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Abstract—Website Fingerprinting (WF) attack is an side-
channel attack which aims at encrypted web traffic. WF at-
tackers recognize encrypted website traffic through constructing
fingerprinting for each website using the flow-based features
extracted from encrypted traffic. WF defense typically aims at
modifying the features of the encrypted websites. However, those
countermeasures either cause high overhead or fail to counter the
subsequent WF attacks. Especially, the newest WF attacks, which
are based on deep neural network, is able to classify the defended
traffic by directly learning from the labeled defended traffic. In
this paper, we propose an novel defense through making use of the
trick that machine learning models are vulnerable to adversarial
exmaples. We design WF-GAN, a GAN with an additional WF
classifier component, to generate adversarial examples for WF
classifiers through adversarial learning. As the website set is
divided into source and target website, WF-GAN are trained to
map websites features from source set to adversarial examples
and make adversarial examples more similar to the website
features in the target set. The experimental result shows that
WF-GAN achieves 90% success rate with at most 15% overhead
for untargeted defense, which outperforms previous defense. In
addition, adversarial examples based defense support targeted
defense, which is not support by traditional defense. The result
shows that WF-GAN achieves over 90% targeted defense success
rate when the target websites set is twice as many as the source
website set.

Index Terms—network security, privacy, adversarial learning

I. INTRODUCTION

Website fingerprinting (WF) attacks typically target at en-

crypted tunnels such as SSL/TLS, SSH and VPN, which

are used to secure network communications. Especially, the

attack causes privacy risk to the Tor [1], which is the widely

used anonymity network. The attackers construct unique fin-

gerprinting to recognize encrypted website traffic through

modeling the flow-based features of encrypted traffic. As

supervised machine learing applied, the construction of web-

site fingerprinting is integrated into the process of training a

classifer [2], [3]. Firstly, primitive flow-based features, includ-

ing packets length sequence and packet direction sequence,

are extracted from traffic flows. Then, high order semantic

features (e.g. the number of outgoing and incoming packet,

*Gang Xiong is the corresponding author, Email: xionggang@iie.ac.cn.

the consecutive packet in the same direction) are computed

based on those primitive features treated as the input of WF

classifiers. Finally, WF classifier is trained to learn the label

of traffic flow in the training stage and predicts label of traffic

flow in the testing stage.

Recently, several studies make use of deep learning to

directly classify the primitive features of encrypted traffic [4]–

[6]. Despite the state-of-the-art WF defenses consuming a

high overhead to defend against WF attack, WF attack based

on deep neural network exhibits the capability of identifying

the defended traffic when using the labeled defened traffic to

train nerual networks. Fortunately, deep neural networks have

been proven to be vulnerable to adversarial examples [7], [8].

Adversarial machine learning community show that adversar-

ial examples are effective to defend against machine learning

based attacks [9].

In this paper, we make use of adversarial examples to

defend against WF attack. Adversarial examples are small

perturbations of the original examples which result in classifier

misclassify the original example to a specific class (targeted

attack) or any classes except for the correct class(non-targeted

attack). In addition, WF defenses are supposed to generate

synthetic traffic features which are difficult to find the differ-

ence between the fake and the real, we consider leverage the

recently proposed Generative Adversarial Networks (GANs)

to achieve this goal.

Specifically, we combine GAN and adversarial examples

to defend against WF attacks. We propose to divide traffic

into source traffic and target traffic. We train a generative

network to generate perturbation for the traffic features from

the source set and to the target traffic features. Simultaneously,

we train a discriminator network to classify the source traffic

features and target traffic features. The generator produces fake

target traffic features by recurrent training both generator and

discriminator. Moreover, we train a WF attack classifier to

receive the fake traffic features and using an optimized based

adversarial generation algorithm to update the parameter of

the generator. We name this approach WF-GAN. WF-GAN

achieve two goals: (i) perturb the traffic features from original

class into the other classes (untargeted defense) and (ii) map

the generated traffic features to the most similar targeted traffic

(targeted defense). By posing the WF defense problem as978-1-7281-8086-1/20/$31.00 ©2020 IEEE
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an adversarial example generation problem, we significantly

improve the defense success rate and reduce the overhead.

The key contributions of our work are as follows:

• We propose a novel WF defense using GANs to generate

adversarial exmaple for WF attacks. We design a GAN

with a WF model components, named WF-GAN. WF-

GAN is structured to input both source websites traffic

and target websites traffic, which not only have the

ability of untargeted defense but also support targeted

defense. We train a generative adversarial network to

automatically learn to generate adversarial example. The

generator after training can generate adversarial example

without accessing the WF model anymore.

• We use the burst-based model as WF model to replace

the original model which use sequence features as input.

By this way, WF-GAN is able to optimize adversarial

example using the gradient information. We show the

effectiveness of adversarial example based on both white-

box model and black-box model. In a black-box model,

we use an WF model using a smaller convolutional kernel

size than the original model.

• We evaluate WF-GAN and show it outperforms the state-

of-the-art defense, Walkie Talkie. It achieves 50% success

rate with 30% overhead. On the same attack model and

dataset, WF-GAN achieves 90% success rate with 5-15%

overhead. For the targeted defense, WF-GAN achieves

90% success rate when the source set size is 30 in the

black box scenarios.

The remainder of this paper is structured as follows. We give

a brief discussion of website fingerprinting and background of

adversarial example in Section II. We describe the design of

WF-GAN in Section III. In Section IV and V, we perform

comprehensive experiments on a public dataset collected over

Tor. Finally, we conclude in Section VI.

II. RELATED WORK

A. WF Attacks and Defenses

1) website fingerprinting attack: WF attacks initially make

use of machine learning techniques to extract traffic fea-

tures and classify encrypted website, such as k-Nearest-

Neighbor [10], Support-vector machines [3]. Recently, WF

attacks based on these algorithms has been outperformed by

WF attack based on Deep Neural Networks (DNNs). Rimmer

et al. [4] propose the first DNN-based attack, AWF. They

show that DNN-based WF attack can identify thousands of

websites by automatcially extract features from the raw traffic

data. Sirinam et al. [5] propose Deep Fingerprinting (DF),

which defeat the existing defense such as WTF-PAD [11] and

Walkie-Talkie [12].

2) Website Fingerprinting Defense: WTF-PAD [11] and

Walkie-Talkie [12] are two state-of-the-art low-latency de-

fenses. Juarez et al. [11] propose WTF-PAD, which inserts

fake burst features sampled from the traffic features of other

classes into the traffic features of the original class. Li et

al. [13] demonstrate that WTF-PAD defense is vulnerable from

the view of information leakage. Wang and Goldberg [12]

propose Walike-Talkie, which mold the other traffic feature

into the original traffic features. However, WF attack can

achieve high Top-2 accuracy on Walkie-Talkie.

B. Generative Adversarial Networks

Goodfellow et al. [14] propose Generative adversarial Net-

works (GANs) and use GANs to generates synthetic image

that are similar to real image from noise data. Xiao et al. [15]

propose AdvGAN to generate adversarial examples for image

data, which inspires our work. We adapt AdvGAN to formulate

WF-GAN with several modification, including input and loss

function.

Rencently, there are a series of studies that apply GANs

to process network traffic, including traffic generation [16],

intrusion detection evasion [17], adapting malware commu-

nication [18], class imbalance in traffic classification [19].

For example, Ring et al. [16] proposed a flow-based traffic

generation to augment training data sets for network intru-

sion detection. They demonstrates GANs are promising to

generate high quality traffic features for both consecutive and

categorical data. For more related work, Li et al. [20] use

GAN to camouflage traffic. They propose FlowGAN, which

dynamically mimic benign traffic to circumvent censorship.

FlowGAN applies to mimic traffic feature for a specific

website while WF-GAN is able to defend many websites at

the same time.

C. Adversarial Example Attack

Szegedy et al. [7] are the first to discover that images can

be misclassified by deep neural networks through applying a

small perturbation. Goodfellow et al. [8] explain adversarial

examples are caused by the linear nature of neural networks.

They also propose fast gradient sign method (FGSM), an

adversarial example generation algorithm that minimizes the

L∞ norm of perturbation. Mardy et al. [21] generalize the

FGSM by projected gradient descent (PGD) which iteratively

moves adversarial example along the sign of the gradient with

projection. Carlini and Wagner [22] propose an optimization-

based method (C&W) that supports three norms (L0, L2, L∞),

which is currently the strongest adversarial example generation

algorithm. WF-GAN apply the C&W algorithm to optimize

the generator.

For adversarial example used in WF defense, Imani et

al. [23] propose Mockingbird that leveraging adversarial ex-

ample to defend against WF attack. This work is mostly closed

to our defense. Mockingbird claims use C&W to generate

adversarial exmaple. However, they neglect the key target

function and only rely on L2 to minimize the distance to

a randomly chosed example, which cause Mockingbird have

lower success rate and higher overhead than WF-GAN. In

addtion, Mockingbird generates adversarial example in an

iterative way. While WF-GAN can craft a batch of adversarial

example at same time without iteration after GAN training

stage, which makes WF-GAN more efficient.
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Fig. 1. The WF defense framwork using GAN to generate adversarial exmaples.

III. METHODOLOGY

In this section, we present WF-GAN architecture. We refer

to the paradigm of AdvGAN [15]. We adapt the discriminator

to take both source and target traffic, while the generator takes

only source traffic. For the target model, we introduce burst-

based model to replace sequence-based model to optimize

adversarial examples generated by the generator. For the loss

function, we use L1 distance rather than L2 distance in traffic

features to reduce the blurring introduced by L2 distance [24].

Fig. 1 illustrates the overview of the WF-GAN components.

A. Feature Transform

All the state-of-the-art DNN-based WF attacks on Tor take

the cell sequence as the model input, which can be seen as

the packet direction sequence. The WF defense problem in

this context can be posed as generate dummy packets (i.e. per-

turbations) and inserts into the packet sequence. However, the

insertion operation cannot be computed directly. We formulate

the operation by transforming the sequence-based features into

burst-based features.

Bursts are continuous outgoing and incoming packets. Typ-

ically, outgoing packets and incoming packets are represented

by 1 and −1, respectively. To encode sequence-based features

into burst-based features, consecutive items with the same

sign are accumulated. And to decode burst-based features

into sequence-based features, each elements in a burst-based

features is broken up into −1 and 1. The burst representation

of a traffic flow can be directly added by the generated

perturbation.

Here we define untargeted and targeted defense in WF-

GAN. We firstly divide the original set into S and T according

to a ratio (S/T ratio). Intuitively, the S/T ratio impact the

defense effect. Given a WF model F and traffic x , untargeted

defense is to cause x in S misclassify to any classes. And

targeted defense is to x in S misclassify to classes in T further.

B. WF-GAN Components

1) Generator: The generator’s input is an example x from

S and its output is the corresponding perturbations G(x). The

generated adversarial example T ′ is therefore x + G(x). T ′

is then feed to the WF model as adversarial example and the

discriminator as fake T . In the training stage, the generator

updates its parameters according to the feedback from both

the discriminator and the WF model.

Through this way, it is easy to restrict the adversarial

example x + G(x) to a reasonable input for WF model. For

example, the outgoing burst cannot add negative value which

means the incoming packet. We use threshold to limit the

maximum inserted packet. This is the clip operation before

generator output perturbation.

2) Discriminator: The discriminator judge if the example is

come from the S set or T set. In order to improve the stability

and rationality of perturbation generated by the generator, the

discriminator is trained to learn the adversarial example from

S or T . During the training stage, the discriminator is fed

with S, T and T ′. The corresponding outputs are Dx∼T(x),
Dx∼S(x) and Dx′∼T ′(x′), where x′ = x + G(x), x ∈ S.

The recognition ability of the discriminator augments during

the training, while the generator outputs perturbation is more

similar to target websites and minimize the added overhead.

3) Target model: Since the adversarial example is the burst

representation of the packet direction, it cannot be directly fed

into the original model. The operation that decodes the burst

representation cannot be executed in parallel, which makes

train the proposed GAN slow. We train a substitute WF model

that takes burst-based feature as input.
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C. Loss Function

First, we describe the loss function of the discriminator.

The discriminator is supposed to classify examples from T as

positive while examples from S as negative. Thus, it maximize

loss (1):

LD = Ex∼T [logD(x)] + Ex∼S [log(1−D(x))] (1)

Three items compose the loss function of the genera-

tor. Firstly, the key object of the generator is Fx∼S(x) �=
Fx∼S(x+G(x)). We refer C&W attack [22] and define the first

loss as the difference between the logits value (before softmax

function) of the orginal label t = F (x) and the maximum

logits value among all labels except t, which are calculated as

Ladv = Ex′∼T ′

(
∇F (x′)t − max

i �=(t=F (x))
(∇F (x′)i)

)+

(2)

The second term is from the discriminator. The adversarial

example is evaluated by the (3).

Lfake = Ex′∼T ′ [log (1−D(x′))] (3)

loss (1) and (3) can be directly used as the accuracy of the

discriminator and the probability of fake target traffic x +
G(x) identified by the discriminator, respectively. We refer

to AdvGAN use LSGAN [25] which loss is the least square

between real label and the predicted label of a batch examples

which set belongs to.

In addition, we choose L1 distance to restrict the extent of

manipulation. L1 distance shows a better performance than L2

distance.

Ldist = Ex∼S ‖G(x)‖1 (4)

In total, we combine these three functions as the target

function of the generator. Moreover, α and β is used as a

hyperparameters to adjust the weight.

minimize LG = Ladv + αLfake + βLdist (5)

IV. DATASET AND EXPERIMENT SETTING

We evaluate the proposed method on the state-of-the-art

WF attack, Deep Fingerprinting (DF) [5]. In [5], the authors

provide a Tor traffic dataset and perform WF attack against

two state-of-the-art defenses on this dataset, including Walkie

Talkie [12] and WTF-PAD [11]. We therefore compare per-

formances of the proposed dataset with performances of the

two defenses on the dataset.

A. Dataset

DF dataset contains 95 website traffic traces collected from

the top Alexa 100 website with 5 websites excluded. For each

correctly responded website, 1000 instances are collected and

each instance is a packet direction sequence and is represented

by 5000-dimentional vectors.

DF dataset is divided into DF training set, WF-GAN training

set and test set, which account for 80%, 10% and 10% of

total instances respectively. The training set contains 76000

instances. Both WF-GAN training set and test set contain 9500

instances. The original feature set is used to train the sequence-

based model, which is used to evaluate the effectiveness of

adversarial examples generated by our defense. We transform

the original sequence feature dataset to burst feature set to

train WF-GAN and burst-based models.

B. Models

1) Sequence-based Model: The model of the DF attack is

a Convolutional Neural Network (CNN) with well-designed

architecture. Specifically, the input of the DF model is 5000

dimensions and output of the DF model is 95 dimensions

units. It contains 4 blocks and each block is comprised of

two convolutional layers with batch normalization layer for

relieving overfitting. This model attains 98.2% accuracy on

the original test set.

2) Normal Burst-based Model: It is used to conduct ex-

periment on white-box scenarios. We transform the 5000-

dimensional packet direction vector into 1024-dimentional

burst vector, since the length of burst vector which is trans-

formed from the packet directions sequence of the top 100

websites mostly are less than this value. Consequently, the

input layer of the burst-based model consists of 1024 neurons

and the other layer is identical to the original packet sequence-

based model. The burst feature dataset is scaled to a smaller

range to promote GAN training. The scale factor is set to 128

after a premilitary experiment. The burst-based model attains

96.2% on the original test set.

3) Weak Burst-based Model: It is used to conduct exper-

iment on black-box scenarios. Due to the attacker’s model

is likely different with the targeted model used in WF-

GAN, we simulate a scenario that an attacker uses a more

sophisticated model than the defender. In fact, the defender

typically has more prior knowledge which results in a more

accurate model. In the WF-GAN training stage, the targeted

model is intentionally simplified. In detail, the convolutional

layers of the target model contain a half of convolutional

kernel size of the original WF model. Specifically, 32, 64,

128 and 256 one-dimensional convolutional kernels reduce to

16, 32, 64 and 128, respectively, for 4 convolutional blocks of

the original model. This model attains 95.8% accuracy on the

original test set.

C. WF-GAN

We train WF-GAN based on the normal burst-based model

and the weak burst-based model. The two WF-GAN is sep-

arately evaluate on the sequence-based model. We refer WF-

GAN based on normal burst-model as white box scenario.

While the WF-GAN based on weak burst-based model is

referred as black box scenario. In the GAN training stage,

the WF-GAN training set is used to train generator and

discriminator.

D. Metric

1) Success Rate: It is used to evaluate the effect of the

generated adversarial example for both targeted defense and

untargeted defense. The success rate for untargeted defense
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(SR-U) indicates the proportion of perturbed instances which

is classified to any categories except the correct category.

Walkie Talkie and WTF-PAD achieve roughly 50% and 10%

SR-U on DF dataset, respectively. The success rate for targeted

defense (SR-T) is calculated by the faction of perturbed

instances whose label is classified to the target set classes.

2) Overhead: It is used to evaluate the degree of the

modification to original traffic. We define overhead as the

number of inserted dummy packets which is same to Walkie

Talkie and WTF-PAD. In DF dataset, the average packet of

train set and test set is 1842 and 1841, respectively. We use

1800 to compute the the overhead percentage. The overhead

percentage indicates the incremental proportion of overhead

on a specific defense setting. For Walkie Talkie and WTF-

PAD, two methods achieve roughly 33% and 60% overhead

according to [5].

V. EXPERIMENTAL RESULT

In this section, we evaluate the performance of the proposed

approach on the stat-of-the-art WF attack under various source

set size setting and various threshold setting. We train WF-

GAN for 300 epochs with loss factor α = 1 and β = 3.

A. Evaluation on S/T Ratio
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Fig. 2. The defense performance on the burst-based model with different
source set size setting

We use different source set size to simulate different S/T ra-

tio. The source set size from 5 to 90, and corresponding target

set size from 90 to 5. Fig. 2 shows the defense effectiveness

and the overhead of the generator trained with various source

set sizes on the burst-based model. The defended website

traffic exhibits nearly 100% SR-U across all source set size

settings. In case of targeted defense, the SR-T is above 90% as

the source set size less than 35. As the number of the source

websites increasing, targeted defense shows unstable defense

performance. When the source set size ranges from 40 to 60,

the SR-T reduce to roughly 60%. When the source set size is

greater than 60, the SR-T reduces to 30%.

Fig. 3 illustrates the WF-GAN defense performacne on the

sequence model (i.e. original model) at white-box scenarios.

The result shows that the adversarial example generated by
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Fig. 3. The defense performance on the sequence model with different source
set size setting. WF-GAN is trained using a burst model whose architecture
is identical to the sequence model (white box scenario).

WF-GAN is effective for both targeted defense and untargeted

defense. Specifically, in case of source set size less than 35

and target set size more than 60, which means the number

of targeted websites is two times more than the number of

source websites, WF-GAN achieves roughly 90% success rate

on both targeted defense and untargeted defense.
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Fig. 4. The defense performance on the sequence model with different
source set size setting. WF-GAN is trained using a weak burst model whose
architecture is different with the sequence model (black box scenario).

Fig. 4 illustrates the defense performance of WF-GAN

trained based on the weak target model. As the S/T ratio

less than 0.5, WF-GAN exhibits a similar defense success

rate compared to WF-GAN trained based on full convolutional

kernel model. While the S/T ratio greater than 0.5, the success

rate of untargeted defense sharply fluctuates for different

settings. In many cases, our defense achieves 80% success

rate.

For the overhead performance, we set the factor of perturba-

tion distance loss β to 5. Compared with β = 5, the overhead

of the generated adversarial example is more stable and

slightly lower. WF-GAN achieves roughly 5% overhead when

the S/T ratios less than 0.5. Otherwise, WF-GAN achieves

about 10% overhead.
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Fig. 5. The defense performance on the sequence model for different threshold
setting. The source set size is 50. WF-GAN is trained using a burst model
whose architecture is identical to the sequence model (white box scenario).

B. Evaluation on Threshold

In WF-GAN, the threshold is an important hyperparam-

eter. It constrains the number of dummy packets for each

burst.Formally, it clips the Δx by L∞ norm . In order to

evaluate the best range of threshold, we conduct an experiment

to evaluate the performance of WF-GAN on various threshold

settings.

Fig. 5 shows the defense performance under thresholds that

ranges from 1 to 30. We choose 50 websites as source set and

45 websites as target set in this experiment. When threshold

is more than 1, WF-GAN can reach over 80% success rate of

untargeted defense. When threshold more than 4, WF-GAN

can reach over 90% success of untargeted defense. However,

the SR-T is between 20% and 40% as threshold increasing. As

the threshold increases, the proportion of overhead decreases.

In our dataset, WF-GAN reach the lowest overhead at a

threshold of 11 for WF defense.

C. WF-GAN loss analysis

Fig. 6. The comparison of Ladv descent curves at different threshold settings.
The epoch number means the number of training steps that all training data
are feed to model once time.

We explain the effect for different threshold settings through

loss Ladv which is derived from the target model. Fig. 6 gives

the representation of Ladv during the 300 training epochs

for thresholds from 1 to 4 and thresholds from 5 to 30 by

step 5. As the figure shown, when the threshold is 1, Ladv

reduces from 300 to 150 at initial epochs but slows down in

the subsequent training epochs. The result of WF-GAN on

threshold 2 is similar to the result of WF-GAN on threshold

1, whose Ladv reduced to the limitation of roughly 50. Ladv

reaches to the vicinity of the optimal value by increasing the

threshold. Except threshold of 1 and 2, the minimal value of

Ladv achieved by WF-GAN exhibits very limited difference.

Fig. 7. The curve of Ladv with respect to training epoch number for different
threshold settings. The horizontal axis represents the number of each epoch.
The vertical axis represents Ladv .

Fig. 7 presents the details of Ladv decent curve for threshold

more than 2. In the subfigure threshold 3 and 6, as the number

of training epoches increases, the loss decreases significantly.

However, as the threshold continues to increase, the amplitude

of the loss fluctuations increases. This is caused by the param-

eter of the generator is affected by the other two losses (i.e.

Ldist and Lfake) after Ladv reaches a small range. As these

subfigures show, Ladv mostly concentrate on the range from

5 to 15. When the threshold is more than 12, the fluctuation

makes the generator stop at a value that is non-minimal

Ladv . For instance, threshold 24 and 27 settings exhibit a

loss increasing as Ladv reaching a lowest value. The large

threshold value is likely to lead a poor performance, especially

for WF-GAN trained based on a black box model. Therefore,

we choose threshold 10 as the default hyper-parameter value

in previous experiments.

Fig. 8 show the training curve of generator and discriminator

for different source set size range from 15 to 90. The GAN loss

of generator can be seen as the possibility of being identified

as a fake target website by the discriminator. In the subfigures

of 15 source websites and 30 websites, as the capacity of the

discriminator increases, the generator loss does not increase.

At the 45 and 60 source websites settings, approximately a
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Fig. 8. The generator loss (Lfake)and discriminator loss curve (LD) with
respect to training epoch number for different source set size settings. The
horizontal axis represents the number of each epoch. The vertical axis means
the loss of generator and discriminator, which are represented by blue line
and orange line, respectively.

half of adversarial examples are classified as the websites

from source websites at the end of training. Finally, almost all

adversarial examples are identified by the discriminator when

the source website set is twice more than the target website

set.

VI. CONCLUSION

In this paper, we proposed WF-GAN, a generative ad-

versarial network for defending website fingerprinting attack

based on deep neural networks. WF-GAN support both untar-

geted defense and targeted defense. Previous defense methods

mostly consider reducing the accuracy of the WF attack on the

original traffic, which corresponds to our untargeted defense.

We evaluate WF-GAN on both white box scenarios and black

box scenarios. The result show that our proposed defense is

effective defend encrypted traffic from WF attack with lower

overhead than previous defense.
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