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Figure 1: Unsupervised learning of 3D deformable objects from in-the-wild images. Left: Training uses only single views

of the object category with no additional supervision at all (i.e. no ground-truth 3D information, multiple views, or any prior

model of the object). Right: Once trained, our model reconstructs the 3D pose, shape, albedo and illumination of a deformable

object instance from a single image with excellent fidelity. Code and demo at https://github.com/elliottwu/unsup3d.

Abstract

We propose a method to learn 3D deformable object cate-

gories from raw single-view images, without external super-

vision. The method is based on an autoencoder that factors

each input image into depth, albedo, viewpoint and illumi-

nation. In order to disentangle these components without

supervision, we use the fact that many object categories have,

at least in principle, a symmetric structure. We show that rea-

soning about illumination allows us to exploit the underlying

object symmetry even if the appearance is not symmetric due

to shading. Furthermore, we model objects that are probably,

but not certainly, symmetric by predicting a symmetry prob-

ability map, learned end-to-end with the other components

of the model. Our experiments show that this method can re-

cover very accurately the 3D shape of human faces, cat faces

and cars from single-view images, without any supervision

or a prior shape model. On benchmarks, we demonstrate

superior accuracy compared to another method that uses

supervision at the level of 2D image correspondences.

1. Introduction

Understanding the 3D structure of images is key in many

computer vision applications. Futhermore, while many deep

networks appear to understand images as 2D textures [16],

3D modelling can explain away much of the variability of

natural images and potentially improve image understanding

in general. Motivated by these facts, we consider the problem

of learning 3D models for deformable object categories.

We study this problem under two challenging conditions.

The first condition is that no 2D or 3D ground truth informa-

tion (such as keypoints, segmentation, depth maps, or prior

knowledge of a 3D model) is available. Learning without

external supervisions removes the bottleneck of collecting

image annotations, which is often a major obstacle to de-

ploying deep learning for new applications. The second

condition is that the algorithm must use an unconstrained

collection of single-view images — in particular, it should

not require multiple views of the same instance. Learning

from single-view images is useful because in many applica-

tions, and especially for deformable objects, we solely have

a source of still images to work with. Consequently, our

learning algorithm ingests a number of single-view images

of a deformable object category and produces as output a

deep network that can estimate the 3D shape of any instance

given a single image of it (Fig. 1).

We formulate this as an autoencoder that internally de-

composes the image into albedo, depth, illumination and

viewpoint, without direct supervision for any of these factors.
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However, without further assumptions, decomposing images

into these four factors is ill-posed. In search of minimal

assumptions to achieve this, we note that many object cate-

gories are symmetric (e.g. almost all animals and many hand-

crafted objects). Assuming an object is perfectly symmetric,

one can obtain a virtual second view of it by simply mirror-

ing the image. In fact, if correspondences between the pair of

mirrored images were available, 3D reconstruction could be

achieved by stereo reconstruction [41, 12, 60, 54, 14]. Moti-

vated by this, we seek to leverage symmetry as a geometric

cue to constrain the decomposition.

However, specific object instances are in practice never

fully symmetric, neither in shape nor appearance. Shape

is non-symmetric due to variations in pose or other details

(e.g. hair style or expressions on a human face), and albedo

can also be non-symmetric (e.g. asymmetric texture of cat

faces). Even when both shape and albedo are symmetric, the

appearance may still not be, due to asymmetric illumination.

We address this issue in two ways. First, we explicitly

model illumination to exploit the underlying symmetry and

show that, by doing so, the model can exploit illumination

as an additional cue for recovering the shape. Second, we

augment the model to reason about potential lack of symme-

try in the objects. To do this, the model predicts, along with

the other factors, a dense map containing the probability that

a given pixel has a symmetric counterpart in the image.

We combine these elements in an end-to-end learning

formulation, where all components, including the confidence

maps, are learned from raw RGB data only. We also show

that symmetry can be enforced by flipping internal repre-

sentations, which is particularly useful for reasoning about

symmetries probabilistically.

We demonstrate our method on several datasets, includ-

ing human faces, cat faces and cars. We provide a thorough

ablation study using a synthetic face dataset to obtain the

necessary 3D ground truth. On real images, we achieve

higher fidelity reconstruction results compared to other meth-

ods [49, 56] that do not rely on 2D or 3D ground truth infor-

mation, nor prior knowledge of a 3D model of the instance

or class. In addition, we also outperform a recent state-of-

the-art method [40] that uses keypoint supervision for 3D

reconstruction on real faces, while our method uses no ex-

ternal supervision at all. Finally, we demonstrate that our

trained face model generalizes to non-natural images such

as face paintings and cartoon drawings without fine-tuning.

2. Related Work

In order to assess our contribution in relation to the vast

literature on image-based 3D reconstruction, it is important

to consider three aspects of each approach: which infor-

mation is used, which assumptions are made, and what the

output is. Below and in Table 1 we compare our contribution

to prior works based on these factors.

Paper Supervision Goals Data

[47] 3D scans 3DMM Face

[66] 3DV, I Prior on 3DV, predict from I ShapeNet, Ikea

[1] 3DP Prior on 3DP ShapeNet

[48] 3DM Prior on 3DM Face

[17] 3DMM, 2DKP, I Refine 3DMM fit to I Face

[15] 3DMM, 2DKP, I Fit 3DMM to I+2DKP Face

[18] 3DMM Fit 3DMM to 3D scans Face

[28] 3DMM, 2DKP Pred. 3DMM from I Humans

[51] 3DMM, 2DS+KP Pred. N, A, L from I Face

[64] 3DMM, I Pred. 3DM, VP, T, E from I Face

[50] 3DMM, 2DKP, I Fit 3DMM to I Face

[13] 2DS Prior on 3DV, pred. from I Model/ScanNet

[30] I, 2DS, VP Prior on 3DV ScanNet, PAS3D

[29] I, 2DS+KP Pred. 3DM, T, VP from I Birds

[7] I, 2DS Pred. 3DM, T, L, VP from I ShapeNet, Birds

[23] I, 2DS Pred. 3DV, VP from I ShapeNet, others

[56] I Prior on 3DM, T, I Face

[49] I Pred. 3DM, VP, T† from I Face

[22] I Pred. V, L, VP from I ShapeNet

Ours I Pred. D, L, A, VP from I Face, others

Table 1: Comparison with selected prior work: supervision,

goals, and data. I: image, 3DMM: 3D morphable model,

2DKP: 2D keypoints, 2DS: 2D silhouette, 3DP: 3D points,

VP: viewpoint, E: expression, 3DM: 3D mesh, 3DV: 3D

volume, D: depth, N: normals, A: albedo, T: texture, L:

light. † can also recover A and L in post-processing.

Our method uses single-view images of an object cate-

gory as training data, assumes that the objects belong to a

specific class (e.g. human faces) which is weakly symmetric,

and outputs a monocular predictor capable of decomposing

any image of the category into shape, albedo, illumination,

viewpoint and symmetry probability.

Structure from Motion. Traditional methods such as

Structure from Motion (SfM) [11] can reconstruct the 3D

structure of individual rigid scenes given as input multiple

views of each scene and 2D keypoint matches between the

views. This can be extended in two ways. First, monocular

reconstruction methods can perform dense 3D reconstruc-

tion from a single image without 2D keypoints [74, 62, 20].

However, they require multiple views [20] or videos of rigid

scenes for training [74]. Second, Non-Rigid SfM (NRSfM)

approaches [4, 44] can learn to reconstruct deformable ob-

jects by allowing 3D points to deform in a limited manner

between views, but require supervision in terms of anno-

tated 2D keypoints for both training and testing. Hence,

neither family of SfM approaches can learn to reconstruct

deformable objects from raw pixels of a single view.

Shape from X. Many other monocular cues have been

used as alternatives or supplements to SfM for recovering

shape from images, such as shading [25, 71], silhouettes [33],

texture [65], symmetry [41, 12] etc. In particular, our work is
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inspired from shape from symmetry and shape from shading.

Shape from symmetry [41, 12, 60, 54] reconstructs symmet-

ric objects from a single image by using the mirrored image

as a virtual second view, provided that symmetric correspon-

dences are available. [54] also shows that it is possible to

detect symmetries and correspondences using descriptors.

Shape from shading [25, 71] assumes a shading model such

as Lambertian reflectance, and reconstructs the surface by

exploiting the non-uniform illumination.

Category-specific reconstruction. Learning-based meth-

ods have recently been leveraged to reconstruct objects from

a single view, either in the form of a raw image or 2D key-

points (see also Table 1). While this task is ill-posed, it

has been shown to be solvable by learning a suitable object

prior from the training data [47, 66, 1, 48]. A variety of

supervisory signals have been proposed to learn such priors.

Besides using 3D ground truth directly, authors have consid-

ered using videos [2, 74, 43, 63] and stereo pairs [20, 38].

Other approaches have used single views with 2D keypoint

annotations [29, 40, 55, 6] or object masks [29, 7]. For

objects such as human bodies and human faces, some meth-

ods [28, 18, 64, 15] have learn to reconstruct from raw im-

ages, but starting from the knowledge of a predefined shape

model such as SMPL [36] or Basel [47]. These prior mod-

els are constructed using specialized hardware and/or other

forms of supervision, which are often difficult to obtain for

deformable objects in the wild, such as animals, and also

limited in details of the shape.

Only recently have authors attempted to learn the geome-

try of object categories from raw, monocular views only.

Thewlis et al. [58, 59] uses equivariance to learn dense

landmarks, which recovers the 2D geometry of the objects.

DAE [52] learns to predict a deformation field through heav-

ily constraining an autoencoder with a small bottleneck em-

bedding and lift that to 3D in [49] — in post processing, they

further decompose the reconstruction in albedo and shading,

obtaining an output similar to ours.

Adversarial learning has been proposed as a way of hal-

lucinating new views of an object. Some of these methods

start from 3D representations [66, 1, 75, 48]. Kato et al. [30]

trains a discriminator on raw images but uses viewpoint as

addition supervision. HoloGAN [42] only uses raw images

but does not obtain an explicit 3D reconstruction. Szabo et

al. [56] uses adversarial training to reconstruct 3D meshes

of the object, but does not assess their results quantitatively.

Henzler et al. [23] also learns from raw images, but only

experiments with images that contain the object on a white

background, which is akin to supervision with 2D silhou-

ettes. In Section 4.3, we compare to [49, 56] and demonstrate

superior reconstruction results with much higher fidelity.

Since our model generates images from an internal 3D

representation, one essential component is a differentiable

renderer. However, with a traditional rendering pipeline,

canonical view 𝐉
Renderer

shading

input 𝐈

view 𝑤 light 𝑙 albedo 𝑎

reconstruction መ𝐈

conf. 𝜎′conf. 𝜎
Reconstruction

Loss

encoder

decoder

encoder

decoder

encoder

Photo-geometric Autoencoding

encoder

albedo 𝑎′depth 𝑑

encoder

decoder

depth 𝑑′

: horizontal flip

flip switch

Figure 2: Photo-geometric autoencoding. Our network Φ
decomposes an input image I into depth, albedo, viewpoint

and lighting, together with a pair of confidence maps. It is

trained to reconstruct the input without external supervision.

gradients across occlusions and boundaries are not defined.

Several soft relaxations have thus been proposed [37, 31, 34].

Here, we use an implementation1 of [31].

3. Method

Given an unconstrained collection of images of an object

category, such as human faces, our goal is to learn a model

Φ that receives as input an image of an object instance and

produces as output a decomposition of it into 3D shape,

albedo, illumination and viewpoint, as illustrated in Fig. 2.

As we have only raw images to learn from, the learning

objective is reconstructive: namely, the model is trained so

that the combination of the four factors gives back the input

image. This results in an autoencoding pipeline where the

factors have, due to the way they are recomposed, an explicit

photo-geometric meaning.

In order to learn such a decomposition without supervi-

sion for any of the components, we use the fact that many

object categories are bilaterally symmetric. However, the

appearance of object instances is never perfectly symmet-

ric. Asymmetries arise from shape deformation, asymmetric

albedo and asymmetric illumination. We take two measures

to account for these asymmetries. First, we explicitly model

asymmetric illumination. Second, our model also estimates,

for each pixel in the input image, a confidence score that

explains the probability of the pixel having a symmetric

counterpart in the image (see conf σ, σ′ in Fig. 2).

The following sections describe how this is done, looking

first at the photo-geometric autoencoder (Section 3.1), then

at how symmetries are modelled (Section 3.2), followed by

details of the image formation (Section 3.3) and the supple-

mentary perceptual loss (Section 3.4).

1https://github.com/daniilidis-group/neural_renderer
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3.1. Photogeometric autoencoding

An image I is a function Ω → R
3 defined on a grid

Ω = {0, . . . ,W − 1} × {0, . . . , H − 1}, or, equivalently, a

tensor in R
3×W×H . We assume that the image is roughly

centered on an instance of the object of interest. The goal

is to learn a function Φ, implemented as a neural network,

that maps the image I to four factors (d, a, w, l) comprising

a depth map d : Ω → R+, an albedo image a : Ω → R
3,

a global light direction l ∈ S
2, and a viewpoint w ∈ R

6 so

that the image can be reconstructed from them.

The image I is reconstructed from the four factors in two

steps, lighting Λ and reprojection Π, as follows:

Î = Π(Λ(a, d, l), d, w) . (1)

The lighting function Λ generates a version of the object

based on the depth map d, the light direction l and the albedo

a as seen from a canonical viewpoint w = 0. The viewpoint

w represents the transformation between the canonical view

and the viewpoint of the actual input image I. Then, the

reprojection function Π simulates the effect of a viewpoint

change and generates the image Î given the canonical depth

d and the shaded canonical image Λ(a, d, l). Learning uses

a reconstruction loss which encourages I ≈ Î (Section 3.2).

Discussion. The effect of lighting could be incorporated

in the albedo a by interpreting the latter as a texture rather

than as the object’s albedo. However, there are two good

reasons to avoid this. First, the albedo a is often symmetric

even if the illumination causes the corresponding appearance

to look asymmetric. Separating them allows us to more

effectively incorporate the symmetry constraint described

below. Second, shading provides an additional cue on the

underlying 3D shape [24, 3]. In particular, unlike the recent

work of [52] where a shading map is predicted independently

from shape, our model computes the shading based on the

predicted depth, mutually constraining each other.

3.2. Probably symmetric objects

Leveraging symmetry for 3D reconstruction requires iden-

tifying symmetric object points in an image. Here we do so

implicitly, assuming that depth and albedo, which are recon-

structed in a canonical frame, are symmetric about a fixed

vertical plane. An important beneficial side effect of this

choice is that it helps the model discover a ‘canonical view’

for the object, which is important for reconstruction [44].

To do this, we consider the operator that flips a map

a ∈ R
C×W×H along the horizontal axis2: [flip a]c,u,v =

ac,W−1−u,v. We then require d ≈ flip d′ and a ≈ flip a′.
While these constraints could be enforced by adding corre-

sponding loss terms to the learning objective, they would

be difficult to balance. Instead, we achieve the same effect

2The choice of axis is arbitrary as long as it is fixed.

indirectly, by obtaining a second reconstruction Î
′ from the

flipped depth and albedo:

Î
′ = Π(Λ(a′, d′, l), d′, w) , a′ = flip a, d′ = flip d. (2)

Then, we consider two reconstruction losses encouraging

I ≈ Î and I ≈ Î
′. Since the two losses are commensurate,

they are easy to balance and train jointly. Most importantly,

this approach allows us to easily reason about symmetry

probabilistically, as explained next.

The source image I and the reconstruction Î are compared

via the loss:

L(Î, I, σ) = − 1

|Ω|
∑

uv∈Ω

ln
1√
2σuv

exp−
√
2ℓ1,uv
σuv

, (3)

where ℓ1,uv = |Îuv − Iuv| is the L1 distance between the

intensity of pixels at location uv, and σ ∈ R
W×H
+ is a confi-

dence map, also estimated by the network Φ from the image

I, which expresses the aleatoric uncertainty of the model.

The loss can be interpreted as the negative log-likelihood

of a factorized Laplacian distribution on the reconstruction

residuals. Optimizing likelihood causes the model to self-

calibrate, learning a meaningful confidence map [32].

Modelling uncertainty is generally useful, but in our case

is particularly important when we consider the “symmetric”

reconstruction Î
′, for which we use the same loss L(Î′, I, σ′).

Crucially, we use the network to estimate, also from the same

input image I, a second confidence map σ′. This confidence

map allows the model to learn which portions of the input

image might not be symmetric. For instance, in some cases

hair on a human face is not symmetric as shown in Fig. 2, and

σ′ can assign a higher reconstruction uncertainty to the hair

region where the symmetry assumption is not satisfied. Note

that this depends on the specific instance under consideration,

and is learned by the model itself.

Overall, the learning objective is given by the combina-

tion of the two reconstruction errors:

E(Φ; I) = L(Î, I, σ) + λfL(Î′, I, σ′), (4)

where λf = 0.5 is a weighing factor, (d, a, w, l, σ, σ′) =

Φ(I) is the output of the neural network, and Î and Î
′ are

obtained according to Eqs. (1) and (2).

3.3. Image formation model

We now describe the functions Π and Λ in Eq. (1) in more

detail. The image is formed by a camera looking at a 3D

object. If we denote with P = (Px, Py, Pz) ∈ R
3 a 3D

point expressed in the reference frame of the camera, this is

mapped to pixel p = (u, v, 1) by the following projection:

p ∝ KP, K =





f 0 cu
0 f cv
0 0 1



 ,















cu = W−1
2 ,

cv = H−1
2 ,

f = W−1

2 tan
θFOV

2

.

(5)
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This model assumes a perspective camera with field of view

(FOV) θFOV. We assume a nominal distance of the object

from the camera at about 1m. Given that the images are

cropped around a particular object, we assume a relatively

narrow FOV of θFOV ≈ 10◦.

The depth map d : Ω → R+ associates a depth value duv
to each pixel (u, v) ∈ Ω in the canonical view. By inverting

the camera model (5), we find that this corresponds to the

3D point P = duv ·K−1p.
The viewpoint w ∈ R

6 represents an Euclidean transfor-

mation (R, T ) ∈ SE(3), where w1:3 and w4:6 are rotation

angles and translations along x, y and z axes respectively.

The map (R, T ) transforms 3D points from the canonical

view to the actual view. Thus a pixel (u, v) in the canonical

view is mapped to the pixel (u′, v′) in the actual view by the

warping function ηd,w : (u, v) 7→ (u′, v′) given by:

p′ ∝ K(duv ·RK−1p+ T ), (6)

where p′ = (u′, v′, 1).
Finally, the reprojection function Π takes as input the

depth d and the viewpoint change w and applies the resulting

warp to the canonical image J to obtain the actual image Î =
Π(J, d, w) as Îu′v′ = Juv, where (u, v) = η−1

d,w(u
′, v′).3

The canonical image J = Λ(a, d, l) is in turn generated

as a combination of albedo, normal map and light direction.

To do so, given the depth map d, we derive the normal map

n : Ω → S
2 by associating to each pixel (u, v) a vector

normal to the underlying 3D surface. In order to find this

vector, we compute the vectors tuuv and tvuv tangent to the

surface along the u and v directions. For example, the first

one is: tuuv = du+1,v ·K−1(p+ ex)−du−1,v ·K−1(p− ex)
where p is defined above and ex = (1, 0, 0). Then the normal

is obtained by taking the vector product nuv ∝ tuuv × tvuv .

The normal nuv is multiplied by the light direction l to

obtain a value for the directional illumination and the latter

is added to the ambient light. Finally, the result is multiplied

by the albedo to obtain the illuminated texture, as follows:

Juv = (ks + kd max{0, 〈l, nuv〉}) · auv. Here ks and kd
are the scalar coefficients weighting the ambient and diffuse

terms, and are predicted by the model with range between

0 and 1 via rescaling a tanh output. The light direction

l = (lx, ly, 1)
T /(l2x + l2y + 1)0.5 is modeled as a spherical

sector by predicting lx and ly with tanh.

3.4. Perceptual loss

The L1 loss function Eq. (3) is sensitive to small geomet-

ric imperfections and tends to result in blurry reconstructions.

We add a perceptual loss term to mitigate this problem. The

k-th layer of an off-the-shelf image encoder e (VGG16 in our

case [53]) predicts a representation e(k)(I) ∈ R
Ck×Wk×Hk

3Note that this requires to compute the inverse of the warp ηd,w , which

is detailed in Section 6.1.

where Ωk = {0, . . . ,Wk−1}×{0, . . . , Hk−1} is the corre-

sponding spatial domain. Note that this feature encoder does

not have to be trained with supervised tasks. Self-supervised

encoders can be equally effective as shown in Table 3.
Similar to Eq. (3), assuming a Gaussian distribution, the

perceptual loss is given by:

L(k)
p (Î, I, σ(k)) = −

1

|Ωk|

∑

uv∈Ωk

ln
1

√

2π(σ
(k)
uv )2

exp−
(ℓ

(k)
uv )

2

2(σ
(k)
uv )2

,

(7)

where ℓ
(k)
uv = |e(k)uv (Î)− e

(k)
uv (I)| for each pixel index uv in

the k-th layer. We also compute the loss for Î′ using σ(k)′ .

σ(k) and σ(k)′ are additional confidence maps predicted by

our model. In practice, we found it is good enough for our

purpose to use the features from only one layer relu3 3 of

VGG16. We therefore shorten the notation of perceptual loss

to Lp. With this, the loss function L in Eq. (4) is replaced by

L+ λpLp with λp = 1.

4. Experiments

4.1. Setup

Datasets. We test our method on three human face

datasets: CelebA [35], 3DFAW [21, 27, 73, 69] and

BFM [47]. CelebA is a large scale human face dataset,

consisting of over 200k images of real human faces in the

wild annotated with bounding boxes. 3DFAW contains 23k

images with 66 3D keypoint annotations, which we use to

evaluate our 3D predictions in Section 4.3. We roughly

crop the images around the head region and use the official

train/val/test splits. BFM (Basel Face Model) is a synthetic

face model, which we use to assess the quality of the 3D

reconstructions (since the in-the-wild datasets lack ground-

truth). We follow the protocol of [51] to generate a dataset,

sampling shapes, poses, textures, and illumination randomly.

We use images from SUN Database [68] as background and

save ground truth depth maps for evaluation.

We also test our method on cat faces and synthetic cars.

We use two cat datasets [72, 46]. The first one has 10k cat

images with nine keypoint annotations, and the second one

is a collection of dog and cat images, containing 1.2k cat

images with bounding box annotations. We combine the two

datasets and crop the images around the cat heads. For cars,

we render 35k images of synthetic cars from ShapeNet [5]

with random viewpoints and illumination. We randomly split

the images by 8:1:1 into train, validation and test sets.

Metrics. Since the scale of 3D reconstruction from pro-

jective cameras is inherently ambiguous [11], we discount

it in the evaluation. Specifically, given the depth map d
predicted by our model in the canonical view, we warp it

to a depth map d̄ in the actual view using the predicted

viewpoint and compare the latter to the ground-truth depth

map d∗ using the scale-invariant depth error (SIDE) [10]
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No Baseline SIDE (×10−2) ↓ MAD (deg.) ↓

(1) Supervised 0.410 ±0.103 10.78 ±1.01

(2) Const. null depth 2.723 ±0.371 43.34 ±2.25

(3) Average g.t. depth 1.990 ±0.556 23.26 ±2.85

(4) Ours (unsupervised) 0.793 ±0.140 16.51 ±1.56

Table 2: Comparison with baselines. SIDE and MAD

errors of our reconstructions on the BFM dataset compared

against a fully-supervised and trivial baselines.

ESIDE(d̄, d
∗) = ( 1

WH

∑

uv ∆
2
uv − ( 1

WH

∑

uv ∆uv)
2)

1

2

where ∆uv = log d̄uv − log d∗uv. We compare only valid

depth pixel and erode the foreground mask by one pixel to

discount rendering artefacts at object boundaries. Addition-

ally, we report the mean angle deviation (MAD) between

normals computed from ground truth depth and from the

predicted depth, measuring how well the surface is captured.

Implementation details. The function (d, a, w, l, σ) =
Φ(I) that preditcs depth, albedo, viewpoint, lighting, and

confidence maps from the image I is implemented using

individual neural networks. The depth and albedo are gen-

erated by encoder-decoder networks, while viewpoint and

lighting are regressed using simple encoder networks. The

encoder-decoders do not use skip connections because input

and output images are not spatially aligned (since the output

is in the canonical viewpoint). All four confidence maps

are predicted using the same network, at different decoding

layers for the photometric and perceptual losses since these

are computed at different resolutions. The final activation

function is tanh for depth, albedo, viewpoint and lighting

and softplus for the confidence maps. The depth pre-

diction is centered on the mean before tanh, as the global

distance is estimated as part of the viewpoint. We do not use

any special initialization for all predictions, except that two

border pixels of the depth maps on both the left and the right

are clamped at a maximal depth to avoid boundary issues.

We train using Adam over batches of 64 input images,

resized to 64× 64 pixels. The size of the output depth and

albedo is also 64 × 64. We train for approximately 50k

iterations. For visualization, depth maps are upsampled to

256. We include more details in Section 6.2.

4.2. Results

Comparison with baselines. Table 2 uses the BFM

dataset to compare the depth reconstruction quality obtained

by our method, a fully-supervised baseline and two baselines.

The supervised baseline is a version of our model trained to

regress the ground-truth depth maps using an L1 loss. The

trivial baseline predicts a constant uniform depth map, which

provides a performance lower-bound. The third baseline is a

constant depth map obtained by averaging all ground-truth

depth maps in the test set. Our method largely outperforms

No Method SIDE (×10−2) ↓ MAD (deg.) ↓

(1) Ours full 0.793 ±0.140 16.51 ±1.56

(2) w/o albedo flip 2.916 ±0.300 39.04 ±1.80

(3) w/o depth flip 1.139 ±0.244 27.06 ±2.33

(4) w/o light 2.406 ±0.676 41.64 ±8.48

(5) w/o perc. loss 0.931 ±0.269 17.90 ±2.31

(6) w/ self-sup. perc. loss 0.815 ±0.145 15.88 ±1.57

(7) w/o confidence 0.829 ±0.213 16.39 ±2.12

Table 3: Ablation study. Refer to Section 4.2 for details.

SIDE (×10−2) ↓ MAD (deg.) ↓

No perturb, no conf. 0.829 ±0.213 16.39 ±2.12

No perturb, conf. 0.793 ±0.140 16.51 ±1.56

Perturb, no conf. 2.141 ±0.842 26.61 ±5.39

Perturb, conf. 0.878 ±0.169 17.14 ±1.90

Table 4: Asymmetric perturbation. We add asymmetric

perturbations to BFM and show that confidence maps al-

low the model to reject such noise, while the vanilla model

without confidence maps breaks.

Depth Corr. ↑

Ground truth 66
AIGN [61] (supervised, from [40]) 50.81
DepthNetGAN [40] (supervised, from [40]) 58.68

MOFA [57] (model-based, from [40]) 15.97
DepthNet [40] (from [40]) 26.32
DepthNet [40] (from GitHub) 35.77

Ours 48.98
Ours (w/ CelebA pre-training) 54.65

Table 5: 3DFAW keypoint depth evaluation. Depth corre-

lation between ground truth and prediction evaluated at 66
facial keypoint locations.

the two constant baselines and approaches the results of su-

pervised training. Improving over the third baseline (which

has access to GT information) confirms that the model learns

an instance specific 3D representation.

Ablation. To understand the influence of the individual

parts of the model, we remove them one at a time and evalu-

ate the performance of the ablated model in Table 3. Visual

results are reported in Fig. 9.

In the table, row (1) shows the performance of the full

model (the same as in Table 2). Row (2) does not flip the

albedo. Thus, the albedo is not encouraged to be symmetric

in the canonical space, which fails to canonicalize the view-

point of the object and to use cues from symmetry to recover

shape. The performance is as low as the trivial baseline

in Table 2. Row (3) does not flip the depth, with a similar

effect to row (2). Row (4) predicts a shading map instead

of computing it from depth and light direction. This also

harms performance significantly because shading cannot be

6



perturbed dataset

conf σ conf σ′

input recon w/ conf recon w/o conf

Figure 3: Asymmetric perturbation. Top: examples of the

perturbed dataset. Bottom: reconstructions with and without

confidence maps. Confidence allows the model to correctly

reconstruct the 3D shape with the asymmetric texture.

used as a cue to recover shape. Row (5) switches off the

perceptual loss, which leads to degraded image quality and

hence degraded reconstruction results. Row (6) replaces the

ImageNet pretrained image encoder used in the perceptual

loss with one4 trained through a self-supervised task [19],

which shows no difference in performance. Finally, row (7)

switches off the confidence maps, using a fixed and uniform

value for the confidence — this reduces losses (3) and (7) to

the basic L1 and L2 losses, respectively. The accuracy does

not drop significantly, as faces in BFM are highly symmetric

(e.g. do not have hair), but its variance increases. To better

understand the effect of the confidence maps, we specifically

evaluate on partially asymmetric faces using perturbations.

Asymmetric perturbation. In order to demonstrate that

our uncertainty modelling allows the model to handle asym-

metry, we add asymmetric perturbations to BFM. Specif-

ically, we generate random rectangular color patches with

20% to 50% of the image size and blend them onto the im-

ages with α-values ranging from 0.5 to 1, as shown in Fig. 3.

We then train our model with and without confidence on

these perturbed images, and report the results in Table 4.

Without the confidence maps, the model always predicts a

symmetric albedo and geometry reconstruction often fails.

With our confidence estimates, the model is able to recon-

struct the asymmetric faces correctly, with very little loss in

accuracy compared to the unperturbed case.

Qualitative results. In Fig. 4 we show reconstruction re-

sults of human faces from CelebA and 3DFAW, cat faces

from [72, 46] and synthetic cars from ShapeNet. The 3D

shapes are recovered with high fidelity. The reconstructed

3D face, for instance, contain fine details of the nose, eyes

and mouth even in the presence of extreme facial expression.

To further test generalization, we applied our model

trained on the CelebA dataset to a number of paintings and

cartoon drawings of faces collected from [9] and the Internet.

As shown in Fig. 5, our method still works well even though

it has never seen such images during training.

4We use a RotNet [19] pretrained VGG16 model obtained from https:

//github.com/facebookresearch/DeeperCluster.

input reconstruction

Figure 4: Reconstruction of faces, cats and cars.

input reconstruction

Figure 5: Reconstruction of faces in paintings.

(a) symmetry plane (b) asymmetry visualization

Figure 6: Symmetry plane and asymmetry detection. (a):

our model can reconstruct the “intrinsic” symmetry plane of

an in-the-wild object even though the appearance is highly

asymmetric. (b): asymmetries (highlighted in red) are de-

tected and visualized using confidence map σ′.

Symmetry and asymmetry detection. Since our model

predicts a canonical view of the objects that is symmetric

about the vertical center-line of the image, we can easily vi-

sualize the symmetry plane, which is otherwise non-trivial to

detect from in-the-wild images. In Fig. 6, we warp the center-

line of the canonical image to the predicted input viewpoint.

Our method can detect symmetry planes accurately despite

the presence of asymmetric texture and lighting effects. We

also overlay the predicted confidence map σ′ onto the im-

age, confirming that the model assigns low confidence to

asymmetric regions in a sample-specific way.

4.3. Comparison with the state of the art

As shown in Table 1, most reconstruction methods in the

literature require either image annotations, prior 3D models

7
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input LAE [49] ours

input Szabó et al. [56] ours

Figure 7: Qualitative comparison to SOTA. Our method

recovers much higher quality shapes compared to [49, 56].

or both. When these assumptions are dropped, the task be-

comes considerably harder, and there is little prior work that

is directly comparable. Of these, [22] only uses synthetic,

texture-less objects from ShapeNet, [56] reconstructs in-the-

wild faces but does not report any quantitative results, and

[49] reports quantitative results only on keypoint regression,

but not on the 3D reconstruction quality. We were not able

to obtain code or trained models from [49, 56] for a direct

quantitative comparison and thus compare qualitatively.

Qualitative comparison. In order to establish a side-by-

side comparison, we cropped the examples reported in the

papers [49, 56] and compare our results with theirs (Fig. 7).

Our method produces much higher quality reconstructions

than both methods, with fine details of the facial expression,

whereas [49] recovers 3D shapes poorly and [56] generates

unnatural shapes. Note that [56] uses an unconditional GAN

that generates high resolution 3D faces from random noise,

and cannot recover 3D shapes from images. The input im-

ages for [56] in Fig. 7 were generated by their GAN.

3D keypoint depth evaluation. Next, we compare to the

DepthNet model of [40]. This method predicts depth for

selected facial keypoints, but uses 2D keypoint annotations

as input — a much easier setup than the one we consider

here. Still, we compare the quality of the reconstruction of

these sparse point obtained by DepthNet and our method.

We also compare to the baselines MOFA [57] and AIGN [61]

reported in [40]. For a fair comparison, we use their public

code which computes the depth correlation score (between

0 and 66) on the frontal faces. We use the 2D keypoint

locations to sample our predicted depth and then evaluate

the same metric. The set of test images from 3DFAW and

the preprocessing are identical to [40]. Since 3DFAW is a

small dataset with limited variation, we also report results

with CelebA pre-training.

In Table 5 we report the results from their paper and the

slightly improved results we obtained from their publicly-

a: extreme lighting b: noisy texture c: extreme pose

Figure 8: Failure cases. See Section 4.4 for details.

available implementation. The paper also evaluates a su-

pervised model using a GAN discriminator trained with

ground-truth depth information. While our method does

not use any supervision, it still outperforms DepthNet and

reaches close-to-supervised performance.

4.4. Limitations

While our method is robust in many challenging scenar-

ios (e.g., extreme facial expression, abstract drawing), we do

observe failure cases as shown in Fig. 8. During training, we

assume a simple Lambertian shading model, ignoring shad-

ows and specularity, which leads to inaccurate reconstruc-

tions under extreme lighting conditions (Fig. 8a) or highly

non-Lambertian surfaces. Disentangling noisy dark textures

and shading (Fig. 8b) is often difficult. The reconstruction

quality is lower for extreme poses (Fig. 8c), partly due to

poor supervisory signal from the reconstruction loss of side

images. This may be improved by imposing constraints from

accurate reconstructions of frontal poses.

5. Conclusions

We have presented a method that can learn a 3D model of

a deformable object category from an unconstrained collec-

tion of single-view images of the object category. The model

is able to obtain high-fidelity monocular 3D reconstructions

of individual object instances. This is trained based on a

reconstruction loss without any supervision, resembling an

autoencoder. We have shown that symmetry and illumina-

tion are strong cues for shape and help the model to converge

to a meaningful reconstruction. Our model outperforms a

current state-of-the-art 3D reconstruction method that uses

2D keypoint supervision. As for future work, the model cur-

rently represents 3D shape from a canonical viewpoint using

a depth map, which is sufficient for objects such as faces

that have a roughly convex shape and a natural canonical

viewpoint. For more complex objects, it may be possible to

extend the model to use either multiple canonical views or a

different 3D representation, such as a mesh or a voxel map.
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6. Supplementary Material

6.1. Differentiable rendering layer

As noted in Section 3.3, the reprojection function Π warps

the canonical image J to generate the actual image I. In

CNNs, image warping is usually regarded as a simple op-

eration that can be implemented efficiently using a bilinear

resampling layer [26]. However, this is true only if we can

easily send pixels (u′, v′) in the warped image I back to

pixels (u, v) in the source image J, a process also known as

backward warping. Unfortunately, in our case the function

ηd,w obtained by Eq. (6) sends pixels in the opposite way.

Implementing a forward warping layer is surprisingly

delicate. One way of approaching the problem is to regard

this task as a special case of rendering a textured mesh. The

Neural Mesh Renderer (NMR) of [31] is a differentiable

renderer of this type. In our case, the mesh has one vertex

per pixel and each group of 2×2 adjacent pixels is tessellated

by two triangles. Empirically, we found the quality of the

texture gradients of NMR to be poor in this case, likely

caused by high frequency content in the texture image J.

We solve the problem as follows. First, we use NMR

to warp only the depth map d, obtaining a version d̄ of

the depth map as seen from the input viewpoint. This has

two advantages: backpropagation through NMR is faster

and secondly, the gradients are more stable, probably also

due to the comparatively smooth nature of the depth map

d compared to the texture image J. Given the depth map

d̄, we then use the inverse of Eq. (6) to find the warp field

from the observed viewpoint to the canonical viewpoint,

and bilinearly resample the canonical image J to obtain the

reconstruction.

6.2. Training details

We report the training details including all hyper-

parameter settings in Table 6, and detailed network architec-

tures in Tables 7 to 9. We use standard encoder networks

for both viewpoint and lighting predictions, and encoder-

decoder networks for depth, albedo and confidence predic-

tions. In order to mitigate checkerboard artifacts [45] in the

predicted depth and albedo, we add a convolution layer after

each deconvolution layer and replace the last deconvolotion

layer with nearest-neighbor upsampling, followed by 3 con-

volution layers. Abbreviations of the operators are defined

as follows:

• Conv(cin, cout, k, s, p): convolution with cin input

channels, cout output channels, kernel size k, stride

s and padding p.

• Deconv(cin, cout, k, s, p): deconvolution [70] with cin
input channels, cout output channels, kernel size k,

stride s and padding p.
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Parameter Value/Range

Optimizer Adam

Learning rate 1× 10−4

Number of epochs 30
Batch size 64
Loss weight λf 0.5
Loss weight λp 1
Input image size 64× 64
Output image size 64× 64

Depth map (0.9, 1.1)
Albedo (0, 1)
Light coefficient ks (0, 1)
Light coefficient kd (0, 1)
Light direction lx, ly (−1, 1)
Viewpoint rotation w1:3 (−60◦, 60◦)
Viewpoint translation w4:6 (−0.1, 0.1)
Field of view (FOV) 10

Table 6: Training details and hyper-parameter settings.

Encoder Output size

Conv(3, 32, 4, 2, 1) + ReLU 32

Conv(32, 64, 4, 2, 1) + ReLU 16

Conv(64, 128, 4, 2, 1) + ReLU 8

Conv(128, 256, 4, 2, 1) + ReLU 4

Conv(256, 256, 4, 1, 0) + ReLU 1

Conv(256, cout, 1, 1, 0) + Tanh → output 1

Table 7: Network architecture for viewpoint and lighting.

The output channel size cout is 6 for viewpoint, correspond-

ing to rotation angles w1:3 and translations w4:6 in x, y and

z axes, and 4 for lighting, corresponding to ks, kd, lx and ly .

• Upsample(s): nearest-neighbor upsampling with a

scale factor of s.

• GN(n): group normalization [67] with n groups.

• LReLU(α): leaky ReLU [39] with a negative slope of

α.

7. Qualitative Results

We provide more qualitative results in the following and

3D animations in the supplementary video5. Fig. 9 reports

the qualitative results of the ablated models in Table 3.

Fig. 11 shows reconstruction results on human faces from

CelebA and 3DFAW. We also show reconstruction results

on face paintings and drawings collected from [9] and the

Internet in Figs. 12 and 13. Figs. 14 to 16 show results on

real cat faces from [72, 46], abstract cats collected from the

Internet and synthetic cars rendered using ShapeNet.

5https://www.youtube.com/watch?v=5rPJyrU-WE4

Encoder Output size

Conv(3, 64, 4, 2, 1) + GN(16) + LReLU(0.2) 32

Conv(64, 128, 4, 2, 1) + GN(32) + LReLU(0.2) 16

Conv(128, 256, 4, 2, 1) + GN(64) + LReLU(0.2) 8

Conv(256, 512, 4, 2, 1) + LReLU(0.2) 4

Conv(512, 256, 4, 1, 0) + ReLU 1

Decoder Output size

Deconv(256, 512, 4, 1, 0) + ReLU 4

Conv(512, 512, 3, 1, 1) + ReLU 4

Deconv(512, 256, 4, 2, 1) + GN(64) + ReLU 8

Conv(256, 256, 3, 1, 1) + GN(64) + ReLU 8

Deconv(256, 128, 4, 2, 1) + GN(32) + ReLU 16

Conv(128, 128, 3, 1, 1) + GN(32) + ReLU 16

Deconv(128, 64, 4, 2, 1) + GN(16) + ReLU 32

Conv(64, 64, 3, 1, 1) + GN(16) + ReLU 32

Upsample(2) 64

Conv(64, 64, 3, 1, 1) + GN(16) + ReLU 64

Conv(64, 64, 5, 1, 2) + GN(16) + ReLU 64

Conv(64, cout, 5, 1, 2) + Tanh → output 64

Table 8: Network architecture for depth and albedo. The

output channel size cout is 1 for depth and 3 for albedo.

Encoder Output size

Conv(3, 64, 4, 2, 1) + GN(16) + LReLU(0.2) 32

Conv(64, 128, 4, 2, 1) + GN(32) + LReLU(0.2) 16

Conv(128, 256, 4, 2, 1) + GN(64) + LReLU(0.2) 8

Conv(256, 512, 4, 2, 1) + LReLU(0.2) 4

Conv(512, 128, 4, 1, 0) + ReLU 1

Decoder Output size

Deconv(128, 512, 4, 1, 0) + ReLU 4

Deconv(512, 256, 4, 2, 1) + GN(64) + ReLU 8

Deconv(256, 128, 4, 2, 1) + GN(32) + ReLU 16

�

Conv(128, 2, 3, 1, 1) + SoftPlus → output 16

Deconv(128, 64, 4, 2, 1) + GN(16) + ReLU 32

Deconv(64, 64, 4, 2, 1) + GN(16) + ReLU 64

Conv(64, 2, 5, 1, 2) + SoftPlus → output 64

Table 9: Network architecture for confidence maps. The

network outputs two pairs of confidence maps at different

spatial resolutions for photometric and perceptual losses.

Re-lighting. Since our model predicts the intrinsic compo-

nents of an image, separating the albedo and illumination,

we can easily re-light the objects with different lighting con-

ditions. In Fig. 10, we demonstrate results of the intrinsic

decomposition and the re-lit faces in the canonical view.

Testing on videos. To further assess our model, we apply

the model trained on CelebA faces to VoxCeleb [8] videos

frame by frame and include the results in the supplementary

video. Our trained model works surprisingly well, producing

consistent, smooth reconstructions across different frames

and recovering the details of the facial motions accurately.
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Figure 9: Qualitative results of the ablated models.

Input Albedo Original light Re-lit

Figure 10: Re-lighting effects.
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Input Reconstruction

Figure 11: Reconstruction of human faces.
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Input Reconstruction

Figure 12: Reconstruction of face paintings.
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Input Reconstruction

Figure 13: Reconstruction of abstract faces.
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Input Reconstruction

Figure 14: Reconstruction of cat faces.
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Input Reconstruction

Figure 15: Reconstruction of abstract cats.

Input Reconstruction

Figure 16: Reconstruction of synthetic cars.
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