
OnRL: Improving Mobile Video Telephony via Online
Reinforcement Learning

Huanhuan Zhang+, Anfu Zhou+, Jiamin Lu+, Ruoxuan Ma+, Yuhan Hu+, Cong Li+,
Xinyu Zhang⋄, Huadong Ma+, Xiaojiang Chen†

+Beijing Univ. of Posts and Telecom. {zhanghuanhuan, zhouanfu,mhd}@bupt.edu.cn
⋄ University of California San Diego xyzhang@ucsd.edu
† Taobao Inc. zhongsheng.cxj@taobao.com

ABSTRACT
Machine learning models, particularly reinforcement learning (RL),
have demonstrated great potential in optimizing video streaming
applications. However, the state-of-the-art solutions are limited
to an “offline learning” paradigm, i.e., the RL models are trained
in simulators and then are operated in real networks. As a result,
they inevitably suffer from the simulation-to-reality gap, showing
far less satisfactory performance under real conditions compared
with simulated environment. In this work, we close the gap by
proposing OnRL, an online RL framework for real-time mobile
video telephony. OnRL puts many individual RL agents directly
into the video telephony system, which make video bitrate deci-
sions in real-time and evolve their models over time. OnRL then
aggregates these agents to form a high-level RL model that can help
each individual to react to unseen network conditions. Moreover,
OnRL incorporates novel mechanisms to handle the adverse im-
pacts of inherent video traffic dynamics, and to eliminate risks of
quality degradation caused by the RL model’s exploration attempts.
We implement OnRL on a mainstream operational video telephony
system, Alibaba Taobao-live. In a month-long evaluation with 543
hours of video sessions from 151 real-world mobile users, OnRL out-
performs the prior algorithms significantly, reducing video stalling
rate by 14.22% while maintaining similar video quality.

CCS CONCEPTS
•Networks→ Transport protocols;Mobile networks; •Com-
puting methodologies → Machine learning.

KEYWORDS
Video Telephony; Online Learning; Reinforcement Learning
ACM Reference Format:
Huanhuan Zhang, Anfu Zhou, Jiamin Lu, Ruoxuan Ma, Yuhan Hu, Cong
Li, Xinyu Zhang, Huadong Ma, Xiaojiang Chen. 2020. OnRL: Improving
Mobile Telephony via Online Reinforcement Learning. In The 26th Annual
International Conference onMobile Computing and Networking (MobiCom’20),
September 21-25, 2020, London, United Kingdom. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3372224.3419186

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’20, September 21–25, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7085-1/20/09. . . $15.00
https://doi.org/10.1145/3372224.3419186

1 INTRODUCTION
Real-time interactive video communication carries a dominant frac-
tion of today’s Internet traffic [5], largely due to many mainstream
video telephony applications, such as Facetime, Skype, Google
Hangouts, WeChat, etc. With the upgrade of the LTE-Advanced
and 5G network infrastructures, new use cases are also rapidly
emerging, such as live video/VR broadcasting [23, 31], cloud gam-
ing [53, 58], tele-operation of surgery robots or vehicles [39, 59].
Such interactive video applications impose the toughest demand on
the network in terms of bandwidth and latency. Although the tele-
com infrastructure strives to match the demands, it only promises
best effort service, and has to rely on the application itself to adapt
to the highly dynamic network conditions.

To maintain high quality of experience (QoE), traditional in-
teractive video applications adopt rule based protocols, e.g., con-
gestion control at transport layer and video bitrate adaption on
the application. However, the pre-programmed rules fall short of
accommodating the highly heterogeneous modern Internet con-
sisting of cellular/WiFi wireless links, cross-continent fiber links,
intra-cloud data-center links, etc., all with diverse bandwidth, la-
tency, and buffer capacities. In recent years, data-driven approaches
[25, 33, 42, 60, 69] have been explored to improve video QoE. For in-
stance, Pensieve [42] employs reinforcement learning (RL) in video
streaming systems to adapt the video bitrate, aiming to mitigate
the risk of frame stalling while maximizing bandwidth utilization.
Concerto [69] customizes imitation learning to harmonize the trans-
port layer and video codec, so as to reduce stalling in mobile video
telephony.

While showing potential, these solutions commonly adopt a
“learning offline, running online” strategy. The learning models are
trained in simulators or emulators, and then the trained models
are directly deployed and tested in real applications. Unfortunately,
such offline learning models lead to far less satisfactory perfor-
mance in the real world, despite the high performance achieved
in the simulator/emulator [40]. Moreover, they may exhibit even
the opposite performance characteristics from those observed in
simulations, as validated in [69]. The root cause lies in two inter-
related factors: (i) It is very challenging to faithfully simulate the
complicated real-world Internet dynamics [66]. Individual routers
along a network path can bear various capabilities and states, e.g.,
multiple-flow competition, packet drop strategy, load-induced qual-
ity fluctuation, let alone the complicated interaction amongmultiple
protocol layers on end devices. (ii) In essence, the capacity of a data-
driven algorithm is strictly bounded by its learning environment. Its
experience acquired via trial-and-error in a simulator may become
stale when coping with the real-world Internet.

377



Concat

Emulator/simulator

Offline training

RL 

Model

S1 S2 S3 Sn

Virtual env

(a)

Stage 2

Model

Aggregation

Iteration

Real Network

Stage 1

W3

(b)
Figure 1: Learning architecture comparison: (a) offline
learning (b) online learning.

In this work, we seek to close the simulation-to-reality gap [1,
20] by proposing OnRL, an online reinforcement learning based
adaptation framework for mobile video telephony. OnRL runs and
keeps training directly on an operational video telephony system
(i.e., Alibaba Taobao-Live [6, 7, 54]), so as to learn and respond to
the real network conditions. OnRL is not merely a straightforward
learning environment shift. Instead, it raises three unique design
challenges.

(i) Learning from massive concurrent video telephony sessions.
In conventional offline learning, one can collect and concatenate
network traces from individual user, and feed them into a simu-
lator/emulator to train an RL model [42, 69]. In this way, the RL
model can explore diverse environments to enrich its experience,
and converge to a universal model with swarm intelligence learned
from all users. However, for online learning, a massive number
of video telephony sessions run simultaneously, during which the
learning algorithm needs to evolve with each session in real time.
Therefore, the key challenge lies in how to transform from serial
offline learning to parallel online learning while still harnessing
the swarm intelligence. To meet the challenge, we propose a two-
stage online learning architecture. Firstly, we design a new deep
reinforcement learning model based on the state-of-the-art PPO
algorithm [52], and associate one individualized RL model instance
with each user. In this way, each user leads to a different RL model
with its own learning experience. Secondly, we aggregate all users’
experiences following a federated learning principle, so as to form
a high-level model that can react to any network dynamics un-
seen by individuals. These two stages are coupled iteratively, so as
to strike a balance between individualized experience and swarm
intelligence.

(ii) Enforcing the RL algorithm under real-time video dynamics. A
basic requirement for effective learning is that the learning algo-
rithm’s action should be faithfully executed. In our case, once the RL
algorithm decides on a sending bitrate x , the video encoder should
ideally produce the video stream at exactly the same rate. Though
this is straightforward for offline simulation or VoD streaming, the
video codec in real-time telephony cannot generate a perfect bitrate
of x particularly in short time-scales [28]. Instead, the video codecs
have their own control logic dependent on image scene dynamics,
compression strategy and even device computing capacities, which
results in inherent and substantial video bitrate fluctuation, and a

gap between the RL’s bitrate decision and the actual video traffic
output rate (Sec. 3). To handle the problem, we adapt OnRL’s learn-
ing algorithm by feeding the gap into the RL neural model. In this
way, OnRL can learn the dynamics of the gap and then remedy the
impacts by tuning its award operation, automatically. For instance,
once it detects a large gap, OnRL will deem the previous RL action
as contaminated, and reduce the action’s impact by imposing a low
weighting factor when computing the corresponding reward from
the action.

(iii) Robust hybrid learning. In essence, an RL algorithm learns
by following a trial-and-error principle, which risks disrupting the
system when applied directly to online learning. Specifically, the
algorithm may take incorrect exploitation actions (e.g., selecting
very high video bitrates under poor network conditions) that lead
to catastrophic effects (e.g., severe congestion and thus low QoE),
especially during the early learning phase when the RL model is
not well trained yet. To handle the problem, we design a hybrid
learning mechanism, in which OnRL falls back to the legacy rule
based video bitrate algorithm once the RL algorithm is regarded as
operating abnormally (e.g., continuously experiencing high loss rate
and high latency), and switches back to RL otherwise. To manage
such switching, we design an adaptive trend prediction algorithm
to discriminate how well one control algorithm performs. More-
over, we augment the RL learning by mapping each such switching
event as a penalty into the RL’s reward function. In this way, the
RL algorithm will learn that it should avoid invoking the legacy
protocol as much as possible, and evolve to be a self-dependent and
robust video bitrate adaptation algorithm.

We have implemented and deployed OnRL in Alibaba Taobao
Live, a mainstream video telephony system1. We evaluate OnRL
with 543 hours of Taobao Live sessions involving 151 beta users
worldwide during one-month tests. The results confirm the advan-
tages of online learning, which brings remarkable QoE improve-
ment, i.e., reducing video stalling time by 14.22%, while maintaining
nearly equal video bitrate. Furthermore, our controlled experiments
validate the individual design choices in OnRL and explain their
effectiveness through micro-benchmarks.

Contributions: To our knowledge, OnRL represents the first
online learning driven video telephony solution deployed in a large
commercial system. OnRL resolves general problems that arise
when RL meets real-time applications over the highly dynamic and
heterogeneous mobile Internet. The specific contributions of OnRL
include:

(i) We propose a two-stage iterative RL algorithm that enables
online learning directly from massive concurrent video telephony
sessions, instead of conventional simulation/emulation based offline
learning (Sec. 2).

(ii) We design novel mechanisms to mitigate the inaccrate exe-
cution of actions when applying RL to real-time video applications
(Sec. 3), and to boost the robustness of online learning (Sec. 4).

(iii) We implement and deploy OnRL on a mainstream commer-
cial video telephony platform (Sec. 5) and validate its remarkable
performance gain over the state-of-the-art solutions (Sec. 6).
1Taobao-live is part of the Taobao app–the 4th most popular mobile app in China with
666 million monthly active users [6, 7]. Over 1 million new users joined Taobao-Live
during the single month of February 2020 [55].

378



State

Target 

bitrate

Delay Interval

Throughput

Loss

Delay 

Internet

RTCP-level 

Feedback

Receiver
Video flows

Internet

Transport

Codec

Figure 2: The workflow of OnRL individual learning.

2 PARALLEL ONLINE LEARNING:
ARCHITECTURE AND ALGORITHM

2.1 Iterative Two-Stage Architecture
Existing machine learning driven video transport systems all adopt
the “offline learning” approach [42, 60, 69] as illustrated in Fig. 1 (a).
Such a system needs to first collect plethora of simulated [42, 60, 69]
or real network traces [40, 65] from different users. Then these
traces are serialized, i.e., concatenated regardless of their inherent
personal/temporal characteristics, and then replayed by a custom
built simulator/emulator to train a neural network model (usually
an RL model). Finally, the trained model is distributed to each user,
who executes the learned bitrate adaptation strategy at run time.

However, such offline learning cannot deliver expected perfor-
mance improvement due to the simulation-to-reality gap as re-
ported in [40, 65, 66] and also corroborated in Sec. 6.2. Moreover,
the serialized learning aggravates the gap: (i) The uniform trace
serialization blurs the users’ individual characteristics, i.e., each
user will get the same training experience, which loses the possibil-
ity of personalized optimization. (ii) Once the RL model is offline
trained, it freezes and stops learning in the real-world. Therefore,
it is unable to deal with new network conditions unseen before.

In contrast, OnRL adopts a fundamentally different design prin-
ciple of learning at runtime. To realize the principle, we design an
iterative two-stage learning architecture (Fig. 1(b)), which operates
as follows, (i) Stage-1: individualized learning. Each user separately
learns its own RL model at run time, based on a state-of-the-art
PPO RL algorithm [52] with customized design for real-time video
transport (Sec. 2.2). In this way, each user possesses an individual-
ized model incorporating its personalized learning experiences. (ii)
Stage-2: Learning aggregation. The individualized models are then
fed to a backend server, and aggregated to generate a universal
model. The aggregated model employs a weighted averaging over
each model’s neural model parameters following the principle of
federated learning [44] (details in Sec. 2.3). From a high level, the
aggregated model has experienced enough network variants from
different users, and thus acquires the desired capability of coping
with network dynamics.

The two stages operate iteratively. Specifically, the aggregated
model will be distributed to all users, and each user, upon a new
video telephony session, will start out with the latest aggregated
model, and keep on learning from the new session. The procedure
leads to a new individual model, which is fused at the back-end
server for a new round of learning aggregation. The continuous
iterations aim to strike a balance between each user’s personalized

experience and the swarm experience from all users. It is notewor-
thy that a mature aggregated model can be applied to a new user
immediately, so as to eliminate the risk of low QoE due to random
exploration at the bootstrapping phase.

We now proceed to elaborate on the individual learning algo-
rithm and the learning aggregation, respectively.

2.2 Individualized Online Learning
We design a PPO-based RL algorithm for individualized online
learning, as shown in Fig. 2. Specifically, the RL agent keeps ob-
serving the instantaneous network state St (i.e., packet loss, delay,
delay interval and throughput) at any time t , and deciding an action
at (i.e., a bitrate), which is expected to match currently available
network bandwidth. Then the action at will be enforced on both the
video codec and the transport layer protocol, which generates and
consumes the video traffic at the rate at , respectively. The traffic,
after going through the network path, will produce a new state
St+1, which initiates a new round of RL action.

The mapping of St →at , the key function of RL agent, is decided
by the RL’s control policy πSt ,at , which is learned in the above
process. Intuitively, if the RL agent produces a bitrate exceeding
the available bandwidth, it will incur network congestion. The
consequence will be reflected in the next state St+1, most likely
with high packet loss or large delay. By observing the change from
St to St+1, the RL agent can realize that it has made an inappropriate
action at , so it needs to update the policy π to generate a more
conservative bitrate when observing St or similar state next time.

Underlying the workflow above, we identify two requirements:
(i) The RL agent should be very agile, i.e., responding to network
dynamics at video frame-level granularity, corresponding to a
timescale of dozens of milliseconds. (ii) The RL agent should refrain
from jumpy actions which hurt video perception quality and QoE
[35]. To meet the requirements, OnRL first adopts a batch-level pol-
icy update running in the background at second level granularity,
while executing agile response using the latest model at millisecond-
level granularity. Secondly, OnRL guarantees smooth bitrate adap-
tation by utilizing a relatively stable policy adjustment mechanism.
We now present OnRL’s RL model and training methodology.

2.2.1 OnRL’s PPO model. Fig. 3 depicts OnRL’s RL model, includ-
ing state, action, and the neural network architecture.

State. The state, also the input of the RL agent, at any time
t , is denoted with St = (®lt , ®dt , ®it , tt ), which represents the packet
loss, delay, delay interval ( i.e., the difference between the arriv-
ing interval of two consecutive RTP packets at the receiver side
and the corresponding departure interval at the sender side [22].),
and the receiver-side throughput. These inputs can be easily de-
rived at the sender side at a fine-grained timescale of around 50
ms, based on the periodic RTCP ACK message in WebRTC [3]–
the transport/application layer protocol stack used in mainstream
interactive video services.

Action. In each RTCP interval, OnRL maps St to a compact
action space A : {0.1Mbps, 0.2Mbps, · · · , 2.5Mbps}, representing
the target output bitrate of video codec. After the video traffic is
transmitted through the network, OnRL will immediately trans-
form to a new state St+1, and generate a new action at+1. Through
such continuous iterations, OnRL will learn to cope with network
dynamics.

379



FCFC
Flatten

S
o

ftm
a
x

V Adam 

Optimizer

Figure 3: OnRL’s RL model.

New

Model
Weight 2

Model 1

Model 2

Model k

Model

Aggregation 

Figure 4: The workflow of learning ag-
gregation.

Model-1

Model-2

Aggregation 

Model

Figure 5: A showcase of the
weighted models.

Reward. To ensure that OnRL can learn from past experience,
each action is associated with a reward, which is the video QoE of
previous time interval defined as follows,

rt =α ×

N∑
n=1

qn − β ×
N∑
n=1

ln −η ×
N∑
n=1

dn −φ ×

N−1∑
n=1

����qn −qn−1

���� (1)
where N represents the number of RTP packets in a state, qn is
the throughput measured at the receiver side which is directly
related to the video quality, ln and dn are the packet loss rate
and delay at the transport layer. The final term is used to enforce
video smoothness by penalizing large bitrate fluctuations. These
metrics are weighted by different impacting factors α , β,η,φ, and
then summed together. These hyper-parameters have significant
impacts on training effectiveness. Clearly, the four metrics have
different magnitudes. The value of qn and the final item usually falls
within 0.1∼4.0Mbps. ln is commonly less than 10% in practical video
telephony systems, while dn ranges from dozens of milliseconds to
hundreds of milliseconds depending on the end-to-end path length.
To obtain a meaningful rt , these metrics need to be normalized to
a consistent range by adjusting values of the parameters α , β,η,φ.
In OnRL, the scope of the parameters is limited to 30∼100, 50∼100,
5∼25, and 10∼50, respectively. In the actual deployment of OnRL,
they are empirically set to 50, 50, 10, 30, respectively.

Neural network (NN) architecture. OnRL uses a NN architec-
ture to represent the policy π with a set of parameters θ . It adopts
the simple fully-connected (FC) layer structures to distill implicit
features hidden in different input elements. More specifically, OnRL
first flattens the sequences (®lt , ®dt , ®it , tt ), and then feeds them into
two similar NNs, one is used for feature extraction and then out-
puts the bitrate action, and the other is served to judge the overall
objectives like a critic. Each NN contains two FC layers, with 64
and 32 elements, respectively. We have empirically verified that flat-
tening the input sequences performs better in terms of bandwidth
prediction accuracy than feeding each state to a separate NN struc-
ture. In addition, each layer employs the tanh activation function
[24], which shows more accurate bandwidth prediction capabilities
than traditional relu or softmax activation. Besides FC, we have
also tried CNN and long-short-term-memory (LSTM) for feature
extraction, but their performance is not as good. Further analysis
shows that the CNN architecture specializes in extracting image
features that consist of complex spatial information, which does
not exist in OnRL’s state space. As for LSTM, it is more useful for
reasoning the time-series data that takes into account long historic
impact, but the performance of video telephony is more dependent
on instantaneous network conditions.

2.2.2 Training Methodology. The objective of OnRL’s training is to
maximize the total cumulative rewards: Rτ =

∑Tϑ
t ′=t γ

t ′−t rϑt ′ , where
γ servers as a discounting factor, usually customized as 0.99 or 0.9.
The gradient policy updates for maximizing Rτ can be formulated
as follows:

▽R̄τ =
1
Θ

Θ∑
ϑ=1

Tϑ∑
t=1

(Â(aϑt , s
ϑ
t ))▽loдpθ (a

ϑ
t , s

ϑ
t ) (2)

where Tϑ stands for the batch size for gradient policy updates, and
Θ represents the number of batches. Â(aϑt , s

ϑ
t )=Rτ − b, (short

as Â, b ≈E[Rτ ]), represents the advantage function that expresses
the difference in expected reward decided by practical action from
state, compared with the averaged expected reward from policy
π . Intuitively, the advantage function can show the extra benefit
of a certain action over the average action. Recall that traditional
policy gradient [48] may have large or little adjustment between
contiguous policy, due to the uncertain learning rate value. This
uncertainty can bring catastrophic QoE and difficult convergence
in real-time video especially for the real-world learning of OnRL.
To avoid this, we design two customized modules to maintain the
online learning performance:

(i) Batch-level updates instead of instance-level (a single input)
updates. As noted before, OnRL needs to respond to each input
instance to adapt to the real-time bandwidth variation. Usually,
the response also leads to an update of neural network parame-
ters. However, such instance-level updates will largely increase
the learning time and in turn slow down the response. We thus
customize a batch update policy. In particular, the learning agent
buffers the recent ⟨state, action, reward⟩ records. Only when the
buffer is more than a batch-size, the agent will feed the buffer to
the policy network to update the neural network parameters. In
this way, the agent can execute fine-grained response in real time,
while simultaneously running the online learning.

(ii) Smoothing-level updates. OnRL utilizes the loss function
about gradient updates as follows,

L(θ )= Ê[min(
pθ (s,a)

pθold (s,a)
Â, clip(

pθ (s,a)

pθold (s,a)
, 1 − ε, 1 + ε)Â)] (3)

where we bound the difference between a new policy and an old one,
by taking into account their probability ratio pθ (s,a)

pθold (s,a)
. Specifically,

we clip the ratio and thus remove the incentive from of the loss
function L(θ ), when pθ (s,a)

pθold (s,a)
is beyond the interval [1-ε , 1+ε]

(here ε is a hyper-parameter set to 0.2). In this way, OnRL will
update a learning policy smoothly, and in consequence avoids too
jumpy bitrate decisions, so as to enhance bitrate smoothness for
better QoE.

380



Sending 
to Internet

Video frame Packet queue

Bitrate 
controller

Target bitrate

Pacer
Budget

Padding

Pacing
rate

Figure 6: The pacing mechanism.

p > x

p < x

Figure 7: Action deviation.

Overshoots

Figure 8: RL’s bitrate overshoots.

Neural network implementation parameters. We use Ten-
sorFlow [13] to implement the training workflow and TFlearn [14]
to construct the NN architecture. OnRL takes the fine-grained ex-
ploration in RTCP-level, and the batch size for batch training is
32 in our design. It is noteworthy that we have tried the common
practice of batch size adjustment, e.g., 16, 32 and 64, and did not
observe substantial change on the QoE-related metric. We employ
Adam optimizer [37] to update the stochastic gradient descent.

2.3 Learning Aggregation
The learning aggregation is inspired by two key observations from
our analysis of the Taobao-Live traces: (i) Different users exhibit
different levels of network dynamics. For instance, some users
typically initialize video sessions at home (e.g., make-up tutors or
in-store shopping guides), with stable WiFi connections. Corre-
spondingly, the PPO learning algorithm tends to generate stable
video bitrate decisions. In contrast, other client users (e.g., outdoor
travelers) usually undergo fluctuant cellular network conditions,
due to mobility or handoff. Accordingly, the learning algorithm will
learn to change its video bitrates frequently to match the instanta-
neous network variations. (ii) While a user usually has relatively
consistent network conditions, she may change the daily routines,
thus encountering new network dynamics. In this case, an RLmodel
purely trained from her own previous network conditions will react
inappropriately.

To strike a balance between individual and swarm experience,
we propose a weighted model aggregation method. Recent works
[29, 44] have shown that, averaging the parameters of the same
neuron across many NN models can achieve similar effect of aggre-
gating these models’ experience. We thus utilize the strong feature
representation ability of NN parameters to realize the model aggre-
gation, as shown in Fig. 4.

Specifically, suppose we have a total number of K users, and
each user k’s neural model can be denoted with a matrixWk,i, j ,
where each element ofWk,i, j is the parameter of a neuron in the
neural model (i represents the i-th layer of the NN, and j is the jth
neural cell in each layer). Note that the dimensions of all matrices
Wk,i, j (k ∈ [1,K]) are the same, since the NN architecture across
all users is the same. To fuse the individual models, we perform a
weighted averaging operation following the principle of federated
learning [44]:

W =
K∑
k=1

I∑
i=1

J∑
j=1

λkWk,i, j (4)

whereW represents the aggregated model, and λk is the weight of
user k’s model. We provide an example in Fig. 5 to illustrate the
model averaging process. In particular, the weightsW 2,2 of the dark
neural cell is computed from the corresponding neuron position of

two individual models: model-1 and model-2.
We have two ways to determine the value of each λk :
(i) Average aggregation. For a newly joined user (i.e., a user with-

out any prior experience), we generate and apply a model with
average experience from all users, i.e., we let λk = 1

K for k ∈ [1,K].
(ii) Prioritized aggregation. For other users, we prioritize a user’s

own weight thus it can achieve optimal performance under its
typical network conditions, while reacting appropriately when con-
fronting unusual conditions. Specifically, for each user k , we let
λk =p (p ∈ [0, 1]), and λm =

1−p
K−1 ,∀m,k . In Sec. 6, we experimen-

tally evaluate the impact of weight parameter of p.

3 ENFORCING RL ACTIONS IN REAL-TIME
VIDEO TELEPHONY

Understanding action deviation. In a practical video telephony
system such as WebRTC, a single video frame often needs to in-
stantly burst through the network. To avoid transient congestion, a
pacer mechanism is introduced to evenly distribute the video data
across continuous time slices. A simplified pacing workflow is illus-
trated in Fig. 6. When a video frame is produced, it is fed into a pacer
queue. The pacer splits the video frame into groups of packets and
progressively injects them into the network path every ∆ interval
(usually 5ms). The pacer has its own control logic (e.g., budget and
padding) to send these packets based on the instantaneous target
bitrate (denoted as x), which is generated by congestion control
algorithms (e.g., GCC in WebRTC). Surprisingly, by analyzing the
behavior of the default WebRTC pacer used in Taobao-Live, we find
that the pacer’s actual sending rate still deviates wildly from the
target x. Our analysis reveals two reasons that inevitably cause the
gaps.

(i) The pacer occasionally needs to increase the sending bitrate
to accelerate its buffer flushing. The pacer queue has its own control
logic which depends on image scene dynamics, compression strat-
egy and even end devices’ computing capacities. On the other hand,
the video traffic is quite bursty, e.g., a key-frame may comprise
excessive data when the video scene changes quickly. In such a
case, if the pacing rate strictly executes x , it will cause long latency
in the pacer queue, which may lead to a detrimental freezing effect
for real-time video. Hence, the pacing rate will be recalculated by
multiplying a factor (typically around 2.5 in WebRTC) to acceler-
ate the buffer clearance. This means that RL’s action (x) cannot be
strictly executed by the interactive video system, which compromises
its effectiveness and may eventually mislead its policy update.

(ii) The pacer sometimes has insufficient video data to meet the
target bitrate x , e.g., given relatively static video scenes. Whereas
the padding logic inside the pacer can artificially add some dummy
data packets, we find that such a mechanism seldom works for real-
time video. The root cause is that the dummy packets bring more

381



Normal

QoE-level 

Reward +

Adaptive 

Penalty -

A
b
n

o
rm

a
l

Trend prediction 

algorithmsState RL Agent

Safe Policy 

(GCC)

Figure 9: Hybrid learning mechanism of OnRL.

traffic and worsen the bandwidth cost. Besides, the padding data
tend to increase the latency of actual video packets and hence lower
the QoE. As a result, the operational video telephony services like
Taobao-Live are usually reluctant to use padding, and the target
bitrate of being commanded by RL model cannot be accurately
enforced.

We showcase the action deviation by logging and plotting a seg-
ment of the target bitrate, pacing rate, and queue size in the pacing
buffer sampled from a video session, in Fig. 7. We can find that,
when the pacer queue accumulates many packets (e.g., larger than
1000 bytes whenever key-frames appear), the pacer will execute
a sending bitrate p higher than the target bitrate x to accelerate
the buffer flushing. In contrast, when the queue is almost empty,
the actual sending rates usually drop to zero due to the absence of
padding.

Learning to tolerate the action deviation. To overcome the
aforementioned problem, we further customize OnRL’s RL model
to implicitly learn the gap between the target bitrate and actual
video traffic. We realize this by simply feeding the gap into the RL
neural model. Specially, we define the gap as дt =xt − pt , where
xt stands for the target rate of OnRL’s RL action at time t , and pt
is the pacing rate. Then the state/input in Sec. 2.2 is updated to
S ′t = (

®lt , ®dt , ®it , tt ,дt ). In this way, OnRL can learn the dynamics of
the gap and then remedy the impacts by tuning its reward operation
automatically. Once it detects a large gap (e.g., |дt | > 0.5 Mbps),
OnRL will deem the previous RL action as corrupted, and reduce
the action’s impact by imposing a low weighting factor (default
0.5 in our design) in the cumulative reward (Sec. 2.2.2). Sec. 6.4
verifies the effectiveness of this mechanism compared with the
gap-oblivious RL model.

4 ROBUST HYBRID LEARNING
In this section, we describe the hybrid learning policy to ensure the
reliability of RL when it is trained online subject to real network
dynamics. Typical RL models learn in a trial-and-error manner,
whereas at run time, any erroneous action may lead to severe QoE
degradation for the interactive video. We provide a showcase in
Fig. 8. The video bitrate, packet delay, and ground truth network
bandwidth are sampled from a controlled experiment on a local
testbed (the testbed implementation will be introduced in Sec. 5).
Within a period of 10 minutes, there exist 8 instances where the
RL-generated bitrate overshoots the available bandwidth, causing
latency spikes. Ideally, the RL algorithm should learn from these
mistakes. But unlike simulation based training, accumulating expe-
rience through failures is unacceptable for real-time video. This is
likely to happen particularly at the beginning of a video session,
where the RL model may need to keep exploiting and failing, so as

to materialize its policy.
On the other hand, traditional rule-based video transport control

algorithms, such as GCC [22], tend to make conservative decisions.
So a straightforward solution that ensures the reliability of online
learning is to combine the rule-based algorithm and the RL algo-
rithm, i.e., switching to a conservative algorithm once RL’s decision
becomes too aggressive. However, this compromises RL’s learning
capacity, i.e., the RL’s learning experience is interrupted and it be-
comes oblivious of the network state changes during its absence
period. As a result, RL cannot react appropriately in the future.
Therefore, the key question is: How to suppress the RL algorithm’s
catastrophic exploration actions while preserving its learning ability
at the same time?

To meet this challenge, we design a hybrid leaning mechanism
that integrates the RL and conservative algorithm in a coupled
close-loop. Intuitively, we do not merely regard the rule-based
algorithm (i.e., GCC in our design) as a protective backup, but
treat it as a “teacher” for the RL algorithm and provide useful
feedback to prevent inappropriate actions. We believe that the
hybrid complexity is critical for ensuring robustness. In particular,
since OnRL runs in an operational video telephony system, any
erroneous action caused by trial-and-error policies may lead to
catastrophic degradation of the system performance at run time.

Fig. 9 illustrates the workflow of hybrid learning scheme, with
the following key elements. (i) Different from the pure RL learning
(Sec. 2.2), we introduce a safety condition detector to evaluate
whether the RL algorithm functions properly, by examining the
current input state. (ii) If so, the input state goes to the RL agent,
who will be in charge of bitrate adaptation following the process
in Sec. 2.2. (iii) Otherwise, GCC will take over. Remarkably, there
will be a penalty whenever GCC is invoked, which is incorporated
into the RL’s reward function. In this way, OnRL can still learn
implicitly even when GCC is running. (iv) OnRL will roll back to
RL once the detector decides that the possibility of RL causing QoE
damage is low. Note that the hybrid switches will mostly happen
in the early stage of online learning. After the penalty feedback
becomes effective beyond the early stage, the OnRL agent will learn
to converge to appropriate actions and switch to GCC as less as
possible.We now proceed to detail the design of the safety condition
detector and penalty feedback in the hybrid learning framework.

Safety condition detector. Due to the elusive network condi-
tions, it is non-trivial to detect whether the learning agent has made
an inaccurate action. To enable early detection while suppressing
false positives, we design a delay-based filter to predict video QoE
damage, which is inspired by the delay based congestion control
mechanism in [22, 61].

The basic idea is to detect whether recently received latency
sequence is showing a rising trend. If so, the filter will command
OnRL to switch from RL to GCC. Specifically, we employ the inter-
packet interval ∆d(ti ) sequences to estimate the queuing build-up
trend on the network path, defined as follows:

∆d(ti )= (ai − ai−1) − (si − si−1) (5)
where si and ai denote the sending and receiving timestamp of
the i-th RTP packet. At time T , the possibility of QoE degradation
in the near future can be expressed by the historical sequences:
{∆d(t0),∆d(t1), ...,∆d(tT )}. We define the possibility metric by an

382



 

Robust learning 

(Sec. 4)

RL cloud server

Receiver

S
ta

te

A
c
tio

n

Video traffic 

RTCP feedback

Sender

Learning aggregation 

(Sec. 2.3)

Enforcing learning 

(Sec. 2.2, Sec. 3)

Figure 10: System implementation of OnRL.

exponential weighted average value D(ti ), as follows,

D(ti )=
T∑
i=1

2−i × ∆d(tT−i ) (6)

where the closer time a delay condition, the more important weight
it has in D(ti ). Note that the filter computes D(t) using a sliding
window along t , and once D(ti ) exceeds a threshold γ (t), the filter
predicts a high risk of QoE degradation, and then switches to GCC.
Since GCC is latency-sensitive, its control policy will immediately
decrease current sending bitrate, thereby mitigating the risky situ-
ation. On the other hand, once the condition returns to be safe (i.e.,
no trend of latency growth), the RL policy will take control.

One challenge here is to determine the threshold γ (t). We note
that a constant threshold cannot handle inherent network hetero-
geneity and dynamics. So we design an adaptive threshold γ (ti )
which evolves with the latency sequences:

γ (ti )=γ (ti−1) + kγ × (|D(ti )| − γ (ti−1)) (7)
Eq. (7) is a function of the adaptive thresholdγ (ti ), which evolves

with the sliding window of latency. Specifically, kγ is a constant to
determine the ratio ofγ (ti )’s increase/decrease. Intuitively, once the
exponential weighted average value D(ti ) becomes larger within
last threshold, the dynamic threshold γ (ti ) tends to be decreased,
and consequently OnRL has a larger possibility to evoke GCC.

Switching penalty for RL.We leverage the switch between RL
and GCC as a feedback to augment the RL model. Each switching
event is configured as an extra penalty into the agent’s reward
function. In this way, it will learn to act appropriately and thus
switch to GCC as less as possible in the future. Specifically, we
design an adaptive penalty parameter η′ to replace the default η in
the standard RL award in Eq. (1):

η′=η × 2ϵ , subject to ϵ = latency/10 (8)
Under the η′ regulation, the larger latency that the RL action

triggers, the larger penalty will get in the overall process. We will
validate the design of the entire hybrid learning scheme in Sec. 6.

5 IMPLEMENTATION
Implementation on Taobao-Live. We implement OnRL based
on the operational Taobao-Live video telephony system and release
it as a beta app to users. Taobao-Live builds on WebRTC [3], a
real-time video communication framework with built-in support
of video codec and transport-layer protocol (i.e., GCC). WebRTC
allows flexible re-implementation of the video control algorithms,

and has been used in the state-of-the-art transport and video ap-
plication studies, such as BBR [21], Salsify [28] and Concerto [69],
etc.

Our OnRL implementation essentially replaces the existing bi-
trate control module in Taobao-Live. Ideally, OnRL’s components
should be implemented inside the Taobao-Live app. However, due
to the lack of API support for training RL neural networks onmobile
devices [57], we implement OnRL via a cloud-assisted framework,
as shown in Fig. 10. Besides the pair of video telephony’s sender
and receiver, we introduce an RL server, on which we implement
the three design components of OnRL (i.e., the two-stage iterative
learning, coordination learning and robust learning) based on Ten-
sorflow [13]. During each telephony session, the sender maintains
a connection and exchanges information with the RL server. It
collects RTCP feedbacks (i.e., packet loss, delay, throughput, etc.)
from the receiver and sends them to the RL server as the input of
OnRL. Then OnRL processes the input and returns an action (i.e.,
the target video bitrate) to the sender, which is then executed by
Taobao-Live. Meanwhile, the OnRL module on the server periodi-
cally updates its control policy to realize online learning. We found
that the information exchange latency from the sender to the server
is only about 10 ms in most cases, which has negligible impacts on
video telephony as will be validated in Sec. 6.3.

To handle some extreme events (e.g., possible connection failure
between the sender and RL server, or when OnRL consistently
leads to low QoE), we also implement a fallback mechanism on
the sender, i.e., the sender automatically downgrades to the default
WebRTC controller. In addition, we deploy a separate back-end
server to perform learning aggregation at the frequency of once
per day (typically in early morning with the least user activity).

RL server. Each RL server is a COTS PC equipped with 32 ker-
nels, 2.5-GHz CPU and 65-GB memory, and runs in RedHat Linux
4.8.5-11. We adopt the Tensorflow version 1.15.2 to host OnRL’s
neural network, and each server can accommodate at least 50 con-
current users, due to the efficient neural network structure of OnRL
with a small size of 32KB and runtime memory requirement of 0.5
GB. Currently, we have deployed 5 RL servers for our beta testing
and OnRL’s high scalability is guaranteed using the Alibaba cloud
management system Apsara [4], which has the capacity of efficient
resource scheduling and load balancing across millions of servers
[8].

Simulator and local testbed. Besides the operational app, we
have also developed a trace-driven simulator similar to the one
used in existing work [69]. We also follow [69] to build a local
video telephony testbed, comprised of a client and server, whose
end-to-end network bandwidth follows the traces of which we
collect from Taobao-Live sessions and is enforced by Linux tc [11].
Unlike the operational app, these platforms allow for controlled
experiments with known bandwidth ground-truth, which facilitates
deeper diagnosis of the results.

6 EVALUATION
In this section, we evaluate OnRL from three aspects: (i) We vali-
date the necessity of online learning by comparing the performance
of models under different algorithms and operating environments
including simulation, testbed and real networks (Sec. 6.2). (ii) We
deploy and evaluate OnRL in the operational Taobao-Live with a
real-world user base (Sec. 6.3). (iii)We evaluate each design module

383



 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

PPO-S-S

PPO-S-T
Concerto-S-S

Concerto-S-T

Bette
r

V
id

e
o
 b

it
ra

te
 (

M
b
p
s
)

Stall rate (%)

(a) QoE metrics.

 2

 4

0 100 200 300

B
it
ra

te

Time (s)

BW
Concerto-S-T
Concerto-S-S

 2

 4

0 100 200 300

B
it
ra

te

BW
PPO-S-T

PPO-S-S

(b) A showcase.
Figure 11: Performance of simulation-trained models un-
der simulator and testbed, respectively.

 0

 0.4

 0.8

 1.2

 1.6

 2

 0 2 4 6 8 10

PPO
s

PPO
t

Concerto

OnRL

Bette
r

V
id

e
o
 t
h
. 
(M

b
p
s
)

Stall rate (%)

 20

 40

 60

 80

 100

Concerto
PPO

s
PPO

t
OnRL

 0

 5

 10

 15

 20

 25

R
T

T
 (

m
s
)

L
o
s
s
 r

a
te

 (
%

)
Different algorithms

RTT
Loss rate

Figure 12: Performance comparison of different models
running over Taobao-Live.

inside OnRL separately to gain an in-depth microscopic understand-
ing of online learning (Sec. 6.4).

6.1 Methodology
Evaluation Metrics. We employ both application-layer and

transport-layer metrics for a comprehensive evaluation, includ-
ing: (i) Video throughput and Peak Signal to Noise Ratio (PSRN)
that characterize the perceived quality of the video frames [32].
Note that our experiments are performed in both controlled testbed
and the operational Taobao-Live system. Whereas PSNR can be
easily measured on the testbed, it is unavailable in the Taobao-Live
system. As a remedy, we use the receiver-side video throughput as
a metric to reflect the video quality. (ii) Stall rate to measure the
fluency of the video telephony session. In the Taobao-Live system,
a stalling happens whenever the packet RTT exceeds 300ms [2].
Here we remark that the stall rate indicates how frequent video
freezing occurs, which is different from stalling duration. In the sim-
ulator/testbed in-lab environments, the RTT hardly rises to 300ms,
so a stalling event is considered to occur when the instantaneous
video frame rate drops below 12 fps, as suggested by DevOps en-
gineers of Taobao-Live. (iii) We also examine the transport layer
metrics including packet loss rate and RTT during video telephony,
which help to understand OnRL’s behaviors in-depth and explain
the application-layer performance.

Baseline methods. We compare OnRL against the following
algorithms which represent the state-of-the-art in video telephony:
(i) Concerto [69], which utilizes deep imitation learning [50] to
optimize video QoE. As a semi-supervised algorithm, Concerto is
trained in a simulator with known ground-truth network band-
width. The trained model is then deployed and tested in real appli-
cations. In this work, we run Concerto using its original model [69]
which is trained over 1 million real-world video telephony sessions
unless otherwise stated. (ii)WebRTC [3], which is the most popular
rule-based video telephony framework. WebRTC has been incorpo-
rated into Google Chrome [9] and mainstream real-time video apps,
including Google Hangout, Facebook messenger, Amazon Chime
and Taobao-Live.

6.2 The Need for Online Learning
The gap between simulation and testbed. In order to validate
the limitations of “offline learning”, we first run a micro-benchmark
to compare the performance of simulation-trained models, i.e., Con-
certo and the basic PPO model described in Sec. 2.2. To ensure
fairness, we use the same 3-hour trace in two different testing en-
vironments: the simulator and local testbed. The resulting video
bitrates and stall rates are presented in Fig. 11(a), which confirms
that Concerto and PPO work well when the testing is done in
the same environment as the training (i.e., the cases marked as
Concerto-S-S and PPO-S-S). However, the performance drops sig-
nificantly after the testing environment is changed to be the testbed
(i.e., Concerto-S-T and PPO-S-T). Specifically, their stall rates in-
crease by 64.9% and 51.2% respectively, with minor video bitrate
deviation (between 0.02 Mbps and 0.1 Mbps). These results clearly
validate the necessity of online learning. To understand the perfor-
mance drop, we plot a 300-second segment of the models’ actions
(i.e., video bitrates) against the ground-truth bandwidth in Fig. 11(b).
We observe that both Concerto and PPO in simulation environment
can follow the bandwidth very closely despite high dynamics, with
average deviations of only 17.4% and 13.6%, respectively. In contrast,
the deviation increases to 30.3% and 37.12%, when coping with the
same traces in the testbed environment. To summarize, once the
deployment environment differs from the training environment, the
offline RL models’ experience becomes stale, leading to unsatisfactory
performance.

The gap between simulation/testbed and real-world net-
work conditions. We further examine the limitations of “offline
learning” under real-world network dynamics. In addition to OnRL,
we intentionally integrate three offline-trained models into the
Taobao-Live system, including the Concerto and PPO models
trained in simulator (referred to as PPOs ), and the PPO model
trained in testbed (referred to as PPOt ). We then run the mod-
els on a randomly selected Taobao-Live app user. Note that the
offline-trained models all showed satisfactory video QoE in their
own training environment as validated above. We plot the average
video throughput, stall rate, packet rtt and loss rate in Fig. 12, over
a random set of video sessions lasting 10 hours in total. We find
that OnRL achieves the most compelling video QoE. In particular, it
outperforms the most competent offline-trained scheme Concerto
by 31.9% in terms of video throughput, and leads to a remarkable
78.3% reduction in stall rate, which again corroborates the benefits
of online learning mechanism. On the other hand, PPOt and PPOs
exhibit large QoE gaps on both metrics. Accordingly, OnRL also
shows the smallest packet delays and loss rates, which confirms its
ability to cope with network dynamics. The result further validates
the necessity of online learning for optimizing real-time interactive
video applications under real network conditions.

In particular, we find that PPOt , which is equipped with the same
pacing mechanism with OnRL in Taobao-Live, performs worse (e.g.,
6.88% lower stall rate and 0.75 Mbps lower throughput) than OnRL,
which demonstrates that the online learning, instead of the pacing
mechanism, is the reason for performance improvement.

6.3 System-level evaluation in the wild
We distribute a beta version of Taobao-Live equipped with OnRL

384



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

C
D

F

Stall rate (%)

WebRTC-4G: 2.14

OnRL-4G: 0.67

WebRTC-WiFi: 2.05

OnRL-WiFi: 2.13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5

C
D

F

Video th. (Mbps)

WebRTC-4G: 1.15

OnRL-4G: 1.21

WebRTC-WiFi: 1.57

OnRL-WiFi: 1.54

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

C
D

F

Loss rate (%)

WebRTC-4G: 12.36

OnRL-4G: 9.61

WebRTC-WiFi: 0.72

OnRL-WiFi: 0.42

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  40  80  120  160  200

C
D

F

Video RTT (ms)

WebRTC-4G: 99.01

OnRL-4G: 70.09

WebRTC-WiFi: 64.84

OnRL-WiFi: 64.17

(a) Comparison of network types (24% of the traces are over 4G and 74% over WiFi).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  3  6  9  12  15

C
D

F

Stall rate (%)

WebRTC-Dynamic: 8.23

OnRL-Dynamic: 2.27

WebRTC-Stable: 0.14

OnRL-Stable: 1.13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5

C
D

F

Video th. (Mbps)

WebRTC-Dynamic: 1.42

OnRL-Dynamic: 1.53

WebRTC-Stable: 1.49

OnRL-Stable: 1.39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

C
D

F

Loss rate (%)

WebRTC-Dynamic: 4.26

OnRL-Dynamic: 1.59

WebRTC-Stable: 3.65

OnRL-Stable: 4.43

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  80  160  240  320  400

C
D

F

Video RTT (ms)

WebRTC-Dynamic: 171.77

OnRL-Dynamic: 80.34

WebRTC-Stable: 42.75

OnRL-Stable: 48.89

(b) Comparison of different network conditions (37% traces experience dynamic condition, and 63% for stable condition).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

C
D

F

Stall rate (%)

WebRTC-High: 0.49

OnRL-High: 0.67

WebRTC-Low: 4.76

OnRL-Low: 3.35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5

C
D

F

Video th. (Mbps)

WebRTC-High: 1.81

OnRL-High: 1.77

WebRTC-Low: 0.89

OnRL-Low: 1.01

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

C
D

F

Loss rate (%)

WebRTC-High: 0.23

OnRL-High: 0.52

WebRTC-Low: 10.02

OnRL-Low: 6.45
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  80  160  240  320  400

C
D

F

Video RTT (ms)

WebRTC-High: 43.42

OnRL-High: 50.6

WebRTC-Low: 124.91

OnRL-Low: 88.46

(c) Comparison between high (61%) and low (39%) quality networks.
Figure 13: OnRL’s performance while running in Taobao-Live: a breakdown analysis.

Table 1: Average statistics from Taobao-Live.

Metrics Stall rate
(%)

Video th.
(Mbps)

Pkt loss
(%) Rtt (ms)

WebRTC 2.04 1.48 3.79 73.05
OnRL 1.75 1.46 2.90 65.8

to real-world users for a large-scale system-level evaluation. In
particular, we have recruited 151 users from 30 cities (3 abroad,
27 domestic), and collected 543 hours of video telephony sessions
from them. In each session trace, we log the network/application
performance metrics (Sec. 6.1) at second-level granularity, which
form a dataset of 4.55 GB in total. Currently, OnRL only supports
iOS, and the end user devices range from iPhone 7 to iPhone 11 Pro.
It is infeasible to implement all the ML based algorithms directly
on the operational Taobao-Live app, so we mainly compare OnRL
against the default WebRTC algorithm for an in-depth analysis. For
a fair comparison, we command each session to use the default We-
bRTC for the first 10 minutes, and then switch to OnRL afterwards.
In this way, we can roughly regard the two algorithms undergoing
nearly the same network conditions.

Overall performance. Table 1 summarizes the QoE metrics
averaged over all sessions. We observe that, (i) OnRL achieves re-
markable improvement in terms of transport-layer metrics: 23.5%
less packet loss, and 9.92% RTT reduction. (ii) The transport-layer
advantages transform into application-layer performance gains, i.e.,
reducing stall rate by 14.22% while maintaining almost the same
video throughput. It is noteworthy that the stalling rate here differs
from the stalling time metric in Concerto [69] and the user base also
differs (151 vs. 6). Thus, the real-world evaluation results are not
directly comparable (a direct comparison under the same conditions
has been presented in Sec. 6.2). Furthermore, the performance gain
may seem modest compared with RL-based VoD systems driven
by a simulator/emulator [42], primarily because the operational
video telephony system involves real-world users with more het-

erogeneous network conditions. In addition, for the operational
Taobao-Live system, even a small improvement is significant, con-
sidering that it can benefit millions of sessions each day. Below we
provide a more in-depth analysis of the results.

Performance breakdown. We group the users according to
various session attributes, and replot the evaluation results in Fig.
13. Here the number following each legend label stands for the
average value of the performance metric.

(i) 4G vs. WiFi. OnRL significantly reduces stall rate by 68.7%
and slightly increases the video throughput over 4G, while has
very close performance (difference within 3%) over WiFi networks.
Accordingly, the reductions in terms of packet loss and RTT are
more remarkable over 4G networks. For Taobao-Live use cases,
most WiFi users stay indoor with relatively stationary setup, in
comparison to 4G which tends to serve more dynamic outdoor
scenarios. Therefore, the experiment implies thatOnRL’s advantages
become more prominent when handling dynamic network conditions.

(ii) Dynamic vs. stable networks. We thus divide all sessions
into stable/dynamic categories according to the variance of video
throughput (separated by a threshold set to be the mean std. of 0.197
Mbps). We find that, OnRL improves QoE significantly over dynam-
ics networks, while is not as good (sometimes slightly worse) over
stable networks. For instance, the average video RTT is decreased
from 171.77ms to 80.34ms for dynamic networks, but is increased
from 42.75ms to 48.89ms for stable networks. The other metrics
have the similar trend. Still, we conjecture that the main reason
behind lies in OnRL’s abilities to explore and closely track the avail-
able bandwidth under network dynamics. If the network bandwidth
is stable, the exploring mechanism may cause overshoots, which
result in relatively lower video quality.

(iii) High vs. low network quality.We further categorize the video
sessions based on the empirically observed network condition. If
one session’s throughput is larger than the mean of all the sessions,

385



Table 2: The effect of handling RL action deviation.

Metrics Video th.
(Mbps)

Stall rate
(%)

Loss
rate (%)

PSNR
(dB)

Ignoring devi-
ation 0.81 2.56 5.11 35.89

Considering
deviation 0.79 1.14 4.58 34.21

Table 3: The effect of robust learning.

Metrics Video th.
(Mbps)

Stall rate
(%)

Loss
rate (%)

PSNR
(dB)

RL-only 0.96 2.30 5.05 38.71
Robust-RL 0.93 0.99 1.84 42.28

 10

 20

 30

 15  30  45  60

F
p
s

Time (min)

 0
 15
 30
 45

 15  30  45  60P
S

N
R

(d
B

)

 0.6
 0.9
 1.2
 1.5

 15  30  45  60

T
h
. scr-model agg-model

(a) QoE metrics.

 0.7

 1.4

 0  10  20  30  40  50  60  70

B
it
ra

te
(M

b
p

s
)

Time(s)

scr-model 
agg-model

BW

(b) A showcase of bitrate.
Figure 14: Video performance with and without learning ag-
gregation.

we regard the corresponding network quality as high, and low
otherwise. We find that OnRL performs significantly better in low-
quality network conditions.

6.4 Detailed Analysis of OnRL Pipeline
We now study the impact of each design module inside OnRL sepa-
rately. Here we conduct controlled experiments on our local testbed
since: (i) The operational Taobao-Live does not allow testing of
separate modules on the end users. (ii) We need ground-truth band-
width for an in-depth understanding of each module’s behaviors,
which is not available when running Taobao-Live in real networks.

The gain from learning aggregation. We first demonstrate
the gain of exploiting prior learning experience, by comparing the
performance of an aggregated model (agg-model) against the one
that starts from scratch (scr-model). More specifically, we train
8 separate models from randomly selected Taobao-Live session
traces, each lasting longer than 2 hours. Then we aggregate them
through averaging as specified in Sec. 2.3. Fig. 14(a) plots the video
throughput, PSNR and fps, when running agg-model and scr-model
over the same set of new traces lasting 1 hour. We find that, agg-
model outperforms scr-model on all important QoE-related metrics:
throughput, PSNR, and fps gains are 18.2%, 41.1%, and 47.6%, re-
spectively. Moreover, we can observe that the lower PSNR (< 15dB)
under scr-model indicating extremely low quality picture happens
at the beginning phase, which demonstrates the cost of starting
without any experience.

To further understand above results, we analyze the two models’
actions (i.e., the video sending bitrates) in Fig. 14(b). We see that
scr-model usually sends more traffic than the available bandwidth,
which incurs congestion and thus low QoE. Moreover, the actions
of scr-model exhibit 47.62% higher variance than that of the agg-
model, indicating it struggles to explore the available bandwidth at

the cost of overshooting/underuse.
The impact of the number of models involved in aggrega-

tion.We train 15 different models using randomly 10 hour traces
and select 0 (i.e., starting from scratch), 5, 10, and 15 out of them
for aggregation. We examine the performance of the resulting 4
aggregated models under a same 1-hour test trace, as depicted in
Fig. 15. We observe that: (i) Compared with the case with 0 aggre-
gation, the aggregation of 5, 10, 15 models reduce the stall rate by
77.1%, 80.7%, 83.7%, respectively. (ii) While model aggregation also
improves video throughput, the gain is relatively lower, i.e., 10.8%,
21.27% and 21.3%, respectively. Overall, the more models involved in
aggregation, the more swarm intelligence the aggregated model will
have, and the better it can cope with the complex network dynamics.

The effect of prioritized aggregation. We aggregate 8 ran-
dom individual models (Each model is trained for 1-hour) in 3 ways:
averaged-model, a single model without averaging (named model-
1), and prioritized-model (assigning a controlled weight of p=λk to
model-1, (1−λk )/7 to the remaining models, and we vary the range
of λk from 0.1 to 0.9.). Here we intentionally choose 3 traces from
model-1’s user, over which the eleven models run. Wemake an aver-
age over 3 traces to mitigate occasionality, and depict the results in
Fig. 16. We observe that, (i) Even the simplest learning aggregation
(averaged-model, stage-2 of OnRL) has 44.9%, 7.3% gains on stall
rate and throughput than model-1 (stage-1 of individualized learn-
ing). The result indicates that OnRL’s learning aggregation stage
indeed helps to improve QoE after leveraging swarm intelligence.
(ii) While the throughput is relatively similar (the largest difference
occurs under the two settings of p=0.3 and p=0.7, with a gap of
0.13 Mbps), the prioritized-models have much lower stall rate than
model-1 and averaged-model. In particular, p= 0.4 shows the lowest
stall of 0.27%, while that of model-1 and averaged-model is 4.09%
and 2.25%, respectively. (iii) Different weighted value of prioritized-
models has certain impacts on the QoE metrics. Specially, we find
that, the benefits of boundary weights (e.g., p= 0.1, 0.2, 0.7, 0.9) are
not as good as the middle values (e.g., p=0.3, 0.5). These findings
indicate that for an existing user who already has a trained model,
it is better to balance its individual experience with others’, by using
medium aggregation weights (i.e., close to 0.5), so as to achieve the
optimal QoE.

Effect of handling RL action deviation. We compare two
models with and without handling the action deviation, by running
them under the same randomly selected network trace lasting 2
hours, respectively. From the result in Table 2, we find that by tak-
ing the deviation as an extra input to the RL, the stall rate decreases
significantly by 55.4%, loss rate degradation by 10.3%, with slight
sacrifice on throughput (0.02Mbps), and PSNR (1.68dB). We thus
conclude that the performance of online training benefits from learn-
ing the action deviation explicitly, and the model can therefore achieve
high performance even though its action is not strictly executed.

Effect of robust hybrid learning.We now run OnRL with and
without the robust hybrid learning mechanism, labeled as RL-only
and Robust-RL, respectively. Table 3 summarizes the performance
when the two schemes run on the same 1-hour trace. We observe
that Robust-RL can significantly improve the robustness: the stall rate
and loss rate are reduced by 56.9% and 63.5%, respectively. From
the video definition’s perspective, robust-RL maintains nearly the
same throughput, while improving PSNR by 3.57 dB. To understand
the effect of Robust-RL more intuitively, Fig. 17 showcases a 150s

386



 0

 0.4

 0.8

 1.2

 1.6

 2

0 5 10 15
 0

 2

 4

 6

 8

 10

V
id

e
o
 t
h
. 
(M

b
p
s
)

S
ta

ll 
ra

te
 (

%
)

Number of aggregate models

Throughput
Stall rate

Figure 15: QoE vs. number
of models in aggregation.

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

model-1
averaged-model

p=0.1

p=0.2

p=0.3

p=0.4

p=0.5
p=0.6

p=0.7
p=0.8

p=0.9

Better

V
id

e
o

 t
h

. 
(M

b
p

s
)

Stall rate (%)

Figure 16: Effect of prioritized
aggregation.

 0

 40

 80

 0  50  100  150

L
o
s
s
(%

)

Time(s)

Robust-RL RL-only

 0

 45

 90

 0  50  100  150D
e
la

y
(m

s
)

Robust-RL RL-only

 0

 2

 4

 0  50  100  150

B
it
ra

te BW
GCC-use

Robust-RL
RL-only

Figure 17: A showcase of
Robust-RL’s effect.

 0

 0.5

 1

Th. Stall rate Loss PSNR

N
o
rm

a
liz

e
d
 Q

o
E

  

RL-only
RL-AE

OnRL

Figure 18: Contribution of
separate modules in OnRL.

segment of the experimental traces. We find that during 25 to 100
seconds, the loss rate and delay are relatively low, which shows
that the video playback is smooth and the three methods all per-
form relatively conservatively. Then, we can observe that when RL
performs poorly (e.g., during 100s–150s), the loss and delay perfor-
mance degrades sharply. Robust-RL manages to promptly switch
to the conservative GCC algorithm, so as to avoid QoE damage.

In addition, within the 1-hour testing period, we found that
Robust-RL evokes GCC for 17 times, and GCC lasts only 28 seconds
in total. In particular, at around 10 minutes, Robust-RL has a more
frequent switching of 7 times, with GCC lasting 13 seconds in total
and taking up around half of the GCC time across the whole session.
The results imply that hybrid learning mostly happens in the early
stage of online learning. Afterwards, the OnRL agent will learn to
converge to appropriate actions and rarely evoke GCC.

Contribution of separate modules in OnRL.We further run
a progressive experiment to demonstrate the benefit of OnRL’s
three modules: (a) Pure online RL-only, (b) Online RL with ac-
tion enforcement (RL-AE), and (c) Three modules putting together
(OnRL). We examine the performance of above three methods un-
der the same 1-hour test trace, and plot the normalized results in
Fig. 18. We observe that: (i) OnRL’s action enforcement and robust
learning mechanism have significant impacts on stall rate and loss
rate. In particular, the action enforcement mechanism (RL-AE) de-
creases the stall rate by 42.8%, and the robust learning mechanism
further decreases the stall rate by 66.6%. Similarly, the loss rate is
reduced by 38.1% and 72.0%, respectively by the two mechanisms.
The reason lies in that OnRL’s RL-AE is beneficial due to learning
the action deviation explicitly, and robust learning can further de-
crease stalls by mitigating RL’s trial-and-error impacts. (ii) OnRL’s
action enforcement and robust learning modules lead to slightly
lower throughput and higher PSNR than RL-only, which indicates
that they reduce stall rate and packet loss without harm on other
performance metrics.

7 RELATEDWORK
Low-latency video transport. Real-time Internet video applica-
tions impose the toughest requirements on data transport protocols
[5, 34]. Although the transport layer has been studied for decades,
new network characteristics and applications are constantly emerg-
ing that motivate new designs. In contrast to the packet loss metrics
commonly used in traditional congestion control protocols [30, 36],
many emerging systems target low latency and have explored cus-
tomized congestion indicators, including a mix of delay and loss
[22, 61, 64, 68] as well low-layer KPIs of cellular networks [62, 63].
While these methods can better balance the tradeoff between de-
lay and throughput, they rely on a set of hand-crafted controlling
rules, and fall short of handling the increasing heterogeneity and

dynamics especially for mobile networks [60].
Starting from Remy [60], machine learning models and partic-

ularly RL are utilized to generate more adaptive controlling rules
automatically beyond the hand-crafted ones. Remy [60] explores
a Markov model (i.e., a kind of tabular RL) to optimize conges-
tion control algorithms. A recent system, Concerto [69], designs
an imitation learning (IL, a type of RL) based algorithm to better
coordinate the codec and transport layers of video telephony. While
making remarkable progress, these models are all trained offline
on simulators or emulators. Due to the simulation-to-reality gap,
as reported in [20] and corroborated by our experiments (Sec. 6),
these approaches often deliver marginal performance gain when
tested at large-scale under real network conditions [40].

Learning-based transport for Video-on-Demand (VoD).
Learning-based optimization has also been used in VoD services.
To name a few, Pensieve [42] adopts the A3C RL algorithm [45] to
predict the optimal VoD bitrate that fits the instantaneous network
condition. Indigo [66] proposes an IL algorithm to improve VoD
QoE. The most recent works [17, 40, 65] move forward to adapt
and evaluate ML-based video streaming algorithms in real-world
environment. In particular, ABRL [40] makes customized designs
based on Pensieve algorithm to accommodate the unique challenges
when running it on Facebook VoD systems. QFLow [17] introduces
a learning based network reconfiguration framework to achieve
high QoE for YouTube streaming. Puffer [65] builds and operates
a VoD open platform, and trains a supervised learning model “in
situ”, i.e., using the traces collected from the real deployment.

Compared with these systems, OnRL differs in two major as-
pects: (i) Essentially, the ML models in these works are still trained
offline (though using real-world traces), and thus detour unique
challenges arising from online training, e.g., parallel learning and
robust learning. (ii) They focus on VoD applications, which differ
from the interactive video telephony that imposes much harsher re-
quirements atop today’s best-effort Internet service [69]. In essence,
VoD and video telephony applications are quite different for two
reasons: (i) The VoD clients commonly maintain a playback buffer
of dozens of seconds [15], so they are insensitive to short term (e.g.,
sub-second level) network dynamics. In contrast, video telephony is
more sensitive to instantaneous network traffic variation, which is
hard to reproduce in simulation. (ii) Most information of a VoD ses-
sion is known in advance,e.g., the size of video chunks and buffers.
In contrast, the video telephony content is always generated and
consumed instantaneously. The algorithms need to responsively
react to video dynamics under very tough low-latency intervals.

Online learning. Classical online learning advocates training
with data streams on the fly [51]. The salient feature is that it keeps
refining its prediction model constantly in the presence of a new

387



environment [47], in contrast to using a stationary post-trained
model. Much research effort has been made on theoretical aspects
of online learning in the AI community, ranging from the earliest
online gradient update [18, 19, 27, 56] to the recent meta-learning
[49]. Online learning has rarely been explored for practical network
optimization. PCC [25] and PCC-Vivace [26] recently propose con-
gestion control protocols sharing an online learning flavor. They
leverage probing packets to continuously optimize a network utility
objective. Park [41] proposes an open platform to facilitate exper-
imenting with online RL for solving computer system problems,
beyond RL’s conventional application domains (e.g., gaming [46]).
In this work, OnRL adapts online learning to address the unique
challenges in real-time video telephony.

In OnRL, we also propose a hybrid learning mechanism, which
has shown its capability of preventing the catastrophic effect caused
by RL’s inherent but risky trial-and-error exploration. The hybrid
learning component is inspired by the concept of safe learning,
which has been adapted in other RL-based domains. For example,
Shielding [16] detours RL’s certain actions when a safety condition
is triggered. A more recent work [43] proposes a guaranteed-safe
policy to dynamically solve load balancing problem. To our knowl-
edge, OnRL is the first framework to customize hybrid learning to
improve the robustness of real-time video telephony.

Federated Learning is a distributed machine learning architec-
ture, in which data is stored on distributed local devices instead of
central servers [44]. Generally, federated learning aims to aggregate
multiple users’ experiences while preserving privacy, and also to
reduce communication overhead [38, 67]. The learning aggrega-
tion component of OnRL is inspired by the concept of federated
learning. But OnRL goes much further to solve practical problems
in optimizing video telephony, including designing the specific RL
neural network suitable with video telephony, enforcing RL’s action
despite video traffic dynamics and enhancing video robustness by
designing the hybrid learning mechanism.

8 DISCUSSION
On-device online learning. Our current deployment of OnRL
adopts a cloud-assisted architecture. The key design modules are
located in remote cloud servers instead of the mobile devices, to
accommodate the lack of mobile platform for RL training. Note that
the RL cloud-server is unlikely to cause any privacy issue, as it only
collects transport layer performance statistics, i.e., loss rate, RTT,
without any personal information. In addition, it is also noteworthy
that the mainstream Tensorflow-Lite [12] and Core-ML [10] only
allow executing pre-trained RL models, i.e., they support the infer-
ence phase but not the training phase. The only RL-training-support
platform in a recent work [57], as far as we know, is developed
in Java and hard to be integrated with Taobao-Live. However, as
neural processing units (NPUs) rapidly become available on mobile
devices, neural network training on mobile devices will be feasible.
On-device training will eliminate the overhead and cost of deploy-
ing RL servers, which shall facilitate the wide use of online learning
algorithms like OnRL.

Adaptive learning aggregation. In OnRL, we have verified
the significance of learning aggregation, by designing the weighted
linear aggregation algorithms. Besides, we have tried more fine-

grained aggregation methods, i.e., aggregating a separate model
for a group of users belonging to a certain network type (e.g., WiFi
or 4G) or ISP, but observed little gain. The results hint that the
available bandwidth dynamics (particularly the short-term band-
width variation that is important for OnRL) of an Internet path
may not have strong correlation to its network type or ISP. On
the other hand, we conjecture that other fine-grained aggregation
methods using content-related attributes, such as grouping users
by telephony scenarios (indoor, outdoor walking, or driving), may
further improve video QoE. These approaches involve non-trivial
design (e.g., addressing user privacy), and is left for the next-phase
of OnRL.

Closer integration of RL and rule-based algorithms. The
evaluation in Sec. 6.3 demonstrates that RL exhibits significant
advantages in handling network dynamics, but sometimes under-
performs rule-based protocols under stable network conditions. It
is possible to integrate OnRL and the rule-based algorithms accord-
ing to the level of network dynamics, just as done in the hybrid
learning scheme. We leave this for future work.

OnRL’s scalability. We note that OnRL does not aim to im-
prove reinforcement learning in general, but focuses on addressing
the system-level challenges when adapting learning algorithms to
optimize video telephony transport. The novelty of OnRL lies in
the two-stage learning framework (including the neural network
architecture and training methodology), the RL action enforcement
and robust hybrid learning mechanisms, as well as in implementing,
deploying and evaluating online RL on a mainstream operational
video telephony system. We believe these customized mechanisms
of OnRL may benefit future work on optimizing video transport
and even other computer system design, such as resource schedul-
ing and load balancing in practical networks. To extend the usage
of OnRL to other applications, one can reuse the architecture and
mechanisms, but need to re-train RL models using the applications’
own data.

9 CONCLUSION
In this work, we designed an online reinforcement learning based
real-time video telephony system named OnRL. We solve three
unique challenges: learning from concurrent telephony sessions;
enforcing RL actions despite of inherent video traffic variations;
avoiding the QoE damage from reckless exploitation of RL. The
real-world evaluation on a mainstream operational video telephony
system demonstrates that OnRL outperforms the state-of-the-art
solutions. We believe OnRL hints on a new direction that embraces
online learning into more video communication applications, such
as VoD, 360 panoramic video, virtual reality, etc.

ACKNOWLEDGMENTS
We appreciate the insightful feedback from the anonymous re-
viewers and our shepherd who helped improve this work. Anfu
Zhou and Huadong Ma are the corresponding authors. This project
was supported by the Innovation Research Group Project of
NSFC (61921003), NSFC (61772084, 61720106007, 61832010), the
111 Project (B18008), the Fundamental Research Funds for the Cen-
tral Universities (2019XD-A13) and Alibaba Innovation Research
Program.

388



REFERENCES
[1] 2017. Closing the Simulation-to-Reality Gap for Deep Robotic Learning.

https://ai.googleblog.com/2017/10/closing-simulation-to-reality-gap-for.html.
[2] 2017. Video Quality of Service (QOS) Tutorial .

https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-
video/212134-Video-Quality-of-Service-QOS-Tutorial.html.

[3] 2018. WebRTC Homepage. https://webrtc.org/.
[4] 2019. Alibaba Cloud Overview. https://www.assistanz.com/alibaba-cloud-

overview/.
[5] 2019. Cisco Visual Networking Index: Forecast and Trends.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white-paper-c11-741490.html?dtid=osscdc000283.

[6] 2019. Taobao statistics, market share, trends, insights .
https://www.chinainternetwatch.com/tag/taobao/.

[7] 2020. 30 amazing taobao statistics and facts (2020). By the numbers.
https://expandedramblings.com/index.php/taobao-statistics/.

[8] 2020. Alibaba cloud, Server Load Balancer. https://www.alibabacloud.com/help/
doc-detail/27544.htm?spm=a2c63.p38356.b99.5.4bc42299yeUcWm.

[9] 2020. Chromium inwebrtc. https://chromium.googlesource.com/external/webrtc/.

[10] 2020. Core ML framework. https://developer.apple.com/documentation/coreml.
[11] 2020. Linux Traffic Control. https://events.static.linuxfound.org/sites/events/

files/slides/Linux_traffic_control.pdf.
[12] 2020. Tensorflow Lite . https://www.tensorflow.org/lite.
[13] 2020. Tensorflow source code. https://github.com/tensorflow/tensorflow/tree/

master/tensorflow/tools..
[14] 2020. TFLearn: Deep learning library featuring a higher-level API for TensorFlow.

http://tflearn.org/.
[15] Saamer Akhshabi, Sethumadhavan Narayanaswamy, Ali C. Begen, and Con-

stantine Dovrolis. 2012. An experimental evaluation of rate-adaptive video
players over HTTP. Signal Process. Image Commun. 27, 4 (2012), 271–287.
https://doi.org/10.1016/j.image.2011.10.003

[16] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. 2669–2678. https:
//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211

[17] Rajarshi Bhattacharyya, Archana Bura, Desik Rengarajan, Mason Rumuly, Srini-
vas Shakkottai, Dileep M. Kalathil, Ricky K. P. Mok, and Amogh Dhamdhere. 2019.
QFlow: A Reinforcement Learning Approach to High QoE Video Streaming over
Wireless Networks. In Proceedings of the Twentieth ACM International Symposium
on Mobile Ad Hoc Networking and Computing, Mobihoc 2019, Catania, Italy, July
2-5, 2019. 251–260. https://doi.org/10.1145/3323679.3326523

[18] Léon Bottou and Yann LeCun. 2003. Large Scale Online Learning. In Advances in
Neural Information Processing Systems 16 [Neural Information Processing Systems,
NIPS 2003, December 8-13, 2003, Vancouver andWhistler, British Columbia, Canada].
217–224.

[19] Haitham Bou-Ammar, Eric Eaton, Paul Ruvolo, and Matthew E. Taylor. 2014.
Online Multi-Task Learning for Policy Gradient Methods. In Proceedings of the
31th International Conference on Machine Learning, ICML 2014, Beijing, China,
21-26 June 2014. 1206–1214.

[20] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey,
Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige,
Sergey Levine, and Vincent Vanhoucke. 2018. Using Simulation and Domain
Adaptation to Improve Efficiency of Deep Robotic Grasping. In 2018 IEEE Inter-
national Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia,
May 21-25, 2018. 4243–4250.

[21] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. ACM Queue
14, 5 (2016), 20–53.

[22] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2017.
Congestion Control for Web Real-Time Communication. IEEE/ACM Trans. Netw.
25, 5 (2017), 2629–2642.

[23] Jason Clements, Teodros Gessesse, Darshan Sedani, and Jerry Klein. 2016. Live
video broadcasting mobile application for social sharing. US Patent App.
14/821,519.

[24] Yann Le Cun, Ido Kanter, and Sara A. Solla. [n.d.]. Eigenvalues of covariance
matrices: Application to neural-network learning. Physical Review Letters 66, 18
([n. d.]), 2396–2399.

[25] Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael Schapira.
2015. PCC: Re-architecting Congestion Control for Consistent High Performance.
In 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). USENIX Association, Oakland, CA, 395–408. https://www.usenix.org/
conference/nsdi15/technical-sessions/presentation/dong

[26] MoDong, TongMeng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. 2018. PCC Vivace: Online-Learning Congestion Control.
In 15th USENIX Symposium on Networked Systems Design and Implementation,

NSDI 2018, Renton, WA, USA, April 9-11, 2018. 343–356.
[27] John C. Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient

Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res.
12 (2011), 2121–2159.

[28] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and
Keith Winstein. 2018. Salsify: Low-Latency Network Video through Tighter
Integration between a Video Codec and a Transport Protocol. In 15th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2018, Renton,
WA, USA, April 9-11, 2018. 267–282.

[29] Ian J. Goodfellow and Oriol Vinyals. 2015. Qualitatively characterizing neural
network optimization problems. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. http://arxiv.org/abs/1412.6544

[30] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. Operating Systems Review 42, 5 (2008), 64–74.

[31] Marie Hopkins. 2017. Live sports virtual reality broadcasts: Copyright and other
protections. Duke L. & Tech. Rev. 16 (2017), 141.

[32] Quan Huynh-Thu and Mohammed Ghanbari. 2012. The accuracy of PSNR in
predicting video quality for different video scenes and frame rates. Telecommuni-
cation Systems 49, 1 (2012), 35–48. https://doi.org/10.1007/s11235-010-9351-x

[33] Nathan Jay, Noga H. Rotman, Brighten Godfrey, Michael Schapira, and Aviv
Tamar. 2019. A Deep Reinforcement Learning Perspective on Internet Congestion
Control. In Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA. 3050–3059.

[34] Junchen Jiang, Rajdeep Das, Ganesh Ananthanarayanan, Philip A. Chou,
Venkat N. Padmanabhan, Vyas Sekar, Esbjorn Dominique, Marcin Goliszewski,
Dalibor Kukoleca, Renat Vafin, and Hui Zhang. 2016. Via: Improving Inter-
net Telephony Call Quality Using Predictive Relay Selection. In Proceedings of
the ACM SIGCOMM 2016 Conference, Florianopolis, Brazil, August 22-26, 2016.
286–299.

[35] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness, Efficiency,
and Stability in HTTP-Based Adaptive Video Streaming with FESTIVE. In Proc.
of International Conference on Emerging Networking Experiments and Technologies
(CoNEXT).

[36] Yueqiu Jiang, Junkun Zhang, and Qixue Guan. 2014. Improvement of TCP Reno
Congestion Control Protocol. Sensors & Transducers 163, 1 (2014), 308.

[37] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochas-
tic Optimization. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
http://arxiv.org/abs/1412.6980

[38] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. 2018. Deep Gradient
Compression: Reducing the Communication Bandwidth for Distributed Training.
In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

[39] Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell,
Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, and Jesse Sol
Levinson. 2019. Interactions between vehicle and teleoperations system. US
Patent App. 15/644,310.

[40] Hongzi Mao, Shannon Chen, Drew Dimmery, Shaun Singh, Drew Blaisdell, Yuan-
dong Tian, Mohammad Alizadeh, and Eytan Bakshy. 2019. Real-world Video
Adaptation with Reinforcement Learning. In Proceedings of the 2019 Reinforcement
Learning for Real Life Workshop.

[41] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang,
Haonan Wang, Ryan Marcus, Ravichandra Addanki, Mehrdad Khani Shirkoohi,
Songtao He, Vikram Nathan, Frank Cangialosi, Shaileshh Bojja Venkatakrishnan,
Wei-Hung Weng, Song Han, Tim Kraska, and Mohammad Alizadeh. 2019. Park:
An Open Platform for Learning-Augmented Computer Systems. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC,
Canada. 2490–2502. http://papers.nips.cc/paper/8519-park-an-open-platform-
for-learning-augmented-computer-systems

[42] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM 2017, Los Angeles, CA,
USA, August 21-25, 2017. 197–210.

[43] Hongzi Mao, Malte Schwarzkopf, Hao He, and Mohammad Alizadeh. 2019. To-
wards Safe Online Reinforcement Learning in Computer Systems. In 33rd Confer-
ence on Neural Information Processing Systems (NeurIPS 2019).

[44] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works fromDecentralized Data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Laud-
erdale, FL, USA. 1273–1282. http://proceedings.mlr.press/v54/mcmahan17a.html

[45] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016. 1928–1937.

[46] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

389



Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602
http://arxiv.org/abs/1312.5602

[47] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. 2019. Deep Online Learning
Via Meta-Learning: Continual Adaptation for Model-Based RL. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019.

[48] Matteo Pirotta, Marcello Restelli, and Luca Bascetta. 2013. Adaptive Step-Size for
Policy Gradient Methods. InAdvances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States. 1394–
1402. http://papers.nips.cc/paper/5186-adaptive-step-size-for-policy-gradient-
methods

[49] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a Model for Few-Shot
Learning. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings.

[50] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. 2011. A Reduction of
Imitation Learning and Structured Prediction to No-Regret Online Learning. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011. 627–635.

[51] Doyen Sahoo, Quang Pham, Jing Lu, and Steven C. H. Hoi. 2018. Online Deep
Learning: Learning Deep Neural Networks on the Fly. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden. 2660–2666.

[52] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

[53] Ivan Slivar, Mirko Suznjevic, and Lea Skorin-Kapov. 2018. Game Categorization
for Deriving QoE-Driven Video Encoding Configuration Strategies for Cloud
Gaming. TOMM 14, 3s (2018), 56:1–56:24.

[54] Taobao. 2020. Taobao Live APP. https://apps.apple.com/cn/app/
E6B798E5AE9DE79BB4E692AD/id1448831879/.

[55] Taobao. 2020. Taobao-live monthly report, 2020 February.
https://mp.weixin.qq.com/s/wNMfYAYcTI5T3O10x6hA2w/.

[56] Kyriakos G. Vamvoudakis and Frank L. Lewis. 2009. Online actor critic algorithm
to solve the continuous-time infinite horizon optimal control problem. In Inter-
national Joint Conference on Neural Networks, IJCNN 2009, Atlanta, Georgia, USA,
14-19 June 2009. 3180–3187. https://doi.org/10.1109/IJCNN.2009.5178586

[57] Cong Wang, Yanru Xiao, Xing Gao, Li Li, and Jun Wang. 2019. Close the Gap
between Deep Learning and Mobile Intelligence by Incorporating Training in
the Loop. In Proceedings of the 27th ACM International Conference on Multimedia,
MM 2019, Nice, France, October 21-25, 2019. 1419–1427. https://doi.org/10.1145/
3343031.3350904

[58] Haiyang Wang, Tong Li, Ryan Shea, Xiaoqiang Ma, Feng Wang, Jiangchuan Liu,
and Ke Xu. 2018. Toward Cloud-Based Distributed Interactive Applications:

Measurement, Modeling, and Analysis. IEEE/ACM Trans. Netw. 26, 1 (2018), 3–16.
[59] Ziheng Wang, Isabella Reed, and Ann Majewicz Fey. 2018. Toward Intuitive Tele-

operation in Surgery: Human-Centric Evaluation of Teleoperation Algorithms
for Robotic Needle Steering. In 2018 IEEE International Conference on Robotics
and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018. 1–8.

[60] Keith Winstein and Hari Balakrishnan. 2013. TCP ex machina: computer-
generated congestion control. In ACM SIGCOMM 2013 Conference, SIGCOMM’13,
Hong Kong, China, August 12-16, 2013. 123–134.

[61] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic
Forecasts Achieve High Throughput and Low Delay over Cellular Networks.
In Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation (nsdi’13).

[62] Xiufeng Xie, Xinyu Zhang, Swarun Kumar, and Li Erran Li. 2015. PiStream:
Physical Layer Informed Adaptive Video Streaming over LTE. In Proceedings of
the ACM Annual International Conference on Mobile Computing and Networking
(MobiCom).

[63] Xiufeng Xie, Xinyu Zhang, and Shilin Zhu. 2017. Accelerating Mobile Web Load-
ing Using Cellular Link Information. In Proceedings of the Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys).

[64] Qiang Xu, SanjeevMehrotra, ZhuoqingMao, and Jin Li. 2013. PROTEUS: Network
Performance Forecast for Real-time, Interactive Mobile Applications. In Proceed-
ing of the 11th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys ’13). 347–360.

[65] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: a randomized
experiment in video streaming. In 17th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020. 495–511. https://www.usenix.org/conference/nsdi20/presentation/yan

[66] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip
Levis, and Keith Winstein. 2018. Pantheon: the training ground for Inter-
net congestion-control research. In 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018. 731–743.

[67] Xin Yao, Tianchi Huang, Chenglei Wu, Rui-Xiao Zhang, and Lifeng Sun. 2019.
Federated Learning with Additional Mechanisms on Clients to Reduce Commu-
nication Costs. CoRR abs/1908.05891 (2019).

[68] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. 2015. Adaptive Congestion Control for Unpredictable Cellular
Networks. In Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (SIGCOMM ’15). ACM, New York, NY, USA, 509–522.
https://doi.org/10.1145/2785956.2787498

[69] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu, Ruoxuan Ma, Zhen
Meng, Xinyu Zhang, Xiufeng Xie, Huadong Ma, and Xiaojiang Chen. 2019. Learn-
ing to Coordinate Video Codec with Transport Protocol for Mobile Video Tele-
phony. In The 25th Annual International Conference on Mobile Computing and
Networking, MobiCom 2019, Los Cabos, Mexico, October 21-25, 2019. 29:1–29:16.

390


