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ABSTRACT
Video-based human pose estimation in crowed scenes is a chal-
lenging problem due to occlusion, motion blur, scale variation and
viewpoint change, etc. Prior approaches always fail to deal with this
problem because of (1) lacking of usage of temporal information; (2)
lacking of training data in crowded scenes. In this paper, we focus
on improving human pose estimation in videos of crowded scenes
from the perspectives of exploiting temporal context and collecting
new data. In particular, we first follow the top-down strategy to
detect persons and perform single-person pose estimation for each
frame. Then, we refine the frame-based pose estimation with tem-
poral contexts deriving from the optical-flow. Specifically, for one
frame, we forward the historical poses from the previous frames
and backward the future poses from the subsequent frames to cur-
rent frame, leading to stable and accurate human pose estimation
in videos. In addition, we mine new data of similar scenes to HIE
dataset from the Internet for improving the diversity of training
set. In this way, our model achieves best performance on 7 out of
13 videos and 56.33 average w_AP on test dataset of HIE challenge.
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1 INTRODUCTION
Human pose estimation is important for many computer vision ap-
plications, including human action recognition, human-computer
interaction, and video surveillance. Due to the viewpoint variance,
appearance variance and cluttered background, pose estimation is
a very challenging task for large scale image and video datasets.
Recently, significant progress has been made in this area [20]. How-
ever, the pose estimation in complex events [14] is still relatively
new and a challenging problem. In this challenge of pose estimation
on crowed scenes and complex events, we propose to obtain the
pose of single images based pose estimation method, which can be
applied to each video frame to get an initial pose estimation, and a
further refinement through frames can be applied to make the pose
estimation consistent and more accurate.

The general pipeline for the pose estimationmethod that we used
can be divided into two parts, human detection and pose estimation,
respectively. First, we use a human detection method in crowd
scenes to detect the bounding box of highly-overlapping human
instances in the detection phase. In the second step, we perform
pose estimation on every box by two state-of-the-art single-person
pose estimation models [20, 24]. During the pose estimation phase,
we propose a optical flow smoothing algorithm to refine our pose
predictions. The framework of our approach is shown in Figure 1.

Since the problem is treated as a two-stage problem to be tack-
led one by one, each module will be introduced separately. The
following of the report is organized as follows: Sec. 2 investigates
the common detection methods on HIE2020 challenge and also
introduces our detailed method and experiments on human detec-
tion; Sec. 3 introduces the pose estimation as well as the final pose
generation process. Sec. 4 introduces the experiments and training
details of pose estimation. Finally, Sec. 5 concludes the report.

2 HUMAN DETECTION
The first step of human pose tracking is to detect the bounding
boxes of person. As no validation set in HIE dataset [14], we split
the original training set as a new training set and validation set.
Two splitting strategies are tried: splitting by image frames (5k for
validation, 27k for training) and splitting by videos. We found that
splitting by image will cause over-fitting and far away from the
data distribution of the testing set. So we adopt the video-splitting
strategy and split video 3,7,8 and 17 as the validation set and the
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Figure 1: The framework of our approach.

rest videos as train data, in which 5.7k image frames for validation
and the reset 27k images frames for training. Based on the train
and validation set, we can conduct detection experiments on HIE.
All the performance of models is tested by two metrics, Averaged
Precision (AP) and MMR [3]. AP reflects both the precision and
recall ratios of the detection results; MMR is the log-average Miss
Rate on False Positive Per Image (FPPI) in [0.01, 100], is commonly
used in pedestrian detection. MR is very sensitive to false posi-
tives (FPs), especially FPs with high confidences will significantly
harm the MMR ratio. Larger AP and smaller MMR indicates better
performance.

2.1 Common Detection Frameworks
There are mainly two different types of common detection frame-
works: one-stage (unified) frameworks [15–17] and two-stage (region-
based) framework [5–7, 18]. Since RCNN [6] has been proposed,
the two-stage detection methods have been widely adopted or
modified [1, 10, 12, 18, 22, 23, 27, 30, 32]. Normally, the one-stage
frameworks can run in real-time but with the cost of a drop in ac-
curacy compared with two-stage frameworks, so we mainly adopt
two-stage frameworks on HIE dataset.

We first investigate the performance of different detection back-
bone and framework onHIE dataset, including backbone: ResNet152 [8],
ResNeXt101 [26] and SeNet154 [9], and different framework: Faster-
RCNN [18], Cascade R-CNN [1], and Feature-Pyramid Networks
(FPN) [11]. The experimental results on different backbone and
methods are given in Table 1. The baseline model is Faster RCNN
with ResNet50, and we search hyper-parameters on the baseline
model then apply to the larger backbone. From table 1, we can find
that the better backbone (ResNet152 and ResNeXt101) and combin-
ing advancedmethods (Cascade and FPN) can improve the detection
performance, but the SENet154 does not get better performance
than ResNet152 even it has superior classification performance
on ImageNet. So in our final detection solution, we only adopt
ResNet152 and ResNeXt101 as the backbone.

2.2 Extra Data for Human Detection
In the original train data, there are 764k person bounding boxes in
19 videos with 32.9k frames, and the testing set contains 13 videos
with 15.1k frames. Considering the limited number of videos and
duplicated image frames, the diversity of train data is not enough.
And the train data and test data have many different scenes, thus
extra data is crucial for training a superior detection model. Here
we investigate the effects of different human detection dataset on
HIE, including all the person images in COCO (COCO person, 64k
images with 262k boxes) [13], CityPerson (2.9k image with 19k
boxes) [31], CrowndHuman (15k images with 339k boxes) [19] and

Table 1: Performance comparison (AP andmMR) among dif-
ferent detection backbone and methods on HIE dataset.

Methods or Modules AP (%) MMR (%)

Baseline (ResNet50 + Faster RCNN) 61.68 74.01
ResNet152 + Faster RCNN 67.32 68.17
ResNet152 + Faster RCNN + FPN 69.77 64.83
SENet154 + Faster RCNN + FPN 65.77 68.46
ResNeXt101 + Faster RCNN + FPN 69.53 63.91
ResNeXt101 + Cascade RCNN + FPN 71.32 61.58
ResNet152 + Cascade RCNN + FPN 71.06 62.55

self-collected data (2k images with 30k boxes). We investigate the ef-
fects on different data based on Faster-RCNN with ResNet50 as the
backbone. The experimental results are shown in Table 2. We can
find that the CrowdHuman dataset achieves the largest improve-
ment compared with other datasets, because the CrowdHuman is
the most similar scenes with HIE, and both of the two datasets con-
tain plenty of crowded scenes. COCO person contains two times
of images than HIE train data, but merging the COCO person does
not bring significant improvement and suffer more than three times
train time, thus we only merge HIE with CrowdHuman and self-
collected data to take a trade-off between detection performance
and train time.

2.3 Detection in Crowded Scenes
As there are lots of crowded scenes in HIE2020 dataset, the highly-
overlapped instances are hard to detect for the current detection
framework. We apply a method aiming to predict instances in
crowded scenes [2], named as “CrowdDet”. The key idea of Crowd-
Det is to let each proposal predict a set of correlated instances
rather than a single one as the previous detection method. The
CrowdDet includes three main contributions for crowded-scenes
detection: (1) an EMD loss to minimize the set distance between
the two sets of proposals [21]; (2). A refine module that takes the
combination of predictions and the proposal feature as input, then
performs a second round of predicting. (3). Set NMS, it will skip
normal NMS suppression when two bounding boxes come from the
same proposal, which has been proved works in crowded detection;
We conduct experiments to test the three parts on HIE2020 dataset,
and the results are shown in Table 3. Based on the results in the Ta-
ble, we can find that the three parts do improve the performance in
crowded detection. Meanwhile, we apply KD regularization [28, 29]
in the class’s logits of the detection model, which can consistently
improve the detection results by 0.5%-1.4%.

Finally, based on the above analysis, we train two detection
models on HIE by combining extra data with the crowded detection
framework: (1). ResNet152 + Cascade RCNN + extra data + emd
loss + refine module + set NMS + KD regularization, whose AP is
83.21; (2). ResNeXt101 + Cascade RCNN + extra data + emd loss +
refine module + set NMS + KD regularization, whose AP is 83.78;
Then two models are fused with weights 1:1.

3 POSE ESTIMATION
In this section, we will introduce the networks we used to generate
pose estimation and the optical flow smoothing algorithm serving
for smoothing the pose predictions.
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Table 2: The effects of using extra data for human detection
on HIE dataset.

Validation set AP (%) MMR (%)

HIE data 61.68 74.01

HIE + COCO person 65.83 69.75

HIE + CityPerson 63.71 67.43

HIE + CrowdHuman 78.22 58.33

HIE + self-collected data 69.39 60.82

HIE + CrowdHuman + COCO + CityPerson 78.53 58.63

HIE + CrowdHuman + self-collected data 81.03 55.58

HIE + all extra data 81.36 55.17

Table 3: Detection in Crowded Scenes on HIE dataset.

Validation set AP (%) MMR (%)

ResNet50 + Faster RCNN + extra data 81.36 55.17

+ emd loss 81.73 53.20

+ refine module 81.96 50.85

+ set NMS 82.05 49.63

3.1 Single-person Pose Estimators
We adopt two state-of-the-art single-person pose estimation mod-
els, HRNet [20] and SimpleNet [25], as our basic networks to gen-
erate pose predictions. Different from general high-to-low and
low-to-high pattern, HRNet can maintain the high-resolution rep-
resentations through the whole process and fuse multi-resolution
representations simultaneously. SimpleNet is a simple and effective
model, which just consists of a backbone network, ResNet in our
work, declining the resolution of the feature map, and several de-
convolutional layers producing the pose predictions. Additionally,
for SimpleNet, we plug an FPN [10] structure in it to strengthen the
performance of small person instances. Finally, we fuse the results
of two models by averaging their heatmaps.

3.2 Optical Flow Smoothing
This task is based on videos, so the temporal information is a po-
tentially available condition. Moreover, most people’s actions in
this dataset are not bouncing, just simple standing, sitting, and
walking, so the poses from the same person are similar between
adjacent frames. However, our single models cannot capture the
temporal relationship. To solve this issue, we design an optical flow
smoothing algorithm to smooth our pose predictions.

We propose to smooth the current frame from the previous
frame and the next frame by optical flow which is often expressed
for temporal information. Given one human instance with joints
coordinates set ˆ

𝐽𝑘
𝑖
in current frame 𝐼𝑘 , first we compute 𝐽𝑘−1

𝑖
in

frame 𝐼𝑘−1 and the optical flow field 𝐹𝑘−1−→𝑘 between frame 𝐼𝑘−1

and 𝐼𝑘 , then we can estimate the current frame joints coordinates
set 𝐽𝑘−1−→𝑘

𝑖
in frame 𝐼𝑘 by propagating the joints coordinates set

𝐽𝑘−1
𝑖

according to 𝐹𝑘−1−→𝑘 . Specifically, for each joint location (𝑥,𝑦)
in 𝐽𝑘−1

𝑖
, the propagated joint location will be (𝑥 + 𝛿𝑥,𝑦 + 𝛿𝑦, where

𝛿𝑥 , 𝛿𝑦 are the flow field values at joint location (𝑥,𝑦). Similarly, we

Table 4: The top-3 results of HIE2020 testing set. The evalua-
tion metric is w-AP(%).To compare with the results for each
video, we highlight the best results by red color and high-
light the second one by blue color. Our approach achieves
the best results on the vast majority of videos

Video Name First Place Ours Third Place

hm_in_waiting_hall 64.5796 65.8270 58.5896
hm_in_bus 56.0834 55.4518 50.6453

hm_in_dining_room2 22.2609 25.9449 23.5640
hm_in_lab2 72.7162 70.3300 69.9452

hm_in_subway_station 41.5776 47.2997 41.3249
hm_in_passage 88.9244 90.1478 86.5233
hm_in_fighting4 57.1941 59.8902 56.3970

hm_in_shopping_mall3 61.2707 62.7075 60.9024
hm_in_restaurant 58.2427 67.4902 64.3151
hm_in_accident 53.1889 56.9365 54.6401
hm_in_stair3 47.7152 49.1054 49.6768

hm_in_crossroad 75.5781 75.7640 73.8597
hm_in_robbery 51.2827 52.2467 51.4776

Weighted Average 57.5091 56.3375 55.1719

can estimate the current frame 𝐽𝑘+1−→𝑘
𝑖

from the next frame in the
same way. Finally, we obtain the final predicted 𝐽𝑘

𝑖
as follows:

𝐽𝑘𝑖 = 𝛼 · 𝐽𝑘−1−→𝑘
𝑖 + 𝛼 · 𝐽𝑘+1−→𝑘

𝑖 + (1 − 2𝛼) · 𝐽𝑘𝑖 , (1)

where the 𝛼 is used to weighted sum the three terms.
The bottleneck of our method is how to track the same person

in the adjacent frames. Some traditional work applies bounding
box IoU (Intersection-over-Union) or pose similarity to link in-
stances [25]. However, there are numerous ultra crowded scenes
in this dataset, which leads to severe occlusion and overlap, so
the traditional methods would be problematic. Different previous
work, we use a person Re-ID (person Re-identification) model to
extract features to compute similarity. Compared with other meth-
ods, the Re-ID features focus on human appearance more, therefore,
they are more suitable for this dataset. To verify our inference, we
submit our tracking result to track 1 (private) server and achieve
61.0951% on MOTA metric, which demonstrates the effect of our
Re-ID features.

For the whole procedure of our optical flow smoothing algorithm,
first, we utilize our person tracking model using Re-ID features to
generate the person ID. Then, if the same IDs exist in the previous
and next frames and their confidence scores are higher than a
threshold, we will use Eqn 1 to smooth our pose estimation.

4 EXPERIMENTS
4.1 Extra Data for Human Pose
The original official training set contains about 660.5K annotated
poses. Considering that large-scale similar data exist due to frame-
wise annotation, it is necessary to collect extra data to improve
the performance. The extra training data we used come from two
aspects: (1) We fuse three mainstreaming public pose estimation
datasets, COCO, MPII, and AI Challenger, into our training data.
The COCO dataset contains over 250k person instances labeled with
17 key points. The MPII dataset consists of 25K images including
over 40K person instances with annotated 16 body joints. The AI
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Table 5: Performance evaluation of different components in our method on the HIE testing set.

HRNet SimpleNet Multi-scale Evaluation Multi-scale Input Extra Data Optical Flow Smoothing w-AP(%)

✓ 52.45
✓ ✓ 52.90
✓ ✓ 53.82
✓ ✓ ✓ ✓ 55.52
✓ ✓ ✓ ✓ ✓ 56.04
✓ ✓ ✓ ✓ ✓ ✓ 56.34

Challenger dataset is composed of about 700K person instances
with annotated 14 body joints. Since the annotated key points in
these datasets are not totally overlapped with official labels, for each
dataset we use respective overlapped key points for training. (2)
Self-collected data with similar scenes are merged into our training
set. The number of poses is not over 30K, which is far less than the
official training data.

All the extra data are randomly merged into the official training
set. We do not explore more complicate data fusion strategy.

4.2 Training Details
We extend the human detection box in height or width to a fix 4 : 3
aspect ratio, and then crop the box from the image, which is resized
to a fixed size, 256 × 192 or 384 × 288. The data augmentation in-
cludes random rotation( [−45◦, 45◦]), random scale(0.65, 1.35), and
flipping. Half body data augmentation is also applied. The network
of HRNet used is HRNet-W48 and the backbone of SimpleNet used
is ResNet152. We implement our training using PyTorch.

4.3 Testing Details
We adopt a multi-scale evaluation during testing. Specifically, we
rescale the detection box to obtain new bounding boxes with dif-
ferent scales, then crop them to the original size and flip them to
acquire their flipped counterparts. The generated boxes are feed
into the network to produce heatmaps. We average those heatmaps
and search the highest response to obtain the locations of key
points. The scale factors used are 0.7, 1.0, and 1.3. Moreover, it is
easy to suffer redundancy and wrong boxes in the complex and
crowded scenes. We apply Pose NMS [4] to eliminate similar and
low-confidence redundancies.

4.4 Results
The top-3 results of HIE2020 testing set are shown in Table 4. From
our results for each video, we can see that our method achieves sig-
nificant performance in the regular and high-resolution videos, such
as "hm_in_passage" and "hm_in_crossroad". Our method performs
poorly in the video with crowded scenes and low quality, e.g., we
only get 25.94% on the ultra crowded video "hm_in_dining_room2",
which is much lower than other videos. Our results for each video
have remarkable performance. Even if compared with the first place,
except "hm_in_bus" and "hm_in_lab2" are totally lower than them
by 3%, we achieve better performance in the rest videos. However,
our weighted average result is 1.2% lower than the winner. We
analyse the possible reason is to exceed false positive predictions in
our results. The false positive predictions are from two aspects: first,
redundancy bounding boxes cause redundancy pose predictions;
second, some small person instances are not involved in evaluation
but we produce their poses.

Figure 2: Example pose estimation results on the HIE2020
test set.

We visualize some example of our pose estimation results in
Figure 2, which illustrates our approach can produce accurate pose
predictions in the complex and crowded scenes.
4.5 Ablation Study
In order to verify the performance of our components, we have done
extensive experiments. The experiment results are shown in Table
5. Note that "Multi-scale Input" means training multiple groups of
parameters by changing input size and fusing their results during
testing. For each ablation experiment, if there is a ✓in the "Multi-
scale Input" cell, the results is obtained by fusing input size 256×192
and 384 × 288; otherwise, the input size is just 256 × 192. Extra
data significantly boost our results by about 1.4%, implying the
effectiveness of large-scale data. Two fusion methods, model fusion
between HRNet and SimpleNet and multi-scale input also improves
our result tremendously by 1.7% and 1.5% respectively. Our post-
processing algorithm, optical flow smoothing, can enhance the
results by 0.3%, which shows that it is effective.
5 CONCLUSION
In this paper, we illustrate the approach we used in the HIE2020
Challenger pose estimation track. We adopt a top-down approach
to address this complex and crowded scene issue. First, for human
detection problems in crowed scenes, we add extra data to over-
come the overfitting problem and apply one proposal for multiple
predictions to relieve the difficulty of detecting highly-overlapping
instances. Then, we apply our effective single-person pose estima-
tion model to generate accurate pose predictions. To utilize tempo-
ral information, we design an optical flow smoothing algorithm to
post-process our results.
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