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ABSTRACT

This paper introduces the large scale visual search algorithm
and system infrastructure at Alibaba. The following chal-
lenges are discussed under the E-commercial circumstance
at Alibaba (a) how to handle heterogeneous image data and
bridge the gap between real-shot images from user query and
the online images. (b) how to deal with large scale indexing
for massive updating data. (c) how to train deep model-
s for effective feature representation without huge human
annotations. (d) how to improve the user engagement by
considering the quality of the content. We take advantage of
large image collection of Alibaba and state-of-the-art deep
learning techniques to perform visual search at scale. We
present solutions and implementation details to overcome
those problems and also share our learnings from building
such a large scale commercial visual search engine. Specifical-
ly, model and search-based fusion approach is introduced to
effectively predict categories. Also, we propose a deep CNN
model for joint detection and feature learning by mining
user click behavior. The binary index engine is designed to
scale up indexing without compromising recall and precision.
Finally, we apply all the stages into an end-to-end system
architecture, which can simultaneously achieve highly effi-
cient and scalable performance adapting to real-shot images.
Extensive experiments demonstrate the advancement of each
module in our system. We hope visual search at Alibaba
becomes more widely incorporated into today’s commercial
applications.
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Figure 1: The scenario of visual search at Alibaba1:
by simply taking a picture or select any image from
the photo album, “Pailitao” automatically returns
visually similar products on Taobao marketplace and
recommends even better options in real time.
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1 INTRODUCTION

Visual search or content-based image retrieval (CBIR) has
become a popular research topic in recent years due to the
increasing prevalence of online photos in search engines and
social media. Subsequently, exploiting the visual search in
E-commercial systems is imperative, due to the obvious ad-
vantages 1) more convenient interaction, 2) search entry that
is superior to text for fine-grained description, 3) good con-
nection between online and offline scenarios. Considering the
algorithm and engineering complexity of real-world visual
search systems, there are few publications describing the end-
to-end system deployed on commercial applications in detail.
Generally, some of the visual search systems like Ebay [22],
Pinterest [7] release their deployed product to describe the
architectures, algorithms and deployment.

At Alibaba, we also run into many challenges when coming
to practical applications of visual search technologies. By col-
laboration of algorithm and search teams in Alibaba, we have
successfully developed an intelligence E-commercial applica-
tion named “Pailitao”. “Pailitao”, means shopping through
the camera. It is an innovative image intelligence product
based on deep learning and large scale machine learning tech-
nologies as the core, and achieves the function of “search by
images” by utilizing the visual search service, as shown in

1http://www.pailitao.com
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Figure 1. Once launched in 2014, it triggered high attention
and wide recognition in industry, and has experienced swift
growth with average over 17 million Daily Active User(DAU)
in 2017. On the 2017 China Double 11 Shopping festival,
Pailitao successfully reached over 30 million DAU. In this
paper, we would like to share some of the key developments
of visual search techniques that explicitly address the existing
challenges at Alibaba. These are extremely challenging and
different from other products in following four major aspects:

Heterogeneous images matching: Unlike the standard
search engines, user queries of Pailitao are usually real-shot
images, which means we allow users to shot the picture from
real-life or upload query images taken from any source. It is
easy to notice that the quality of real-shot images is not as
perfect as the inventory images, which always exist semantic
and visual gaps.

Billions of data with fine-grained categories: Most
solutions for visual search fail to operate at Alibaba scale.
Alibaba has a large and continuously growing image collection,
in which the labels are noisy or even wrong. In addition, the
collection covers numerous fine-grained categories that are
easily confused with each other. Our system needs to be both
scalable and cost effective with distributed architecture to
handle massive data.

Huge expense for maintaining training data: Noisy
data always exists due to the diversity of images in a dy-
namic marketplace like Alibaba. For training deep models,
these images often contain complex background and come
from multiple data sources, which makes the feature learning
more difficult to achieve high search relevance and low la-
tency. Maintaining training data is laborious from collecting
and cleaning data to labeling annotations, which normally
requires huge cost.

Improving the user engagement: The success of a
commercial application is measured by the benefit it brings
to users. How to evolve more users to attempt the visual
search service is the key issue. It is urgent to encourage them
to buy the products and make possible conversions.

Despite the challenges we also have the opportunities, 1)
Every item in the inventory has the own images, 2) The
images are bringed with natural labeled data provided by
the sellers or customers, 3) The natural scenario of shopping
provides wide margin of visual search.

Seizing the existing opportunities, we describe how we alle-
viate the problems and address the challenges above. Overall,
we present our approach in detail for building and operating
visual search system at Alibaba. We illustrate the architec-
ture of our system and take a step further to mine efficient
data for feeding to deep learning model. Concretely, we de-
scribe details of how we leverage deep learning approach for
category prediction and joint detection and feature learning
in terms of precision and speed, along with large scale index-
ing and image re-ranking are discussed. We experiment on
our own built test set to evaluate the effectiveness of each
module. We also show the efficiency of our indexing engine
for lossless recall and the re-ranking strategy.

2 RELATED WORK

Deep learning has proven extremely powerful and widely
developed for semantic feature representation and image
classification. With the exponential rise of deep convolutional
neural networks, visual search has attracted lot of interest [4,
7, 22]. Considering the issues of large scale images that are
with fine-grained categories containing complex background
along with noisy labels in the practical visual search scenarios,
it still remains very challenging problems on how to find the
same or similar items according to query image. Taking the
applied techniques into account, prior deep learning for visual
search are roughly from three aspects.

CNN for instance Retrieval : Recently, CNN [8, 12] has
exhibited promising performance for visual problems. Several
works have attempted to apply CNN in image and instance
retrieval [1, 19, 23]. By applying CNN as NeuralCode for
image retrieval, e.g., Babenko et al. [2] employ the output
of fully-connected layer as image feature for retrieval. Ng et
al. [10] encode CNN feature and the convolutional feature
maps globally into VLAD. In [18], Tolias et al. produces
an effective visual descriptor by simply applying a spatial
max-pooling over all locations on convolutional feature maps.
In our scenarios, instance retrieval differs slightly from image
retrieval, because it focuses on image regions containing the
target object excluding the background, rather than the
entire image.

Deep metric embedding : Deep metric learning is proved
to yield impressive performance for measuring the similari-
ty between images. Siamese network or triplet loss is much
more difficult to train in practice. To learn more effective and
efficient representation, some works are designed for hard
sample mining, which focuses on batch of samples that are
considered hard. FaceNet [15] is employed, which suggested
an online strategy by associating each positive pair in the
minibatch with a semi-hard negative example. By jointly
pushing away multiple negative examples at each iteration,
Sohn [16] further extended the triplet loss into N-pair loss to
improves triplet loss. For a massive inventory like Alibaba,
the issue that the new products update frequently makes it
computationally inefficient and infeasible to collect image
triplets across all categories, we design the online hard sam-
pling mining in terms of the retrieval process and user click
behavior, which prove especially impressive when the images
are fine-grained and various.

Weakly supervised object localization: A number of recent
works are exploring weakly supervised object localization
using CNNs [3, 5, 11]. In order to localize objects, Bergamo
et al [3] propose a technique for self-taught object localiza-
tion involving masking out image regions to identify the
regions causing the maximal activations. Cinbis et al [5] and
Pinheiro et al [11] combine multiple-instance learning with
CNN features to localize objects. However, these approaches
yield promising results are still in multi-stages which are not
trained end-to-end. Some works are required multiple network
forward passes for localization, which makes it difficult to
scale in practice data. Our approach is trained end-to-end to
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Figure 2: Overview of the overall visual search architecture.

learn the object location and features of the images without
strong annotations.

In spite of success of above works, there are still challenges
and issues about how to settle the real product to the ground
for discovering the most relevant items for user intention. Giv-
en Alibaba scale datasets, it is challenging and non-trivial to
deal with billions of data and perform satisfying performance
and latency.

With these realistic challenges in mind, we propose a
hybrid scalable and resource efficient visual search system.
We conclude our contributions as following:

1)We introduced an effective category prediction method
using model and search-based fusion to reduce the search
space. Compared with the traditional model-only method,
our approach has better scalability and achieves better per-
formance for confusion categories and domain restrictions.

2)We proposed a deep CNN model with branches for join-
t detection and feature learning. Unlike fully supervised
detection methods that are trained with huge expense of
human labeled data, we propose to simultaneously discover
the detection mask and exact discriminative feature without
background disturbance. We directly apply user click behav-
iors to train the model without additional annotations in a
weakly supervised way.

3)As the deployed mobile application, we finish the re-
trieval process using binary indexing engine and re-ranking
to improve the engagements. We allow users to freely take
photos to find identical items with millisecond response and
lossless recall in a highly available and scalable solution.
Extensive experiments demonstrate the effectiveness of the
end-to-end architecture of Pailitao to serve visual search for
millions of users.

3 VISUAL SEARCH ARCHITECTURE

Visual search aims at searching for images by visual features
to provide users with relevant image list. As the retrieval
services in terms of professional image search engine, Pailitao
launched on line for the first time in 2014, by continuous
polishing of product technology, it has become the application
of millions of users. With the growth of business, we also
settle down the stabile and scalable visual search architecture.

Figure 3: The top row is the results without de-
tection, which show more obvious disturbing back-
ground. Meanwhile, the bottom row shows the de-
tected results, which have a very significant improve-
ment and very promising.

Figure 2 illustrates the overall visual search process of
Pailitao, which is divided into offline and online process flow.
Offline process: this mainly refers to the entire process of
the building index of documents every day, involving item
selection, offline feature extraction, indexing construction.
After execution is completed, online inventory will be updated
every day in a specified time. Online process: this mainly
refers to the key steps to obtain the final result of the return
process when a query image is uploaded by the user. This
shares the similar process as the offline, comprising online
category prediction, online detection and feature extraction.
Finally, we retrieve the result list by indexing and re-ranking.

3.1 Category Prediction

3.1.1 Item inventory selection. There are vast amounts of
product categories and images, including the PC main images,
SKU images, unboxing images and LOG images, covering all
aspects of the E-commerce. We need to select the relative
interesting images of the users from these massive images as
item inventory to be indexed. We first filter the full gallery
according to shopping preferences and image quality. For
the reason that too many same or highly similar items exist
on Taobao, the final search results will appear in a large
number of identical items without the filter process, resulting
in poor user experience. After that, we add the duplicate
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Figure 4: PVLOG triplets mining strategy using user
click data.

image remove module, which aims to remove the identical or
highly similar items and optimize the indexing documents.

3.1.2 Model and search-based fusion. Taobao category is a
hierarchy system of leaf categories, considering both certain
visual and semantic similarity. Category system is not just
a technical issue, but also a business problem in favor of
consumer awareness. Currently, we predict 14 set categories
in Pailitao to cope with user preference and narrow down the
search space, covering the all leaf categories, such as shoes,
dress, bags etc. For model-based part, we deploy state-of-the-
art GoogLeNet V1 [17] network for trade-off between high
accuracy and low latency. The network is trained using subset
of item inventory with category labels, which contains diverse
product categories. As the input, each image is resized to
256× 256 with random crop to 227× 227 following standard
setup [17]. To train the network, we use the standard softmax-
loss for classification task. For search-based part, we exploit
the discriminative capacity of the output feature from deep
network. Specifically, we collect 200 million images as the
reference set with the ground truth category as pair (𝑥𝑖, 𝑦𝑖).
We use binary search engine to the retrieve Top 30 results in
reference set. We weight the contribution 𝑦𝑖 of each 𝑥𝑖 in 30
neighbors to predict the label 𝑦 of query 𝑥. This is based on
the distances to query 𝑥 using the weight function 𝑤(𝑥, 𝑥𝑖) =
exp(−𝜆|𝑥−𝑥𝑖|)22, where 𝜆 is estimated in the weight function
by maximum likelihood 𝜆* = argmaxΣ𝑛

𝑖=1𝑙𝑜𝑔Pr(𝑦𝑖|𝑥𝑖;𝜆).
To improve the category prediction accuracy, we weighted

fuse the model-based and search-based results. The valida-
tion set is also collected from the inventory data and cover
all the categories. Benefit from the distinguishing ability of
the features, the search-based method correct the confused
category and improve the final results. Overall, the fusion
brings over 2% absolute improvement to Top-1 accuracy in
category prediction.

3.2 Joint Detection and Feature Learning

In this section, we will introduce the joint detection and
feature learning based on user click behavior. The main
challenge under the product image search scenario is the
large discrepancy between the images from consumers and
sellers. The sellers’ images are usually of high quality, which
are shot under controlled environments with high-end camera.
However, the consumers’ query images are usually shot by low-
end mobile phone camera and may exist uneven illumination,
large blur and complex background. In order to reduce the

Figure 5: Deep joint model with two branches for
joint detection and feature learning. The top part is
the detection branch. The bottom part is the feature
branch.

complex background impact, it is necessary to locate the
target from the image. Figure 3 reflects the user’s query,
demonstrating the importance of subject detection in the
search results. To align the image feature between the buyers
and sellers without background clutter, we propose a deep
CNN model with branches based on deep metric learning to
learn detection and feature representation simultaneously.

To maximum extent, we take advantage of the PV(Page
View)-LOG images with the user clicked data for hard sample
mining. As result, we construct valid triplets by user clicked
images that is able to jointly learn object location and feature
without further bounding box annotations.

3.2.1 PVLOG triplet mining. Specially, given an input im-
age 𝑞, the first problem is to match the CNN embeddings 𝑓(𝑞)
of heterogeneous images from customers and sellers reliably.
It means we need to pull the distance between query image 𝑞
and its identical product image 𝑞+ closer than the distance
between query image 𝑞 and a different product image 𝑞−.
Therefore, triplet ranking loss is used as loss(𝑞, 𝑞+, 𝑞−):

[L2(𝑓(𝑞), 𝑓(𝑞+))− L2(𝑓(𝑞), 𝑓(𝑞−)) + 𝛿]+ (1)

where L2 denotes the normalized distance between two fea-
tures and 𝛿 is the margin(𝛿 = 0.1). 𝑓 is parameterized by a
CNN that can be trained end-to-end.

The main difficulty is how to obtain hard samples for
training samples [21]. As a straightforward way, we select
positive images from the same category as the query image
and negative images from another category. However, positive
and negative images may produce large visual difference
compared with the query, which result in that triplet ranking
loss easily get zero and contribute nothing during the training.
Under the product image retrieval scenario in Figure 4, we
expect that a huge portion of the users click the identical
product images from the returned list, which indicates the
clicked images 𝑑click can be seen as the query’s positive images.
The merit of non-clicked images 𝑑nonclick is that they are
usually hard negatives, meaning they are similar to query
image with different product. However, non-clicked images
still contain identical item to the query because the user may
only click one or two of results when many identical product
images return. To filter the non-clicked identical images, the
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negative image 𝑞− for query 𝑞 is computed as following,

𝑞− ∈ {𝑑nonclick|min[dist(𝑑nonclick, 𝑞),dist(𝑑nonclick, 𝑑click)] ≥ 𝛾}
(2)

To compute the dist() of the feature, we adopt a multi-feature
fusion method by combining the local feature, previous ver-
sion feature and pre-trained ImageNet [14] feature, which
ensure noisy negatives to be found more accurately. The
similar procedure is applied to click images to obtain more
accurate positive images.

𝑞+ ∈ {𝑑click|dist(𝑑click, 𝑞) ≤ 𝜀} (3)

To further expand all the available data in a mini-batch,
all negative images are shared among the generated triplets
in a mini-batch. By sharing the negative samples, we can
generate 𝑚2 triplets before entering the loss layer compared
with 𝑚 triplets if we don’t share. To further reduce the
noises in the training images, the original triplet ranking loss
loss(𝑞, 𝑞+, 𝑞−) is improved as,

loss =
1

|𝑄|
∑︁
𝑞∈𝑄

1

|𝑁𝑞|
∑︁

𝑞−∈𝑁𝑞

[L2(𝑓(𝑞), 𝑓(𝑞+)) (4)

−L2(𝑓(𝑞), 𝑓(𝑞−)) + 𝛿]+,

𝑄 = {𝑞|∃𝑞−,L2(𝑓(𝑞), 𝑓(𝑞+))− L2(𝑓(𝑞), 𝑓(𝑞−)) + 𝛿 > 0},
𝑁𝑞 = {𝑞−|L2(𝑓(𝑞), 𝑓(𝑞+))− L2(𝑓(𝑞), 𝑓(𝑞−)) + 𝛿 > 0}

where the loss is the average computed on the query-level
instead of the triplet-level, in which way we can reduce the
impact of the noisy query and balance the samples. With the
triplet ranking loss, we can map the buyers’ real-shot images
and sellers’ high quality images into the same space by CNN
embeddings, so that images from heterogeneous sources can
be matched reliably.

3.2.2 Unified deep ranking framework. The second prob-
lem is to cope with the background clutter in the images.
A straightforward method is deploying off-the-shelf object
detection algorithms such as Faster-RCNN [13] or SSD [9].
However, this approach separates the process with huge time
and bounding box annotation cost that may be not optimal.
We seek to jointly optimize the detection and feature learning
with two branches, a deep joint model is shown in Figure 5.

We deploy deep ranking framework to learn the deep fea-
tures as well as detection mask by feeding deep joint models of
(𝑞, 𝑞+, 𝑞−) as the triplets simultaneously, maximizing the pos-
itive and negative characteristics in triplets and detecting the
informative object mask without bounding box annotations.
The overall deep ranking framework is shown in Figure 6.
In each deep joint model, the detection mask 𝑀(𝑥, 𝑦) can
be represented by a step function for bounding box approx-
imation in the detection branch as shown in Figure 5, we
element-wise multiply the image with the mask 𝑀 using
rectangle coordinates(𝑥𝑙, 𝑥𝑟, 𝑦𝑡, 𝑦𝑏).

𝑀(𝑥, 𝑦) = [ℎ(𝑥− 𝑥𝑙)− ℎ(𝑥− 𝑥𝑟)]× [ℎ(𝑦 − 𝑦𝑡)− ℎ(𝑦 − 𝑦𝑏)](5)

where ℎ(𝑥− 𝑥0) =

{︂
0, 𝑥 < 𝑥0

1, 𝑥 ≥ 𝑥0

Figure 6: Unified deep ranking framework consist-
s of deep joint models for (𝑞, 𝑞+, 𝑞−) by feeding the
triplets into the network.

However, the step function 𝑀(𝑥, 𝑦) is not differentiable. In
order to perform end-to-end training, we can approximate
the step function by a sigmoid function𝑓(𝑥) = 1

1+𝑒−𝑘𝑥 with

𝑘 large enough to make it differentiable. To utilize the deep
ranking framework, the triplet ranking loss addresses the
region of target without background impact and encourages
the discrimination of the embedding simultaneously. Notice
that we only require weakly supervised user click data and
do not rely on annotations of any bounding box for training,
which significantly reduce the cost of human resource and
improve the training efficiency.

3.3 Image Indexing and Retrieval

3.3.1 Large-scale search of billion-scale images. A real-time
and stable search engine is very important since tens of
millions of users are using the visual search service in Pailitao
every day. So we adopt a multi-replications and multi-shards
engine architecture as shown in Figure 7, which is not only
fault-tolerant, but also very good scalability.

Multi-shards: An index instance is often difficult to store
in a single machine with respect to memory and scalability.
We usually use multiple machines to store the entire set of
data, each shard storing only a subset of the total vectors.
For a query, every shard node will search in its own subset
and return its 𝐾 nearest neighbors. After that, a merger
will be used to sort the multi-list candidates into the final
𝐾 nearest neighbors. Multi-shards can meet the scalability
of data capacity by dynamically adding shards, and each
machine only handles a fraction of vectors, helping to improve
performance and recall.

Multi-replications: Query per second (qps) is an important
metric for online real-time system. For Pailitao, the qps is
very high, which means the latency of the search engine
responses to each query is very small, posing a huge challenge
to the system. Besides Alibaba has a lot of big promotions
each year, it will make the qps fluctuate as much as ten times.
Considering the above issues, we equip our engine with the
multi-replications mechanism. Suppose there are Q queries
visiting our system at the same time, we divide these queries

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

997



Figure 7: Multi-replications and multi-shards engine
architecture for image indexing.

into R parts, each part having Q/R queries. Each query part
separately requests an index cluster. In this way, the number
of queries that an index cluster need to process at one time
decrease from Q to Q/R. With appropriate replications, we
can ensure the qps not exceed the theoretical peak value.

On each node, two types of indexes are used: coarse filter
and fine re-rank. The coarse filter is an improved binary in-
verted index constructed based on binary feature(binarization
of CNN feature), with image ID as key and binary feature
as value. With Hamming distance calculation, one can quick-
ly filter out a large number of mismatched data. And then
we will sort out the 𝐾 nearest neighbors from the returned
data based on their complete binary codes. Fine re-rank is
used to make a more accurate sorting refinement. It re-ranks
the candidates which come from the coarse filter depending
on additional metadata, such as visual attributes and local
features. This process is relatively slow, partly caused by
metadata stored in non-binary form, another unnegligible
reason is the metadata are usually too big to locate on the
memory, which means the cache hit rate is a key impact on
the performance.

3.3.2 Quality-aware image re-ranking. We further exploit
the quality-aware metadata to improve the Click Through
Rate(CTR) and Click Value Rate(CVR) in order to evolve
more users. Considering the initial results are obtained only
by the appearance similarity, we further utilize the semantic
information to re-rank the Top 60 results, including sales
volume, percent conversion, applause rate, user portrait, etc.
We utilize Gradient Boost Decision Tree to ensemble corre-
lated descriptive features of different dimensions and Logistic
Regression to scale the final score to [0, 1], which guarantee
both appearance and semantic similarity and ensure that
importance of each dimension can be learned. Re-ranking by
quality information refines the low-quality images list with
side properties while preserving the overall similarity.

4 EXPERIMENT

In this section, we conduct extensive experiments to evaluate
the performance of each module in our system. We take the
GoogLeNet V1 model [17] as the base model for category
prediction and feature learning, which follow the protocol in
Section 3.1 and 3.2. To conduct evaluation for each component

Figure 8: t-SNE visualization [20] of 512-dim seman-
tic feature for 5 leaf furniture categories (best viewed
in color).

in visual search, we collected 150 thousand highest recall
images along with the identical item labels of retrieved results.
Our High Recall Set covers various real-shot images in 14
categories as shown in Table 1. We demonstrate the end-
to-end evaluation result of all components in the unified
architecture with various evaluation metrics in Table 1.

4.1 Evaluation of Category Prediction

We conduct experiments to evaluate the performance of
our fusion approach against model-based and search-based
method. In Table 1(A), we show that our fusion approach
results in better category prediction in terms of classifica-
tion Accuracy@1. Our search-based model achieves average
Top-1 Accuracy 85.51%, which is slightly lower than model-
based 88.86%. However, search-based method achieves much
higher results than model-based method in some categories,
i.e., shirt, pants, bags. Overall, we report the Accuracy@1
result 91.01% of our fusion approach for category predic-
tion, which increase the model-based method by 2.15%. The
results demonstrate the complementary property of model-
based and search-based methods and the fusion corrects some
misclassifications of model-based method.

4.2 Evaluation of Search Relevance

Effect of feature branch: To evaluate the performance of fea-
ture learning, we use the High Recall Set as the query set to
search for similar images in the item inventory. We evaluate
the learned feature by measuring the search relevance. Re-
call@K of the identical item by varying the number of top
K returned results is used as Identical Recall metric. This
means the query is considered to be correctly classified if
there is at least one returned image belonging to the identical
item among the top 𝐾 retrieved results. The metric measures
the number of the relevant result, as the identical item will
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Table 1: The end-to-end evaluation of each component on High Recall Set.

Module Component Metric shirt dress pants bags shoes accessories snacks cosmetics beverages furniture toys underdress digital others Average

(A)Category prediction
model-based Accuracy@1 0.8163 0.8695 0.726 0.9384 0.9523 0.9432 0.9041 0.9224 0.9469 0.9247 0.8272 0.83 0.9202 0.5952 0.8886
search-based Accuracy@1 0.8651 0.7443 0.7644 0.9547 0.9666 0.9451 0.8365 0.9415 0.9249 0.8606 0.8225 0.6969 0.8282 0.5476 0.8551
fusion Accuracy@1 0.8042 0.8977 0.7781 0.9548 0.9809 0.9734 0.9104 0.9573 0.9615 0.9284 0.8781 0.8399 0.9387 0.5476 0.9101

(B)Joint detection and feature learning
Identical Recall@1 0.464 0.498 0.393 0.66 0.434 0.224 0.541 0.621 0.452 0.267 0.511 0.17 0.349 0.439 0.465
Identical Recall@4 0.56 0.616 0.526 0.743 0.583 0.35 0.6 0.716 0.546 0.37 0.603 0.2 0.446 0.517 0.564
Identical Recall@20 0.617 0.687 0.609 0.781 0.688 0.489 0.628 0.75 0.6 0.437 0.669 0.31 0.532 0.566 0.629

(C)Indexing and retrieval
indexing engine

Linear Recall@1 99.5% 99.87% 99.88% 99.88% 100% 100 % 100% 100% 100% 99.83% 100% 100% 100% 97.99% -
Linear Recall@10 99.27% 99.92% 99.92% 99.71% 99.99% 99.91% 100% 99.97% 100% 99.98% 99.99% 100% 100% 97.6% -
Linear Recall@60 98.68% 99.79% 99.83% 99.52% 99.98% 99.86% 100% 99.96% 100% 99.98% 99.99% 100% 100% 96.47% -

re-ranking CVR +8.45% +7.35% +4.25% +8.55% +10.15% +7.54% +6.49% +8.34% +9.45% +10.21% +7.19% +6.23% +9.17% +6.63% +7.85%

Table 2: Comparisons of different visual features in
High Recall Set.

Model Recall@1 Recall@4 Recall@20

Generic AlexNet [8] 0.023 0.061 0.122

Generic GoogLeNet V1 [17] 0.067 0.103 0.201

Generic ResNet50 [6] 0.108 0.134 0.253

Generic ResNet101 [6] 0.128 0.142 0.281

GoogLeNet V1 feature branch(Ours) 0.415 0.505 0.589

produce the most possible conversions. As the baselines, we
perform start-of-the-art model-based results on the images.
Our initial experiment utilized features from the original
generic model (pretrained for ImageNet) [6, 8, 17]. We com-
puted Identical Recall@K(K=1,4,20) based on the last FC
layer activations of the model. Table 2 shows the Identical
Recall performances of these models. Instead of deep joint
model, we only select the feature branch acting on entire
image that is fine-tuned by our data, which shows significant
improvements compared with others.

Also, we report the overall feature results of the deep joint
model on all categories in Table 1(B). For all experiments, we
search for 20 similar images within each predicted category
for Recall@K(K=1,4,20). Identical Recall of our approach
improves as 𝐾 increases, which clearly shows that our ap-
proach does not introduce many irrelevant images into the
top search results. Compared to single feature branch, we
are able to achieve better performance when retrieving with
joint detection and feature learning model. The joint model
suppresses the background interference and outperforms all
baseline variants in all categories.

Effect of PVLOG triplets: As illustrated in Section 3.2,
we found that most of clicked images are likely aimed at
the identical items with query, so we train the deep features
by mining the PVLOG images to form valid triplets with-
out further annotations. To evaluate the superiority of the
PVLOG triplets, we compared it with the FC layer feature
of the model that are trained for category prediction using
categories data. As shown in Figure 9(A), we increase the
Identical Recall@1 by 17 percentage point. In terms of Mean
Average Precision(MAP) metric, we observe that we surpass
the feature with category data by 5% MAP@1, indicating we
obtain the better and more relevant list.

We will further confirm the fine-grained discriminating
capacity of our feature qualitatively. Figure 8 illustrates
the embeddings using tSNE [20] based on 512-dim semantic
features of FC layer for 5 leaf furniture categories from the
item inventory. This strengthens our claim qualitatively that

Figure 9: Comparison between feature with category
data and pvlog data on A) Recall (B) MAP.

our feature preserves semantic information and also local
neighborhood. It is important to encode semantic information
to mitigate the undesirable effect of collision, since the items
in collision will then be semantically similar. In Figure 10,
we visualize the retrieval results for real-shot query images,
which presents satisfying returned list on identical items.

4.3 Evaluation of Object Localization

As shown in Table 3, we report that our location results
of deep joint model achieves IOU@0.5 98.1% and IOU@0.7
70.2% compared with groundtruth bounding boxes, which
are only slightly lower than fully supervised detection SSD
method [9]. Figure 11 presents the detection results of the
public available images, which indicates the discriminative
power of the learned detection branch and capture of object
content. Meanwhile, we obtain the competitive results with
much faster speed compared with the fully supervised method
without compromising the Identical Recall, which achieves
in a single forward pass with 20ms.

To further address the performance, we also visualize the
locations of the selected objects, which localizes the fashion
objects in Figure 10. From these examples, we extract visual
and semantic feature to get better retrieved image list. A
user would easily click the identical items with query and
make possible payment.

4.4 Evaluation of Indexing and Reranking

We show the Linear Recall for our indexing evaluation, which
is utilized on 3 billion images with coarse filter of 200 thou-
sand data in Table 1(C). We compare the performance of our
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Figure 10: Qualitative results of our visual search. Real-shot query images are followed by top 10 ranked
images from active listings.

Table 3: Quantitative results of object localization
compared with fully supervised detection SSD [9].

Methods IOU@0.5 IOU@0.7 Recall@1 Recall@4 Recall@20 latency

Fully supervised detection SSD [9] 98.1% 95.1% 46.7% 56.2% 63.1% 59 ms

Weakly supervised detection(Ours) 94.9% 70.2% 46.5% 56.4% 62.9% 20 ms

index result in terms of linear search, where we consider the
results of the linear search as the groundtruth and evaluate
how much the result approximate the groundtruth. We use
Linear Recall@K to measure the quality and relevance of the
rank list. The results show that we can achieve lossless recall
within Linear Recall@60 compared with linear search. We
also release the latency of several main components. By ex-
tensive optimization and leveraging the computational power
of cloud, given a user query, it takes 30ms (model + search)
on average to predict the category, and 40ms to generate
image feature embedding in shopping scenarios. The rank-
ing list takes 10ms to 20ms to return 1200 items, because
coarse filter does not rely on the size of category. The quality-
aware re-ranking only takes 5ms to re-rank Top 60 results.
Therefore, the total latency of hundreds of millisecond, which
provides users with a acceptable and enjoyable shopping ex-
perience. Furthermore, we performed the experiment that we
rerank Top 60 by deploying the quality-aware re-ranking in
Table 1(C), achieving a relative 7.85% increase in average
CVR engagement.

5 CONCLUSIONS

This paper introduces the end-to-end visual search system at
Alibaba. We deploy effective model and search-based fusion
method for category prediction. The deep CNN model with
branches is designed for joint detection and feature learning
by mining user click behavior without further annotations.
As the mobile terminal application, we have also presented
the binary index engine and discussed the way to reduce
development and deployment costs and increase user engage-
ment. Extensive experiments on High Recall Set illustrate the
promising performance of our modules. Additionally, we show
that our visual search solution has been deployed success-
fully to Pailitao, and integrated into other Alibaba internal
application. In our future work, object co-segmentation and
contextual constraints within images will be leveraged in
Pailitao to enhance visual search relevance.
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