 𝑃 (𝐶;𝑍 (𝑖−1) ), which improves the log-
likelihood monotonically until the algorithm converges.

2.4 Mixture of Hawkes Based CTR Prediction
Hawkes process is a typical temporal point process in modeling the
temporal decay effect of historical behaviors [2, 22, 26]. As shown
in Figure 2, the clicking event can be driven by 𝐾 latent interests.
Hence, we construct the base intensity under interest 𝑘 upon the
last layer output of the disentangling module as 𝜇𝑢,𝑣𝛾𝑘𝑢,𝑣 :
𝜇𝑢,𝑣 = F(𝑒𝑢 · 𝑒𝑣),

𝛾𝑘𝑢,𝑣 = Softplus
(
F(𝑐𝐼

𝑢,𝑘
, 𝑐𝑣,𝑘 )

)
=

1
𝛽
log

(
1 + exp(𝛽 · F (𝑐𝐼

𝑢,𝑘
, 𝑐𝑣,𝑘 ))

) (7)

where 𝑒𝑢 , 𝑒𝑣 are the identity embedding of target user and item,
F is the cosine similarity. Softplus is applied to preserve intensity
monotonicity. Combining the historical behavior influence, the con-
ditional intensity function of current user-item interaction (𝑢, 𝑣, 𝑡)
under interest 𝑘 is defined as:

𝜆𝑘𝑢,𝑣 (𝑡) = 𝜇𝑢,𝑣𝛾𝑘𝑢,𝑣 +
∑︁
ℎ∈H𝑢

𝛼𝑘
𝑣,ℎ
𝛾𝑘
𝑣,ℎ

J (𝑡 − 𝜏), (8)
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Table 1: Descriptive statistics of our three datasets.

Dataset #User #Item Interactions Avg.SeqLen

Amazon 192,403 63,001 1,689,188 8.78

MovieLens-1M 6,040 3,706 1,000,209 158.00

Meituan 294,230 90,642 2,031,071 11.57

where J (𝑡 − 𝜏) = exp(−D𝑢 (𝑡 − 𝜏)) is the kernel function that
models the time decay effect of historical behaviors on the current
interaction, D𝑢 is the trainable function of each user, and 𝛼𝑘

𝑣,ℎ
is

the attention score of each historical effect 𝛾𝑘
𝑣,ℎ

under interest 𝑘 :

𝛼𝑘
𝑣,ℎ

=

exp
(
F (𝑒𝑣, 𝑒ℎ)𝛾𝑘𝑣,ℎ

)
∑
ℎ′∈H𝑢 exp

(
F (𝑒𝑣, 𝑒ℎ′)𝛾𝑘𝑣,ℎ′

) ,
𝛾𝑘
𝑣,ℎ

= Softplus
(
F (𝑐𝑣,𝑘 , 𝑐𝐼ℎ,𝑘 )

)
,

(9)

where 𝑒ℎ is the identity embedding of historical item. We combine
the conditional intensity of 𝐾 different interests to derive the CTR
prediction score 𝑦 = 𝜎 ( 1

𝐾

∑𝐾
𝑘=1 𝜆

𝑘
𝑢,𝑣 (𝑡)). Given the real label 𝑢 ∈

{0, 1} and the predicted CTR score, we adopt binary cross-entropy
for the training process, formulated as:

L = −
∑︁

(𝑢,𝑣,𝑡 )
𝑦 log𝑦 + (1 − 𝑦) log(1 − 𝑦) . (10)

3 EXPERIMENT
3.1 Experimental Setup
We evaluate the proposed method on three datasets collected from
real-world platforms, namely, Amazon1 [8], MovieLens-1M2 and
Meituan. For MovieLens-1M, we mark samples with ratings no less
than 3 as positive; for Amazon and Meituan, we keep the clicked
samples as positive samples. The statistics of the datasets are sum-
marized in Table 1. We sort each user’s interactions in chronological
order and reserve the last interaction for evaluation, while the re-
maining interactions are used for training. The evaluation set is
then split into halves randomly as the validation set and the test
set, respectively.

To demonstrate the effectiveness of our model, we compare Dis-
enCTR with three classes of methods: (A) Sequential-based meth-
ods, including DIN [25] and DIEN [24]; (B) Multi-interest methods,
including MIND [11], ComiRec-DR [1] and ComiRec-SA [1]; (C)
GNN-based methods, including NGCF [16] and LightGCN [9]. We
adopt AUC and Logloss as performance metrics, which are two of
the most widely used metrics for CTR prediction. The embedding
size is fixed to 128 for all models. For DisenCTR, we set 𝐿 = 2, 𝛽 = 1
and 𝐾 is tuned amongst {1, 2, 4, 8, 16}. For baseline methods, we
apply a grid search for optimal hyper-parameters.

3.2 Performance Comparison
The performances of all compared methods are summarized in
Table 2. Multi-interest methods outperform most sequential-based
1http://jmcauley.ucsd.edu/data/amazon/
2https://grouplens.org/datasets/movielens/

Table 2: The performance of DisenCTR (Ours) and other base-
line methods over three datasets.

Model Amazon MovieLens-1M Meituan

AUC Logloss AUC Logloss AUC Logloss

DIN 0.7488 0.5888 0.8500 0.5175 0.7245 0.6123
DIEN 0.7478 0.5686 0.9041 0.4639 0.7937 0.5617

MIND 0.7726 0.5612 0.8273 0.5074 0.7486 0.5746
ComiRec-DR 0.7256 0.6919 0.8073 0.6921 0.6935 0.6376
ComiRec-SA 0.7792 0.5785 0.8590 0.4704 0.7512 0.5992

NGCF 0.7763 0.5633 0.8910 0.4340 0.7875 0.5840
LightGCN 0.7719 0.5746 0.8631 0.4917 0.7500 0.6254

Ours 0.8123 0.5326 0.9085 0.3841 0.8042 0.5311

methods, demonstrating the potency of disentangled representation
to extract diverse user interests for CTR prediction. GNN-based
methods, which introduce embedding propagation to capture high-
order collaborative signals, also achieve better performance than
sequential-based methods. DisenCTR combines the strength of all
the compared methods. It captures the evolving multi-interest of
users and performs consistently better than all baseline methods
on all three datasets. The significant improvement also indicates
the positive effect on achieving better disentangled representations
with the constructed dynamic sequential graph for CTR prediction.

3.3 Analysis of DisenCTR
In this section, we perform ablation studies to show the necessity of
the graph structure and point-process modeling. We also verify the
effectiveness of the proposed dynamic graph disentangling layer.

3.3.1 Ablation study. We conduct an ablation study to verify the
effectiveness of DisenCTR. As shown in Figure 3, performance
suffers when we set the number of disentangling layers to 0 (w/o
GNN) or replace the Mixture of Hawkes Process with multilayer
perceptron (w/o MHP), especially w/o MHP. The results indicate
that time-evolving sequential graph and the MHP are both indis-
pensable for modeling dynamic user interests: the former provides
rich user dynamics, while the latter captures the temporal effect of
historical behaviors from the graph.

3.3.2 Effectiveness of Disentangled Representation. To investigate
whether DisenCTR can benefit from disentangled representation,
we study its performance with varying number of latent compo-
nents 𝐾 in dynamic graph disentangling layer in the range of
{1, 2, 4, 8, 16}. Figure 4 summarizes the experimental results. When
𝐾 = 1, the model degenerates into an entangled-based model with
poor performance. DisenCTR achieves optimal performance at
𝐾 = 2 in Meituan and 𝐾 = 4 in MovieLens-1M, which indicates that
disentangled representation better captures users’ diverse interests.

4 CONCLUSION
The inherent diversity and fluidity of real-time user interests pose
a huge challenge to CTR prediction. In this paper, we exploit di-
verse aspects of users’ evolving real-time interests, and propose
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Figure 3: Ablation study of the DisenCTR, w/o means we
remove corresponding module from the original DisenCTR.
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Figure 4: Performance w.r.t. different number of latent com-
ponents for disentangled representation.

a dynamic graph-based disentangled representation framework
for CTR prediction (DisenCTR). Specifically, we construct a novel
dynamic sequential user-item graph and propose a disentangled
representation learning module on the graph to extract diverse
user interests. We further exploit the fluidity of user interests with
Mixture of Hawkes Process (MHP), which captures the multi-aspect
temporal effects of past behaviors. Experiments show the effective-
ness of our proposed model and the important role of disentangled
representation in CTR prediction.
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