
Feature Reintegration over Di!erential Treatment:
A Top-down and Adaptive Fusion Network for RGB-D Salient

Object Detection

Miao Zhang1,2, Yu Zhang1, Yongri Piao1,∗, Beiqi Hu1, Huchuan Lu1,3
1Dalian University of Technology, Dalian, China

2Key Lab for Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, China
3 Pengcheng Lab, Shenzhen, China

{miaozhang,yrpiao,lhchuan}@dlut.edu.cn,{zhangyu4195,hbq1211}@mail.dlut.edu.cn

ABSTRACT

Most methods for RGB-D salient object detection (SOD) utilize the

same fusion strategy to explore the cross-modal complementary

information at each level. However, this may ignore di!erent fea-

ture contributions from two modalities on di!erent levels towards

prediction. In this paper, we propose a novel top-down multi-level

fusion structure where di!erent fusion strategies are utilized to

e!ectively explore the low-level and high-level features. This is

achieved by designing the interweave fusion module (IFM) to ef-

fectively integrate the global information and designing the gated

select fusion module (GSFM) to discriminatively select useful local

information by "ltering out the unnecessary one from RGB and

depth data. Moreover, we propose an adaptive fusion module (AFM)

to reintegrate the fused cross-modal features of each level to predict

a more accurate result. Comprehensive experiments on 7 challeng-

ing benchmark datasets demonstrate that our method achieves the

competitive performance over 14 state-of-the-art RGB-D alternative

methods.

CCS CONCEPTS

• Computing methodologies → Interest point and salient region

detections.
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Figure 1: The feature maps visualized from the !rst level to

the last level of the RGB and depth streams, respectively.
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1 INTRODUCTION

Salient object detection (SOD) aims to identify the most distinctive

objects or regions in a scene [17]. This fundamental task plays an

important role in various computer vision applications, including

image segmentation [24], object tracking [2, 16] and pose estima-

tion [9].

Earlier saliency detection methods mainly focus on extracting

hand-crafted features [26, 30, 36, 45]. Based on limited knowledge

which lacks high-level contexts representation, these methods may

have less robustness in di!erent scenes. Recently, bene"ting from

the powerful ability of CNNs [20] in feature extraction, CNNs-based

methods have been designed and shown outstanding performance

in salient object detection. Many works [14, 23, 37, 39, 40, 42] focus

on distinguishing the saliency region based on RGB images and

have achieved spectacular performance. But these methods might

be sensitive to some complex scenes, e.g., similar foreground and

background, multiple objects or complex background, due to lack

of accurate spatial constraints.

Depth data containing 3D layout information and spatial struc-

ture have been introduced to overcome the above issues in SOD.

Many RGB-D methods have been explored and have achieved sig-

ni"cant performance. Yet there still is large room for further im-

provement in two aspects: (1) In RGB-D saliency detection tasks,

the contribution of two modalities is di!erent at each level of the

network, as exempli"ed in Figure 1. In high levels, the depth fea-

tures typically carry more global contextual information than RGB

features. On the other hand, in low levels, the RGB features con-

tain more local information than depth features. Moreover, some

cluttered and distractive information is inevitably blended in shal-

low features of two modalities, which may negatively in#uence
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Figure 2: The fused cross-modal feature maps visualized

from all levels of the top-down fusion model.

the discrimination ability of networks by indiscriminately fusing

two modal features. Many RGB-D methods [4–6, 27] adopt the

same fusion manner in all levels. This ignores the contribution of

the local and global feature variation in di!erent levels. How to

di!erentially fuse the high-level and low-level features from two

modalities should be explored. (2) The top-down inference is wide-

ly adopted in SOD [4, 5], where high-level features are gradually

integrated with low-level features to obtain a "ne-grained result.

In this process, the network may achieve suboptimal performance

as high-level features including position information are diluted in

the #ow, albeit simple in structure, as shown in Figure 2. Therefore,

how to reintegrate features in di!erent levels to obtain a superior

result should be considered.

Our core insight is that the di!erent fusion strategies can be

leveraged, targeted at low-level and high-level features. In high

levels, our model focuses on e!ective cross-modal fusion of global

and contextual information for locating salient objects correctly.

In low levels, our model focuses on fusing useful information by

"ltering out the distractive one. In addition, we take a further step

toward the top-down inference while being free of global informa-

tion degradation. Our main contributions are as follows:

• We propose a novel top-down multi-level fusion structure

which adopts di!ernent fusion strategies in high and low

levels, considering the distinction of RGB and depth features

in di!erent levels. A simple but e!ective interweave fusion

module (IFM) is designed to fully extract and fuse global

information in high levels, while the gated select fusion

module (GSFM) is utilized to selectively process the useful

information from two modal features in low levels.

• We design an adaptive fusion module (AFM) to e!ective-

ly reintegrate the fused cross-modal features based on the

top-down fusion structure. The module fully explores the

contributions of the fused features in di!erent levels and

learns the exclusive weights to predict a more accurate re-

sult.

• We demonstrate that the proposed model can accurately

reliably locate the salient objects, outperforming 14 state-of-

the-art RGB-D methods on seven widely used benchmark

datasets.

2 RELATEDWORK

The primary challenge associated with RGB saliency detection is

that they are sensitive when it comes to complex scenes. These

include complex background, similar foreground and background,

low-contrast environment and multiple objects. There have been

many attempts to boost the performance of RGB methods [23, 29,

37–39].

Depth contains structural information and 3D layout informa-

tion, which have been introduced to SOD [8, 10, 26, 32, 34, 44, 45].

Decent progress has been made by RGB-D saliency detection meth-

ods, especially in complex scenes. Ren et al. [33] explore the validity

of global priors for SOD. Feng et al. [13] propose a SOD method

based on local background enclosure. These methods mainly relied

on the hand-crafted features are di%cult to understand the global

context, for lacking high-level semantic information.

Recently, CNNs have been adopted in RGB-D SOD to learn

high-level representations and more discriminative features, having

achieved signi"cant performance. Qu et al. [31] fuse hand-crafted

features from RGB and depth images before feeding these features

to a CNN to learn deep representations and make inference. This

method achieves great improvement comparing to some methods

based on hand-crafted RGB-D features. However, in this method,

designd low-level features are fused via a simple network, and the

high-level features are not well integrated. Besides, this network

can not be trained in an end-to-end manner. Han et al. [15] extract

the two modal features by a two-stream network, then fuse RGB-D

deep features to obtain "nal saliency maps. However, this fusion

manner only focuses on fusing the high-level features, while the

complementary information in low levels is ignored. Di!erent from

these methods which combine RGB-D features in a certain point

(i.e, early or late), some methods [4–6, 27] try to explore a new

fusion manner by which cross-modal features at each level are

combined and cross-level features are fused progressively to make

joint decisions. Chen et al. [4] exploit the level-wise cross-modal

complementarity and propose a top-down progressive fusion net-

work to fuse the two modal features. His another work [5] designs a

three-stream network which combines the cross-modal information

of each level in a cooperative top-down and bottom-up inference

way. Piao et al. [27] fuse the cross-modal and cross-level features in

a bottom-up way, then further extract and re"ne the information to

predict a more accurate result. Chen et al. [6] fuse the deep and shal-

low cross-modal complements by cross-modal cross-level fusion

strategies. These methods mainly utilize the same fusion operation

in all levels, few consider the di!erent contributions of RGB and

depth in di!erent levels. In addition, some works [18, 28, 41, 43]

explore the asymmetric architecture for processing di!erent da-

ta types. Zhao et al. [41] enhance the depth map as an attention

map and design a #uid pyramid integration method to obtain a

more accureate saliency map. Piao et al. [28] propose an adaptive

and attentive depth distiller to transfer the depth knowledge from

the depth stream to the RGB stream, and achieve a lightweight

architecture without the use of depth data at test time.

Our work has several key di!erences with the aforementioned

works: Firstly, we design two di!erent fusion modules for e!ec-

tively fusing low-level and high-level features from two modalities,

respectively. Secondly, we reintegrate the fused cross-modal fea-

tures of each level based on the level-speci"c contributions to make

e!ective combinations. Our model brings a fresh perspective for

RGB-D saliency detection and achieves better results. The source

code is released 1.

1https://github.com/OIPLab-DUT/ACM-MM-FRDT
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Figure 3: The overall architecture of our proposed network.

3 THE PROPOSED METHOD

3.1 The overall architecture

We adopt VGG-19 [35] as our basic architecture for both RGB and

depth streams, discarding the last pooling and fully-connected lay-

ers, as shown in Figure 3. We collect all side-out features in all

levels extracted from RGB and depth streams, which are denoted

as
{
�'
1
, �'

2
, �'

3
, �'

4
, �'

5

}
and

{
��
1
, ��

2
, ��

3
, ��

4
, ��

5

}
, respectively. We

re"ne and fuse paired side-out features at each level by employing

the proposed top-down multi-level fusion structure which contains

the interweave fusion module (IFM) and gated select fusion module

(GSFM). The "ve fused cross-modal features are generated, denoted

as
{
�
�
1
, �

�
2
, �

�
3
, �

�
4
, �

�
5

}
. Then the fused features are reintegrated by

the proposed adaptive fusion module (AFM) to predict the "nal

saliency map.

3.2 Top-down Multi-level Fusion Structure

In RGB-D salient object detection tasks, the top-down fusion strat-

egy is widely used in fusing cross-modal and cross-level features.

Many previous works utilize the same fusion manner in all levels.

However, this manner ignores di!erent contributions of two modal-

ities in di!erent levels. To address this problem, we propose a novel

top-down multi-level fusion structure where di!erent fusion strate-

gies are utilized to e!ectively combine the low-level and high-level

features. This structure contains two tailored fusion modules: the

interweave fusion module (IFM) and gated select fusion module

(GSFM). Speci"cally, as illustrated in Figure 3, the IFM focuses on

combining global information from two modalities in high levels

(the 4
Cℎ and 5

Cℎ levels), and the GSFM aims to fuse useful local

information by "ltering out the unnecessary one in low levels (the

1
BC - 3A3 levels). Next, we will introduce the two modules in detail.

3.2.1 Interweave Fusion Module. The proposed IFM aims at ful-

ly fusing the available information from high levels to locate the

salient objects more accurately. Since the high-level feature map-

s have low resolution and contain more location information, as

shown in Figure 1, it is not necessary to utilize complex operations

to extract features. To this end, we design a simple but e!ective

module to fuse the high-level features from two modalities. Specif-

ically, as shown in Figure 3, we design a light component k (∗),
which contains two convolution layers and two ReLU activation

functions. In the 5Cℎ level, we fuse the �'
5
and the ��

5
to generate a

fused cross-modal feature �
�
5
:

�̃'
5
= k (�'

5
), �̃�

5
= k (��

5
), �

�
5
= �̃'

5
C©�̃�

5
(1)

where C© denotes the concatenation operation. In the 4Cℎ level, the

cross-modal cross-level global features are further combined by:

�̃'
4
= k (*? (�̃'

5
) +*? (�̃�

5
) + �'

4
)

�̃�
4

= k (*? (�̃'
5
) +*? (�̃�

5
) + ��

4
)

(2)

�
�
4
= �̃'

4
C©�̃�

4
(3)

where*? (∗) is the 2× upsample operation with bilinear interpola-

tion. In this way, our IFM can e!ectively fuse cross-modal features

on high levels and help the network to locate the salient objects

more accurately.

3.2.2 Gated Select Fusion Module. The proposed GSFM aims to ful-

ly extract and fuse the useful local information from two modalities

in low levels. A straightforward solution is to simply concatenate

or summate the two modal features. However, this direct fusion

manner introduces redundant information which exist in low-level

features, as shown in Figure 1. These redundant information may

negatively in#uence the discrimination ability of the network. An

e!ective fusion manner which can "lter out these redundant infor-

mation should be considered. Inspired by the gate mechanism [7]

which aims to selectively control the data #ow, we propose an ef-

"cient gated select fusion module (GSFM) to overcome this issue.
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Speci"cally, for the 8Cℎ (8 = 1, 2, 3) level, the inputs of the GSFM are

the RGB feature �'8 , the depth feature ��8 and the combined RGB-D

feature �
�
8+1 from high levels. Our GSFM consists of three units, one

gated select unit (GSU) and two residual units (RU), as shown in

Figure 3. Detailed description for each unit is given below.

In the GSU, we aim to compute a gate map �8 based on the

information of two modalities. We compute the joint representation

�'�8 by concatenating the �'8 and ��8 , then feed it into an adaptation

layer. The fused RGB-D feature �
�
8+1 from the (8 +1)Cℎ level is added

to the processed feature with a residual connection, followed by an

integration layer to further combine the cross-level complementary

information. In this way, the cross-modal information from the 8Cℎ

level and the (8 + 1)Cℎ level can be fully fused as:

�̃'�8 =, � ∗ (,� ∗ �'�8 + �
9
8+1) (4)

where, � and,� represent the corresponding parameters of in-

tegration and adaptation layers, respectively (Details of these two

layers of each level are shown in Table 1). Then the �̃'�8 is fed into

a core component gate structure containing two 3x3 convolution

layers and a sigmod function which squashes values to [0,1] range.

The gate map �8 is generated by:

�8 = \ (,�
1

∗ (,�
0

∗ �̃'�8 )) (5)

where,�
1

and,�
0

are the corresponding parameters of two con-

volution operations, and \ represents the sigmod function. The gate

map�8 will help the GSFM selectively combine the useful features

from two modalities in the 8Cℎ level.

In the RU, we aim to further extract more useful infromation

from the unimodal features. For the RGB feature �'8 , we feed it

into two successive 3x3 convolution layers to enlarge the receptive

"eld and extract more useful unimodal features. Then, the original

feature �'8 is added by a residual connection to learn a more re"ned

feature �̃'8 . Similarly, the same operation are also introduced for

��8 to generate an enchanced depth feature �̃�8 . In the end, the "nal

feature of the 8Cℎ level is generated by:

�
�
8 = 20C (�̃'8 ×�8 , �̃

�
8 ×�8 ) (6)

where the 20C (∗) and × denote the concatenation operation and

pixel-wise multiplication, respectively.

Table 1: Illustration of the parameters of the intra-level

adaptation layer and intergration layer inside the gated se-

lect fusionmodule (GSFM), the transition layer between two

neighboring levels

Level
Adaptation Layer

kernel in/out

Integration Layer

kernel in/out

Transition Layer

kernel in/out

IFM - - 1 × 1, 1024/256

GSFM-3 1 × 1, 512/256 1 × 1, 256/256 1 × 1, 512/128

GSFM-2 1 × 1, 256/128 1 × 1, 128/128 1 × 1, 256/64

GSFM-1 1 × 1, 128/64 1 × 1, 64/64 -

In addition, we add a transition layer and an upsample operation

to adapt the transferance between two adjacent levels. The detailed

parameters of transition layers are shown in Table 1. Moreover,

we add intermediate supervisions on all outputs of the IFM and

GSFMs to guarantee that the most useful information can be fused

explicitly for accurately identifying salient objects.

3.3 Adaptive Fusion Module

Though we adopt di!erent strategies to deal with low-level and

high-level features from two modalities, the cross-level features are

still combined in a top-down manner. This may cause high-level

features to be diluted as they are transmitted to the lower levels. To

better reintegrate the fused cross-modal features of each level, we

propose an adaptive fusion module (AFM) to emphasize the useful

features and suppress unnecessary ones by learning the exclusive

weights of fused features at each level, as shown in Figure 4.

We "rst reshape
{
�
�
8

}5
8=1

to the same resolution utilizing an up-

sample operation with bilinear interpolation and a 1x1 convolution

operation. These reshaped features are denoted as
{
�̃
�
8

}5
8=1

. Then
{
�̃
�
8

}5
8=1

are concatenated as �
�
< . We adopt several operations (two

3x3 convolution layers, a 1x1 convolution layer, a global average

pooling layer, and a softmax function) to learn a feature-wise at-

tention vector +F486ℎC ∈ '1×1×5. This procedure can be de"ned

as:

+F486ℎC = X (�E6?>>;8=6(2>=E (� �<))) (7)

where the 2>=E represents the successive convolution operations

in which parameters can be learned and X denotes the softmax

function. The concatenated
{
�̃
�
8

}5
8=1

is weighted according to the

+F486ℎC , and then the weighted features are added together in a

feature-wise manner. A saliency map is predicted by:

F1,F2,F3,F4,F5 = 2ℎD=2: (+F486ℎC )

B0;5 = %'� (F1 ∗ � �1 +F2 ∗ � �2
+F3 ∗ � �3 +F4 ∗ � �4 +F5 ∗ � �5 )

(8)

where F1,F2,F3,F4,F5 are the weights of "ve feature blocks.

2ℎD=2: represents the splitting operation to +F486ℎC and %'� is

the prediction operation by one 1x1 convolution operation. We

take the B0;5 as the "nal prediction. In addition, we also add a su-

pervision to encourage the AFM can learn the most discriminative

information for saliency detection.
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Table 2: Quantitative comparisions of E-measure, S-measure, F-measure and MAE on seven widely-used RGB-D datasets. The

top three scores in each column are marked in boldface, red, and green fonts, respectively. From top to bottom: CNNs-based

RGB-D methods and traditional RGB-D methods.

DUT-RGBD [27] NJUD [19] NLPR [26] STEREO [25]

Methods Years �W ↑ (_ ↑ �V ↑ "�� ↓ �W ↑ (_ ↑ �V ↑ "�� ↓ �W ↑ (_ ↑ �V ↑ "�� ↓ �W ↑ (_ ↑
Ours - 0.941 0.910 0.903 0.039 0.917 0.898 0.879 0.048 0.945 0.914 0.867 0.029 0.927 0.901

A2dele [28] CVPR20 0.924 0.885 0.892 0.042 0.897 0.869 0.874 0.051 0.944 0.898 0.872 0.029 0.916 0.885

DMRA [27] ICCV19 0.927 0.888 0.883 0.048 0.908 0.886 0.872 0.051 0.942 0.899 0.855 0.031 0.920 0.886

CPFP [41] CVPR19 0.814 0.749 0.736 0.099 - 0.878 0.850 0.053 0.923 0.888 0.822 0.036 0.897 0.871

MMCI [6] PR19 0.855 0.791 0.753 0.113 0.878 0.859 0.813 0.079 0.871 0.855 0.729 0.059 0.890 0.856

TANet [5] TIP19 0.866 0.808 0.779 0.093 0.893 0.878 0.844 0.061 0.916 0.886 0.795 0.041 0.911 0.877

PDNet [43] ICME19 0.861 0.799 0.757 0.112 0.890 0.883 0.832 0.062 0.876 0.835 0.740 0.064 0.903 0.874

PCA [4] CVPR18 0.858 0.801 0.760 0.100 0.896 0.877 0.844 0.059 0.916 0.873 0.794 0.044 0.905 0.880

CTMF [15] TCYB17 0.884 0.834 0.792 0.097 0.864 0.849 0.788 0.085 0.869 0.860 0.723 0.056 0.870 0.853

DF [31] TIP17 0.842 0.730 0.748 0.145 0.818 0.735 0.744 0.151 0.838 0.769 0.682 0.099 0.844 0.763

MB [44] CAIP17 0.691 0.607 0.577 0.156 0.643 0.534 0.492 0.202 0.814 0.714 0.637 0.089 0.693 0.579

CDCP [45] ICCVW17 0.794 0.687 0.633 0.159 0.751 0.673 0.618 0.181 0.785 0.724 0.591 0.114 0.801 0.727

NLPR [26] ECCV14 0.767 0.568 0.659 0.174 0.722 0.530 0.625 0.201 0.772 0.591 0.520 0.119 0.781 0.567

DES [8] ICIMCS14 0.733 0.659 0.668 0.280 0.421 0.413 0.165 0.448 0.735 0.582 0.583 0.301 0.451 0.473

DCMC [10] SPL16 0.712 0.499 0.406 0.243 0.796 0.703 0.715 0.167 0.684 0.550 0.328 0.196 0.838 0.745

Table 3: Continuation of Table 2

STEREO [25] LFSD [22] RGBD135 [8] SSD [21]

Methods Years �V ↑ "�� ↓ �W ↑ (_ ↑ �V ↑ "�� ↓ �W ↑ (_ ↑ �V ↑ "�� ↓ �W ↑ (_ ↑ �V ↑ "�� ↓
Ours - 0.880 0.043 0.899 0.857 0.855 0.073 0.942 0.902 0.868 0.028 0.905 0.872 0.827 0.053

A2dele [28] CVPR20 0.884 0.043 0.870 0.837 0.835 0.074 0.922 0.885 0.865 0.028 0.862 0.807 0.791 0.069

DMRA [27] ICCV19 0.868 0.047 0.899 0.847 0.849 0.075 0.945 0.901 0.857 0.029 0.892 0.857 0.821 0.058

CPFP [41] CVPR19 0.827 0.054 0.867 0.828 0.813 0.088 0.927 0.874 0.819 0.037 0.832 0.807 0.725 0.082

MMCI [6] PR19 0.812 0.080 0.840 0.787 0.779 0.132 0.899 0.847 0.750 0.064 0.860 0.814 0.748 0.082

TANet [5] TIP19 0.849 0.060 0.845 0.801 0.794 0.111 0.916 0.858 0.782 0.045 0.879 0.839 0.767 0.064

PDNet [43] ICME19 0.833 0.064 0.872 0.845 0.824 0.109 0.915 0.868 0.800 0.050 0.813 0.802 0.716 0.115

PCA [4] CVPR18 0.845 0.061 0.846 0.800 0.794 0.112 0.909 0.845 0.763 0.049 0.883 0.843 0.786 0.064

CTMF [15] TCyb17 0.786 0.087 0.851 0.796 0.781 0.120 0.907 0.863 0.765 0.055 0.837 0.776 0.709 0.100

DF [31] TIP17 0.761 0.142 0.841 0.796 0.810 0.142 0.801 0.685 0.566 0.130 0.802 0.742 0.709 0.151

MB [44] CAIP17 0.572 0.178 0.631 0.538 0.543 0.218 0.798 0.661 0.588 0.102 0.633 0.499 0.414 0.219

CDCP [45] ICCVW17 0.680 0.149 0.737 0.658 0.634 0.199 0.806 0.706 0.583 0.119 0.714 0.604 0.524 0.219

NLPR [26] ECCV14 0.716 0.179 0.742 0.558 0.708 0.211 0.850 0.577 0.857 0.097 0.726 0.562 0.551 0.200

DES [8] ICIMCS14 0.223 0.417 0.475 0.440 0.228 0.415 0.786 0.627 0.689 0.289 0.383 0.341 0.073 0.500

DCMC [10] SPL16 0.761 0.150 0.842 0.754 0.815 0.155 0.674 0.470 0.228 0.194 0.790 0.706 0.684 0.168

4 EXPERIMENTS

4.1 Dataset

To evaluate the performance of our proposed method, we conduct

comprehensive experiments on seven widely-used RGB-D datasets.

DUT-RGBD [27]: contains 1200 RGB-D scenes paired with corre-

sponding depth maps and ground truths which are captured by a

Lytro2 camera.

NJUD [19]: contains 1985 image pairs which are collected from

indoor/outdoor environments and stereo movies. And the depth

maps are estimated from the stereo images.

NLPR [26]: includes 1000 RGB images and corresponding high-

quality depth maps which are captured by Kinect in both indoor and

outdoor scenarios. Moreover, many images which contain multiple

and small salient objects are included in this dataset.

STEREO [25]: includes 797 pairs of binocular images downloaded

from the Internet. In some methods, it is also named SSB.

LFSD [22]: contains 100 image pairs captured by a Lytro camera.

RGBD135 [8]: includes 135 indoor images collected by the Mi-

crosoft Kinect. It is also named DES in some papers.

SSD [21]: contains 80 stereo images collected from three stereo

movies.
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Figure 5: Visual comparisons of our method with latest CNNs-based approaches in challenging scenes, such as low contrast

environments, complex background, multiple objects, transparent objects, and so on. Those methods are the top ranking ones

in quantitative table shown in Table 1.

To guarantee a fair comparison, we adopt the similar splitting

way as [4, 6, 41]. Speci"cally, we choose 800 samples from DUT-

RGBD dataset, 700 samples from NLPR and 1485 samples from

NJUD for training. The remaining images of these three datasets

and the other four datasets are used for testing. In addition, we

augment the training set by #ipping, cropping and rotating to avoid

over"tting.

4.2 Experimental Setup

Evaluation Metrics. For comprehensively evaluating various

methods, we adopt "ve commonly usedmetrics, including S-measure

((_) [11], F-measure (�V ) [1], E-measure (�W ) [12], mean absolute

error ("��) [3] and precision-recall (PR) curve. Speci"cally, the

S-measure is a structure metric which can evaluate the structural

similarities, the F-measure can evaluate the average precision and

average recall, the E-measure can jointly capture image level sta-

tistics and local pixel matching information and the MAE is used

to evaluate the average absolute di!erence between the prediction

map and ground truth. In addition, the PR curve describes the d-

i!erent combination of precision and recall scores computed by

comparing the binarized saliency map with the ground truth.

Implementation details. We choose the Pytorch toolbox to im-

plement our method, trained on a PC with RTX 2080Ti GPU and 16

GB memory. The training and testing images are uniformly resized

to 256×256. During training, we use the standard SGD optimiz-

er. The momentum, weight decay and learning rate are set as 0.9,

0.0005 and 1e-10, respectively. The cross entropy loss is adopted to

train our network, converging after 15 epochs with batch size of 2.

Baseline. Our baseline is shown in Figure 7. To fully extract the

useful features from origial RGB-D paired images, we adopt VGG19

for both RGB and depth streams. Simple concatenation is employed

to fuse two-modal features. Additionally, we take the supervisions

on each level.

4.3 Comparison with State-of-the-arts

We compare our method with 14 state-of-the-art RGB-D salient

object detection methods, including 9 latest CNNs-based methods:

A2dele [28], DMRA [27], CPFP [41], PDNet [43], PCA [4], CTM-

F [15], MMCI [6], DF [31], TANet [5]; and 5 traditional methods:

DES [8], NLPR [26], DCMC [10], MB [44], CDCP [45]. For fair com-

parisons, We implement those methods with the released code and

their default parameters. In terms of methods without the released

source code, the results are directly provided by authors.

Quantitative Evaluation. Table 2 and 3 show the validation re-

sults in terms of four evaluation metrics on seven public datasets.

It can be seen that our method can outperform across the existing

methods, except the second-best �W score on RGBD135, and the

second-best �V scores on NLPR and STEREO. Moreover, except the

Poster Session F3: Vision and Language MM '20, October 12–16, 2020, Seattle, WA, USA

4112



Table 4: Ablation analysis on seven datasets. We report the performance of BS as the baseline. Row (b), (c) and (d) show the

in"uence of each individual component by adding it to the baseline, respectively. Row (e) illustrates the performance of the

GSFM acting on each level of the baseline. Row (b),(f) and (g) show the in"uence of each individual component by successively

adding it to the baseline. Please see Section 4.4 for more detailed analysis. In addition, H represents the last two levels, L

represents the !rst three levels and A represents all levels.

DUT-RGBD NJUD NLPR STEREO LFSD RGBD135 SSD

index BS IFM (H) GSFM (L) AFM GSFM (A) �V ↑ "�� ↓ �V ↑ "�� ↓ �V ↑ "�� ↓ �V ↑ "�� ↓ �V ↑ "�� ↓ �V ↑ "�� ↓ �V ↑ "�� ↓
(a)

√
0.843 0.063 0.834 0.057 0.795 0.040 0.833 0.054 0.823 0.088 0.815 0.036 0.783 0.067

(b)
√ √

0.854 0.048 0.843 0.054 0.810 0.037 0.842 0.050 0.826 0.085 0.834 0.031 0.800 0.061

(c)
√ √

0.870 0.048 0.854 0.052 0.830 0.037 0.853 0.050 0.835 0.083 0.842 0.032 0.801 0.063

(d)
√ √

0.855 0.047 0.846 0.053 0.818 0.035 0.850 0.049 0.835 0.082 0.840 0.031 0.799 0.059

(e)
√ √

0.877 0.043 0.858 0.052 0.841 0.033 0.856 0.048 0.842 0.081 0.849 0.030 0.806 0.058

(f)
√ √ √

0.888 0.042 0.866 0.050 0.852 0.033 0.868 0.047 0.848 0.079 0.857 0.029 0.815 0.056

(g)
√ √ √ √

0.903 0.039 0.879 0.048 0.867 0.029 0.880 0.043 0.855 0.073 0.868 0.028 0.827 0.053

RGB

Depth

GT

( a )

( b )

( f )

( c )

( e )

( g )

( d )

Figure 6: The visual results of ablation analysis. The mean-

ing of indexes has been shown in Table 4.

RGBD135, our method improves the (_ by a large margin on the oth-

er six datasets. This indicates that our method is more powerful to

detect complete salient objects in terms of region-aware and object-

aware structural similarity between the saliency map and ground

truth. The PR curves in Figure 8 also consistently demonstrate the

superior performance of our method.

1´1 Conv

Conv5_4Conv4_4
Conv3_4

Conv2_2

Supervision

CCCCCFinal prediction

Supervision SupervisionSupervisionSupervision

RGB

Depth

1´1 Conv 1´1 Conv 1´1 Conv

Conv1_2

Figure 7: The baseline of our method.

Qualitative Evaluation. For a more intuitive view, we visual-

ly compare our method with the most representative methods in

Figure 5. As we can see, our method is capable of accurately captur-

ing salient regions in some challenging scenes, including cluttered

background (Row 3), similar foreground and background (Row 5),

transparent object (Row 6), small object (Row 4 and 7) and multiple

objects (Row 2 and 7). This indicates that our method can e!ectively

"lter out the redundant information to predict the results accurately.

Moreover, compared to some methods which utilize the top-down

or bottom-up cross-modal cross-level fusion manner (DMRA [27],

PCA [4], MMCI [6], TANet [5]), our method locates and detects

the salient objects more accurately. It further demonstrates the

superiority of our method bene"ting from feature reintegration.

4.4 Ablation Studies

E#ect of IFM. In order to verify the e!ectiveness of the proposed

IFM, we replace the simple concatenation operation with the IFM

in the last two levels of the baseline. As shown in Table 4 (b), our

IFM improves the performance of the baseline across all datasets.

Intuitively, as shown in Figure 6 (b), the predictions produced by

adding the IFM can better locate the salient object. This advance

con"rms the superiority of our IFM in e!ectively extracting and

fusing paired complementary information from high levels.

E#ect of GSFM. To give evidence for the e!ectiveness of the GSFM,

we replace the simple concatenation operation with the GSFM in

the "rst three (1-3) levels of the baseline. By comparing the results

in Table 4 (c) and (a), we observe that our proposed GSFM achieves

signi"cant improvement than the baseline. Meanwhile, as shown
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DUT-RGBD NJUD NLPR STEREO

Figure 8: The PR curves of the proposed method and other state-of-the-art approaches over DUT-RGBD, NJUD, NLPR and

STEREO datasets.
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Figure 9: From left to right (Column 5-9): the predictions generated from the !rst level to the last level of the proposed model,

respectively. Numbers on each prediction map indicate the corresponding attention weights learned from the AFM.
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Figure 10: The featuremaps visualized from the !rst level to

the last level of the baseline (a), the baseline+GSFM (all level-

s) (e) and the proposed model (f), respectively. The meaning

of indexes is the same as the ones in Table 4.

in Figure 6 (c), the results produced by adding the GSFM contain

more useful and accurate details than the baseline. Moreover, we

visualize the feature maps generated from each level of (a), (e) and

(f), same as the indexes in Table 4, as shown in Figure 10, it is seen

that the sharper salient object standing out from the background

in the "rst three levels of (e) and (f). This further con"rms that the

redundant features can be "ltered out by the proposed GSFM in

low levels.

E#ect of AFM.We compare the baseline network with it adding

the AFM to prove the e!ectiveness of the AFM. As shown in Table

4 (d), the improved performances across all datasets are achieved

by adding our proposed AFM. By comparing the visual results in

Figure 6 (d) and (a), the predictions produced by AFM contain more

complete information than the baseline. Furthermore, as shown in

Table 4 (g) and (f), the "nal results of our method are improved by

the AFM. The visual results in Figure 6 (g) and (f) further prove

the e!ectiveness of our proposed AFM. To better understand the

di!erence of the features learned by the IFM and GSFM, we visualize

the predictions and calculate the corresponding attention weights

for each level by the proposed AFM, as shown in Figure 9. As we can

see, the AFM can give exclusive weights of the fused cross-modal

features of each level to emphasize the useful features and suppress

unnecessary ones.

E#ect of our architecture. To illustrate the e!ectiveness of our

di!erent strategies for processing low-level and high-level features,

we replace the concatenation operation with the GSFM at each level

of the baseline. Comparing the results in Table 4 (f) with (e), we

observe that our di!erent strategies achieve better performance.

As shown in Figure 6 (f), we can see that our structure can predict

more accurate and complete salient objects. On the other hand, we

can observe from Figure 10 (e) and (f) that the IFM can e!ectively

and e%ciently explore the high-level features (the last two levels)

with a simpler structure than the GSFM. This indicates that it is

not necessary to utilize complex operations to deal with high-level

features. It further demonstrates that the di!erent fusion strategies

can be leveraged, targeted at low-level and high-level features.

5 CONCLUSION

In this work, we adopt di!erent fusion strategies in high and low

levels. Taking account of global and local complementarities from

two modalities, we propose a novel top-down multi-level fusion

structure. It includes an interweave fusion module (IFM) which can

fully extract and fuse global information in high levels, and three

gated select fusion modules (GSFM) which can selectively process

the useful information from two modal features in low levels. More-

over, considering that the high-level features will be diluted when

transmitted to the lower levels, we design an adaptive fusion mod-

ule (AFM) to reintegrate the fused cross-modal features based on

the top-down fusion structure. Experimental results demonstrate

that our method achieves state-of-the-art performance on 7 public

RGB-D datasets.
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