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ABSTRACT

Humans can perceive subtle emotions from various cues and con-
texts, even without hearing or seeing others. However, existing
video datasets mainly focus on recognizing the emotions of the
speakers from complete modalities. In this work, we present the
task of multimodal emotion reasoning in videos. Beyond directly
recognizing emotions from multimodal signals, this task requires
a machine capable of reasoning about human emotions from the
contexts and surrounding world. To facilitate the study towards
this task, we introduce a new dataset, MEmoR, that provides fine-
grained emotion annotations for both speakers and non-speakers.
The videos in MEmoR are collected from TV shows closely in real-
life scenarios. In these videos, while speakers may be non-visually
described, non-speakers always deliver no audio-textual signals
and are often visually inconspicuous. This modality-missing char-
acteristic makes MEmoR a more practical yet challenging testbed
for multimodal emotion reasoning. In support of various reasoning
behaviors, the proposed MEmoR dataset provides both short-term
contexts and external knowledge. We further propose an attention-
based reasoning approach to model the intra-personal emotion
contexts, inter-personal emotion propagation, and the personali-
ties of different individuals. Experimental results demonstrate that
our proposed approach outperforms related baselines significantly.
We isolate and analyze the validity of different reasoning modules
across various emotions of speakers and non-speakers. Finally, we
draw forth several future research directions for multimodal emo-
tion reasoning with MEmoR, aiming to empower high Emotional
Quotient (EQ) in modern artificial intelligence systems. The code
and dataset released on https://github.com/sunlightsgy/MEmoR.
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1 INTRODUCTION

Humans are naturally attuned to perceiving and understanding
emotions in the surrounding environment [18]. In our daily life,
humans can perceive subtle emotions from various cues and con-
texts without seeing expressions or hearing others directly. Beyond
emotion recognition from observed behaviors, the capability of
reasoning about others’ emotional states from various contexts
and knowledge is an essential aspect of emotional quotient (EQ).
Many research areas, including human-computer interactions, mul-
timedia analysis, and social emotion robots, would benefit a lot if
modern artificial intelligence systems could be equipped with the
reasoning ability to understand human emotions better.

Due to the complicated scenarios and insufficient signals in real-
life videos, correctly understanding emotions requires the ability of
reasoning. In this work, we present the task of multimodal emotion
reasoning in videos. Given a video and an emotion moment, beyond
direct recognition with the multimodal signals of target persons,
an intelligent machine is expected to be capable of reasoning about
human emotions from the environments and the world, including
situation contexts, emotion propagation, and external knowledge.
Currently, no systematic dataset is created for this challenging task.
Existing datasets mainly focus on recognizing the utterance-level
emotions of speakers in videos [2, 4, 32, 36, 51]. The speakers in
these datasets are usually associated with complete modalities, mak-
ing it much easier to directly recognize their emotions from multi-
modal signals. However, non-speakers, who also play indispensable
roles in real life, are neglected by existing datasets. In fact, while
speakers may be visually absent in real-life scenarios, non-speakers
are often visually inconspicuous and always lack audio-textual
signals, which urgently requires the capability of multimodal emo-
tion reasoning beyond trivial recognition. Therefore, the existing
datasets are inadequate to support understanding the emotions of
speakers and non-speakers with incomplete modalities — not to
mention developing robust multimodal emotion reasoning systems
for general and practical applications.
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Figure 1: An example from the MEmoR dataset. The top half is a video clip, which is split to semantic segments with aligned
multimodal signals. While previous datasets focus on the emotions of speakers, we aim to reason about the emotions of
both speakers (bottom left) and non-speakers (bottom right) at an emotion moment with short term contexts and external
knowledge. Note that some modalities may be severely missing or inconspicuous in each segment and even across the contexts,
especially for non-speakers. Thus, beyond direct recognition from multimodal signals of target persons, MEmoR urgently
requires reasoning ability to model the situation contexts, emotion propagation, and external knowledge.

To solve the above challenge, we propose MEmoR, a new dataset We summarize the contributions of our paper as fourfold: 1)
for Multimodal Emotion Reasoning in videos. MEmoR is collected We formalize the task of multimodal emotion reasoning in videos,
from the popular TV series The Big Bang Theory with 5,502 video which requires a deep understanding of the contexts and the world
clips and 8,536 data samples. Different from existing datasets, MEmoR beyond directly recognizing emotions from multimodal signals. 2)
is annotated in person-level with 14 fine-grained emotions from We introduce MEmoR, a new dataset annotated with fine-grained
Plutchik’s wheel [34] for both speakers and non-speakers. Given emotions for both speakers and non-speakers in videos. The target
that videos in MEmoR are close to real life and persons in these persons involved in the videos may have incomplete multimodal
videos may have incomplete signals, an intelligent system must signals, urgently requiring the capability of multimodal emotion
possess emotion reasoning skills beyond direct recognition with reasoning. 3) MEmoR provides researchers with both short-term
complete modalities. In support of developing various reasoning contexts and external knowledge in support of emotion reasoning.
approaches, MEmoR offers short term contexts around emotion Besides, we also propose an attention-based approach and carry out
moments and external knowledge such as personalities for the main extensive experiments to demonstrate the effectiveness of different
characters in TBBT. Therefore, MEmoR is designed as a practical reasoning strategies. 4) We summarize potential challenges and
yet challenging testbed for multimodal emotion reasoning. Fig. 1 present several promising future directions for multimodal emo-
illustrates an example of a video clip with two data samples. tion reasoning with the proposed MEmoR dataset. We believe that

As a first attempt, we extract representative multimodal features MEmoR may help to push the research on affective computing from
and propose an attention-based reasoning method. In addition to emotion recognition towards emotion reasoning.
the multimodal features, our approach reasons about emotions
fr0m. intra-personal en}().tion contexts,_ int.er-personal emc.)tion prop- 2 RELATED WORK
agation, and personalities. The key lies in the personality-guided
self-attention mechanism across the persons and the contexts. We 2.1 Basic Emotion Theory
achieves the best performance across several multimodal emotion In basic emotion theory, humans are assumed to have an innate
recognition baselines and conduct experiments to explore the roles set of emotions. For example, William James in 1890 proposed 4
of different components in emotion reasoning. Further, we take basic emotions [22], and Richard in 1996 suggest 15 emotions [25].
an in-depth analysis of the performance across different emotion Ekman’s six basic emotions [12] are the most commonly adopted
categories for both speakers and non-speakers. emotion classification model. However, it is relatively simple and

cannot reveal the intensities and relations among the emotions.
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Figure 2: Ekman’s six basic emotions and Plutchik’s wheel
of emotions (the middle circle contains 8 primary emotions)

Table 1: Comparison between related datasets and MEmoR.

“all*” indicates both speakers and non-speakers. “?” indi-

cates that the faces may be missing for target persons.
Dataset Anno.lv.  Target Face Know. #Emo
CMU-MOSEI  utter. speakers X 6
OMG utter. speakers X 7
SEMAINE utter. speakers v X 7
IEMOCAP utter. speakers v X 9
MELD utter. speakers ~ ? X 7
MEmoR person all* ? v 14

In this work, we leverage the Plutchik’s wheel of emotions [34],
including 8 primary and 24 fine-grained emotions, which also covers
Ekman’s emotions. The fine-grained emotions are of three different
intensity scales for each of the primary emotions. Similar emotions
lie close in the wheel. With Plutchik’s wheel, we can make a more
fine-grained emotion analysis for the emotion reasoning task.

2.2 Multimodal Emotion Recognition in Videos

Multimodal emotion recognition in videos aims to perceive human
emotions from audio, text, and visual signals. The previous datasets
mainly focus on recognizing the utterance-level emotions of speak-
ers with full modalities. For example, OMG-Emotion dataset [2]
and CMU-MOSEI dataset [51] collect user-generated monologue
videos from YouTube and annotate Ekman’s basic emotions in
utterance level. Videos in these two datasets are required to in-
clude apparent front faces. With the support of these datasets,
researchers have developed effective multimodal human emotion
recognition methods, including multimodal fusion [8, 28, 29, 50],
multimodal transfer learning [1], and multimodal attention mecha-
nism [10, 16, 54]. In addition to the monologue videos, multimodal
emotion recognition in conversations has attracted great interest in
recent years. In conversations, two (dyadic) or more (multi-party)
actors take turns to speak, which raises new challenges such as
context modeling and the speaker’s emotion shift. IEMOCAP [4]
and SEMAINE [32] are two dyadic conversation video datasets
that provide audio-visual signals by recording conversations with
faces in front of fixed cameras. MELD [36], a recent multimodal
dataset, provides wild multi-party conversation videos from TV
shows. For these datasets, RNNs [30, 35], memory networks [19, 20]
and graph neural networks [14] are applied to model the dynamic
temporal emotions among the speakers.
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However, all the exsiting datasets above focus on utterance-
level emotions for the speakers, who are usually the key persons
in videos with complete modalities. In contrast, MEmoR is more
generic provides person-level annotations for both speakers and
non-speakers. Because non-speakers lack audio-textual signals and
are often visually inconspicuous, MEmoR requires emotion reason-
ing ability beyond direct recognition from multimodal signals. The
comparison with related datasets is summarized in Tab. 1.

3 DATASET

3.1 Video Collection and Preprocessing

3.1.1 Data source. We aim to evaluate the performance of emotion
reasoning models in real-life scenarios, so the video corpus should
be generic and representative. We choose the popular TV show
The Big Bang Theory (TBBT), which has seven main characters!
and many extras. Specifically, we utilize all the episodes from the
first nine seasons of TBBT to construct our dataset. The videos are
transcoded to 720p H.264 streams, while the audios are unified into
16-bit mono streams. As for the text data, we obtain the subtitles
and download the episode transcripts from the Internet.

3.1.2  Data Alignment. We aim to align the audio, text, and char-
acters for further annotation. As subtitles contain temporal infor-
mation, and transcripts associate utterances with characters, We
should align them accurately so that the utterances can be matched
with their corresponding speakers and timestamps. However, there
are many utterances grouped within identical timestamps in the
subtitles. In order to locate the accurate timestamp for each ut-
terance, we use a force-aligner tool Gentle? to make word-level
speech-text alignments. In this way, we associate each utterance
with its accurate timestamps and characters.

3.1.3  Video Segmentation. With the aligned data, we split the video
into semantic segments (Fig. 1). First, we take all the utterances
as initial segments, as they are aligned with non-overlap accurate
timestamps. If a gap between the two utterance segments is shorter
than 3 seconds, we merge the gap into the left nearest segment
as the emotions are continuous during short intervals. Otherwise,
we left the gap as a new visual segment. Thus, these non-overlap
segments can cover the entire video sequences.

3.2 Annotation Process

We build web applications and design a two-step annotation process
to reduce the complexity and improve the quality of the annotation
process. We conduct on-site training for six annotators with bache-
lor degrees employed by a professional data labeling company. We
adopt the Plutchik’s wheel of emotions [34] with 8 primary and 24
fine-grained emotions, as discussed in Sec. 2.1.

3.2.1 Emotion Moments Annotation. The first step is to create video
clips with potential emotions. As the continuous contexts are ex-
pected to be critical for emotion reasoning, we avoid interrupt-
ing the emotional experience of the annotators. They are merely
asked to pause the video when the main characters present typical
emotions on our web application, and the moments are recorded

!Leonard, Sheldon, Howard, Rajesh, Penny, Bernadette, and Amy.
Zhttps://github.com/lowerquality/gentle
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Figure 3: Emotions, annotations and segments distribution in MEmoR

automatically. In this way, we get 6,128 emotion moments (29.89
per episode). For each emotion moment, we create a ten seconds
time window centered around it. All the segments that cross this
window are concatenated to an emotion video clip. We remove
duplicate clips and retain the clips shorter than 30 seconds, which
already provide enough contexts for emotion reasoning. Finally, we
get 5,502 emotion video clips for next step annotation.

3.2.2  Emotion States Annotation. The second step is to annotate
the emotions in each video clip. We ask annotators to label the
primary and fine-grained emotions of each main character near
the emotion moment. To ensure the quality, each clip is annotated
by three annotators. For each character, they should first choose
whether he or she has emotions. The emotion of the character would
be further annotated if and only if he/she has a single emotion. The
annotators are asked to give their reason (text, audio, visual, and
context) to avoid too hasty decisions. Then, they should label one of
the eight primary emotions. Finally, they are required to annotate
one of the three corresponding fine-grained emotions. After this
stage, we have 12,905 valid annotations each with a single emotion.

3.2.3  Personality Annotation. While emotions are very subjec-
tive experiences and would be different from person to person,
researchers have found that personality has an important effect
on daily life emotional processes [24]. In this work, we consider
various models including 16PF [7], Big Five [37], and MBTI [3] to
describe the personalities from different aspects. In real life, people
take tests with tens of self-report questions to recognize their per-
sonalities for each model. Therefore, we provide a TBBT fan, who
is very familiar with psychology and this show, lots of backgrounds
and knowledge to mimic this process. For each of the seven main
characters, he substitutes himself into the role and carries out the
three tests, leading to a total of 26 dimensions vector to describe
personality. The personalities can be seen as a kind of prior external
knowledge, which provides more potential for emotion reasoning.

3.24 Data Sample Creation. We represent each sample as a tuple
(clip, person, moment, emotion). To build a high-quality and consis-
tent dataset for emotion reasoning, we only keep those samples in
which at least two annotators agree that the character presents one
specific fine-grained emotion. Besides, we find it necessary to add
the neutral category. If a character appears in the video clip and
all three annotators agree that he/she presents no emotion at the
moment, we take it as a neutral sample. Finally, we create a total of
8,536 samples annotated with fine-grained emotions.
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Table 2: Summary of MEmoR dataset statistics.

MEmoR Statistics Train Test

# of different video clips 4,081 1,488

# of data samples 6,829 1,707
Avg./Max segment duration (s) 5.000/31 5.043/30
Total # of utt. segements 18,218 4,514
Total # of vis. segements 1,009 285

# of annos. in seg-level speakers 2,078 502

# of annos. in seg-level non-speakers 4,751 1,205

# of annos. in clip-level speakers 4,314 1,086

# of annos. in clip-level non-speakers 2,515 621

3.25 Emotion Sets Selection. We provide two sets of emotion cat-
egories: Primary Emotions and Fine-grained Emotions. The
primary 9 emotions are joy (JOY), anger (ANG), disgust (DISG),
sadness (SAD), surprise (SUR), fear (FEA), anticipation (ANT), trust
(TRU) from Plutchik’s wheel as well as neutral (NEU). For fine-
grained emotions, after checking the annotation results, we find
it difficult for the annotators to tell the differences between some
emotions. Besides, some emotions are not present or well-labeled
in TBBT. Therefore, we merge and discard some categories (details
in supplementary materials) to get the final 14 fine-grained emo-
tions, which adds serenity (SER), interest (INT), annoyance (ANN),
boredom (BOR), and distraction (DIST) to Primary Emotions.

3.2.6 Train/Test Set Split. We split the MEmoR dataset by randomly
select 80% of the samples as the training set and the rest as the test
set. We keep their label distributions to be mostly similar. It is worth
mention that the samples are the same in primary emotions and
fine-grained emotions label sets. The only difference is the choice
of emotion sets for all samples.

3.3 Dataset Exploration

3.3.1 Data Format. Each sample in MEmoR dataset consists of a
video clip, a target person, and an emotion moment. We provide
primary and fine-grained emotion labels for each sample. A video
clip contains: (1) semantic segments with accurate timestamps; (2)
aligned audios and texts in utterance segments for the speakers; (3)
the individuals (characters) appearing in this video clip. We show
an example video clip along with two samples in Fig. 1.
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3.3.2 Dataset Statistics. Similar to the previous datasets, emotions
are imbalanced in MEmoR. Fig. 3(a) shows the distribution of fine-
grained emotions for each character. While the emotion distribu-
tions are broadly similar across the main characters, the personal-
ities and relations between characters have significant effects on
certain emotions. For example, Leonard has much more boredom
emotions than Sheldon. This is because Sheldon always centers
himself and thinks less about others, which usually makes his room-
mate Leonard feel boredom. As MEmoR is annotated for all persons,
there may be multiple annotations in one clip. We visualize the
statistics of annotations per clip in Fig. 3(b). We further investigate
two types of speaker statistics. If we treat the speakers as those who
are speaking in the target moments, about 69.8% of the samples
are non-speakers. If we treat speakers as those who are speaking
during the video clip, about 36.7% of the samples are non-speakers.
The high proportion of non-speakers brings the challenge of lack-
ing audio-text signals, which requires emotion reasoning capability
beyond direct recognition. While we provide an average of 2.8 con-
text segments per sample on MEmoR, Fig. 3(c) shows that about
13% of the samples are presented as long monologues and most
samples have less than five segments, which makes this dataset
more diverse and challenging. Tab. 2 shows high-level summary
statistics of the train/test set in MEmoR.

3.3.3 Dataset Highlights. We summarize the highlights of MEmoR
as follows: 1) Quality. The videos in MEmoR are split into semantic
segments with well-aligned modalities. We designed a two-stage an-
notation process with thorough on-site training. Finally, we adopt
strict rules for sample creation and provide annotations for both
primary and fine-grained emotion sets. 2) Novelty. While the re-
lated datasets only focus on utterance-level emotions for speakers,
MEmoR provides person-level fine-grained annotation for both
speakers and non-speakers, which is more generic for practical
requirements. 3) Challenge. The annotated persons, especially for
non-speakers, may suffer from severe modality missing, which is
challenging and requires the ability of multimodal emotion rea-
soning. 4) Potential. MEmoR provides short-term contexts near
emotion moments as well as each character’s personalities. Actually,
the commonsense knowledge and large-scale specific knowledge
about TBBT from the Internet could also be used to enhance the rea-
soning ability further. Thus, MEmoR has great potential to support
developing a variety of multimodal emotion reasoning techniques.

4 MULTIMODAL EMOTION REASONING
Following Sec. 3.2.4, we formally define a data sample as (V, Py,
Sn, Em,n), where V = ({Pi}?;ll, {5; }ﬁ\il) is the video clip containing
M persons and N semantic segments (Sec. 3.1.3), Py, € {P,-}?il is
the target person. S, € {S; }f]: | is the target segment where the
annotated emotion moment lands inside, and Ej, ,, is the labeled
emotion for Py, in S;,.

Given that the target person Py, may have no visual signals or
lack audio-textual signals (a non-speaker), S, may miss one and
even all the modalities for emotion recognition. Our goal is to
reason about the target emotion Ey, , of the target person Py, in
the target segment S,, through utilizing the contextual information
contained in V as well as external knowledge such as personalities.
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4.1 Multimodal Feature Extraction

For person P; at segment S;, we extract the multimodal features
for audio, text, visual and personality. When a modality is missing,
we use a zero vector as the corresponding placeholder.

Audio Features. We use openSIMLE [13] to extract 6373-d au-
dio features with the IS13_ComParE [40] config file, which is the
common practice in the affective computing research community.
We perform Z-standardization to the these features and obtain the
final audio representation a; ; € R%73.

Text Features. We obtain the text representation using BERT [11],
which achieves outstanding performance in various multimedia
tasks. Specifically, we use the PyTorch implementation [45] with
a pretrained bert-large-uncased model. By averaging the sequence
of hidden-states in the last layer for the input sequence, we obtain
the textual representation ¢; ; € R1924,

Visual Features. We split the visual features into three folds to
describe the visual contents in frame-level. (1) Facial features: We
use the pretrained MTCNN [53] to extract faces in all frames. To get
facial identity features, we finetune a Facenet [39] model pretrained
on VGGFace2 [5] for face recognition (FR) on the seven main charac-
ters. For facial emotion features, we train another Facenet model on
FER2013 dataset [6] for facial expression recognition (FER). Finally,
we concatenate the outputs before the final layer of the FR and
FER models to obtain the overall 1024-d facial features. (2) Object
features: We use the Detectron2 [46] library to detect 1230 object
categories defined in LVIS dataset [17]. We pack them into a 1230-d
feature vector, where each slot represents the number of one object
category detected in the given frame. (3) Environment features:
We feed the whole image into a pretrained Resnet152 model to get
the 2048-d image-level feature. We average these features across
frames and concatenate them to get the final visual representation
v € R*302_If the person i do not appear in the segment Sj, we
claims the modality is missing and v; ; is set to zero vector.

Personality Features. First, we adopt the annotated 26-d per-
sonality features as discussed in Sec. 3.2.3. Based on the findings
of [15], we also measure the individuals’ personality traits with
LIWC [43], where we feed all the utterances of each person and
get the word frequencies of 92 psychological word categories. After
Z-standardization, we finally concatenate the annotated features
and LIWC features to get the personality representation p; € R118,

4.2 Model Architecture

To reason about the person-level emotions, we propose an attention-
based approach to model the intra-personal emotion contexts, inter-
personal emotion propagation as well as the prior knowledge of the
personalities. In this work, we adopt the scaled dot-product atten-

T
tion proposed in Transformer [44]: Att(Q, K, V) = softmax (%) v,
where Q, K, and V are query, keys and values, respectively, d is the
size of queries and keys. Assuming a video clip V = ({Pi }?11, {5; }5\]:1)

has N segments and M persons, our goal is to recognize the emotion
E . n of the target person Py, in the target segment Sj,.

Encoders: We use three encoders E,, &;, &, to encode the multi-
modal features {(a; j, t; j, v;, j)}M N into compact representations

i=1,j=1
k
as {(F12, 111, FOVEN_ | where £1%) € RS for k € {a,t,0}.
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Figure 4: Our attention-based multimodal reasoning model.
For modality-level attention, we show the case of visual
modality. The gray circles indicates modality missing, and
the pink circle denotes the target features.

Personality Embedding: Next, we adopt a two-layer percep-
trons &, to encode the personality features p; as fl(p ) for a per-
son i. Served as global knowledge, the encoded personality em-
beddings are concatenated to enhance the multimodal features

(k) [f(k) f;p)] for each modality k € {a, t,v}.
Modahty -level Attention: Before fusing the multimodal fea-

tures, we conduct personality-guided inter-personal and intra-personal

attentions for each modality. Specifically, we perform inter-personal

self-attention across the person-dimension at each segment S;.
(k)1 _ (k) p(k) - 2(k) (k)

w1 = il +Att( S 7 )

Guided by personality embedding f P, paired person relation
information are implicitly modeled. Due to the severe modality
missing and slow convergence speed, we do not adopt RNNs to
model the intra-personal emotion contexts. Instead, we use atten-
tion along the segment dimension for each person P; as: hl(]j.)’z =
hl{k.) ey ( nk: 1 (k),l (k)l) If the modality k for P; in S is
#(K)

missing, we will mask f; ;* to zero in the modality-level attention.

Multimodal Fusion: We take an early fusion strategy for mul-
tiple modalities. After fusion, we concatenate the personality em-
beddings once again to leverage personal information in higher
level. Therefore, we get the multimodal representations h;; =

(a).2, 7 ().2, 7 (0).2, £(p)
[hi,‘; ’hi,j ’hi,z])‘ fi

] in person-level across all the segments.

Person-level Inter-personal Attention: For the target seg-
ment S, we model the high level inter-personal emotion com-
munications by a person-level self attention. Therefore, the fi-
nal enhanced multimodal representations are obtained as: h;, j=
h; j + Att (hi,j, h.j, h;,j) .

Finally, the enhanced representation ilm’n for target person Py,
in target segment Sy, is fed to a three-layer MLP for emotion classi-
fication. Fig. 4 sketches the overview of our architecture.
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5 EXPERIMENTS
5.1 Experimental Setup

5.1.1 Implementation Details. For the encoders, &, is a three-layer
Multi-Layer Perception model (MLP) with hidden state sizes of 1024,
512, and 256. &, and &; are with hidden state sizes of 512, 384, and
256, Sp is with hidden state sizes of 512, 256. All the encoders use the
Relu activation function. Our model is optimized using Adam [23]
optimizer with a learning rate 0.00005, betal 0.9, and beta2 0.999.
The batch size is set to 8. For training with the unbalanced data
on MEmoR, we adopt the weighted sampling strategies, where the
weights are set to the proportion of samples of different emotions.
We choose micro-F1, macro-F1, and weighted-F1 scores as the main
evaluation metrics. Micro-F1, which equals to the precision and
recall in micro-averaging case, measures the overall accuracy. As
the dataset is unbalanced, we also report arithmetic mean (macro-
F1) and weighted mean (weighted-F1) of F1 scores, which measures
per-class performance. We stop training and report the best results
when the micro-F1 performance fails to improve for 50 epochs.

5.1.2  Comparison Methods. We compares several multimodal emo-
tion recognition baselines and our method on MEmoR.

e MDL: For multimodal deep learning architecture, we use
an early fusion strategy, which concatenates the encoded
features from different modalities for further classification.

e MDAE: Following [33], we design a multimodal deep au-
toencoder to reconstruct all modalities from shared repre-
sentations for the modality missing setting.

e BiLSTM+TEFN: Tensor Fusion Network (TEFN) [50] performs
multimodal fusion on unimodal, bimodal and trimodal com-
ponents of the data. Before fusion, we summarized modalities
using three Bi-LSTMs.

e BiLSTM+LMF: Low-rank Multimodal Fusion (LMF) [28]
performs multimodal fusion robustly using low-rank ten-
sors to improve efficiency. Before fusion, we summarized
modalities using three Bi-LSTMs.

¢ DialogueGCN: DialogueGCN [14] leverages self and inter-
speaker dependency of the speakers to model conversational
context for multimodal emotion recognition.

e AMER: The proposed attention-based multimodal emotion
reasoning method and three ablated variants.

5.2 Experimental Results

Tab. 3 shows the comparison results between the proposed AMER
model and the baselines. The personality features are concatenated
after multimodal fusion for each baseline method. MDAE performs
worst with no intra-personal information, and the autoencoder
fails to obtain good representations with insufficient full modal-
ity training data. As the modalities are summarized using three
Bi-LSTMs, the multimodal fusion methods TFN and LMF get better
performance in primary emotions but fail to capture the subtle
emotion difference in fine-grained emotions. With inter-personal
information, DialogueGCN achieves high macro-F1 scores, indicat-
ing the ability to recognize insignificant emotions. However, the
performance is limited because DialogueGCN may aggregate too
much invalid information from modality missing vertices. In con-
trast, our attention-based multimodal emotion reasoning approach
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Table 3: Experimental results of emotion reasoning in primary emotions and fine-grained emotions.

Primary Emotions

Fine-grained Emotions

Methods Modality Micro-F1  Macro-F1  Weighted-F1  Micro-F1  Macro-F1 ~ Weighted-F1
MDL A+V+T 0.4083 0.2817 0.3990 0.3544 0.2126 0.3370
MDL with Personality A+V+T+P 0.4294 0.3170 0.4228 0.3632 0.2171 0.3453
MDAE A+V+T+P 0.4206 0.3034 0.4102 0.3626 0.2185 0.3412
BiLSTM+TEN A+V+T+P 0.4704 0.3104 0.4539 0.3661 0.2068 0.3496
BiLSTM+LMF A+V+T+P 0.4487 0.2943 0.4322 0.3638 0.1975 0.3508
DialogueGCN A+V+T+P 0.4411 0.3100 0.4248 0.3726 0.2285 0.3725
AMER w/o Personality A+V+T 0.4458 0.3391 0.4395 0.4007 0.2460 0.3788
AMER w/o Intra-personal ~A+V+T+P 0.4001 0.2933 0.3933 0.3667 0.2183 0.3446
AMER w/o Inter-personal A+V+T+P  0.4634 0.3086 0.4491 0.4030 0.2384 0.3860
AMER Full A+V+T+P  0.4774 0.3534 0.4652 0.4188 0.2616 0.3996

Table 4: Results for fine-grained emotions in different
modality combinations on a full-modality subset.

Modalities Micro-F1 Macro-F1 = Weighted-F1
Audio(A) 0.2917 0.1244 0.2525
Visual(V) 0.2281 0.1067 0.2028

Text(T) 0.3236 0.1632 0.3074
A+V 0.3023 0.1296 0.2412
T+V 0.3209 0.1962 0.3110
A+T 0.3448 0.1696 0.3097

A+V+T 0.3501 0.1911 0.3188

Table 5: Micro-F1 in different modalities on fine-grained
emotions. “Missing” means at least one modality is missing.

Ablated Models A+T \% A+V+T Missing
AMER w/o Personality 0.3565 0.4134  0.3595  0.4167
AMER w/o Intra-personal  0.3217  0.3558  0.3464  0.3621
AMER w/o Inter-personal  0.3565 0.3851  0.3648  0.4121
AMER full 0.4086 0.4236 0.3753 0.4318

outperforms all the baseline methods with a significant margin in
all the metrics on both primary and fine-grained emotions.

5.3 Further Analysis

5.3.1 The Role of Multimodal Signals. Here we validate the effec-
tiveness of different modalities on a full-modality subset of MEmoR
for fair comparisons across the modality combinations. Tab. 4 shows
that all the modalities are effective in fine-grained emotions. The
text features are the most representative, but audio and visual sig-
nals play a good supplementary role. While visual features are
relatively weak, it improves the per-class performance because
some emotions are highly vision-related.

5.3.2  The Role of Personality. We investigate the role of personality
in two folds. In the first experiment, we add personality features to
MDL as a new modality. In the second experiment, we conduct an
ablation study by removing the personality embedding from the
proposed AMER model. Tab. 3 shows that in these two experiments,
we achieve better performance with the personality information.
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Table 6: Micro-F1 scores on different emotion categories. P
and F denote primary and fine-grained emotions.

NEU Joy ANG DISG SAD SUR FEA
P 06358 0.5913 04731 0.2886 0.2857 0.3890 0.2411
F 0.6220 0.5840 0.3739 0.0775 0.2542 0.2784 0.2188
ANT TRU SER INT ANN BOR  DIST
P 0.2020 0.0741 - - - - -
F 0.1364 0.1154 0.0976 0.1818 0.2013 0.2411 0.2801

Furthermore, Tab. 5 shows that adding personalities benefits both
the full and missing modality samples, especially when the visual
modality is unavailable.

5.3.3 The Role of Emotion Contexts and Propagation. As the sam-
ples on MEmoR suffer from different degrees of modality missing in
different segments, the intra-personal emotion contexts and inter-
personal emotion propagation play an important role in emotion
reasoning. Tab. 3 shows that: 1) the performance goes down when
we remove the modality-level and person-level inter-personal atten-
tion modules; 2) the modality-level intra-personal attention is key
to the AMER model, which improves the performance by a large
margin. We can also see in Tab. 5 that the full AMER outperforms
the ablated models in different scenarios of modalities, and intra-
personal attention is the most effective component in recognizing
modality missing samples.

5.3.4 Performance across Different Emotion Categories. First, we
study the primary emotions in Tab. 6. Among all the categories,
the performances on neutral, joy, and angry are much higher than
others as they are the most distinguishable sentiments. Besides,
Ekman’s six basic emotions (Fig. 2) are easier to recognize than an-
ticipation and trust, which may be the reason that previous datasets
mainly focus on these significant emotions. Trust is most difficult
because people express trust mainly by visual actions like nodding
heads, which is hard to be captured by the current feature set. For
fine-grained emotions, it is difficult to distinguish two emotions if
they are close in the wheel. For example, as shown in Tab. 6, the
recognition performances of disgust and serenity are really bad in
fine-grained emotions. Indeed, most disgust samples are classified
into boredom, and serenity, by definition a kind of “peaceful joy”,



Oral Session B2: Emotional and Social Signals in Multimedia

M Non-speakers in AMER

=3
J;

0.3

Fl Score

Non-speakers in MDL M Speakers in AMER

MM 20, October 12-16, 2020, Seattle, WA, USA

Speakers in MDL

ANG DISG

BOR  DIST

Figure 5: Comparison between AMER and MDL on speakers and non-speakers across fine-grained emotions.

is prone to be recognized as neutral or joy. While humans can dis-
tinguish the subtle differences of these fine-grained emotions, it is
hard for current Al systems to develop the same ability.

5.3.5 Detail Analysis for Speakers and Non-speakers. As discussed
in Sec. 3, while the previous datasets focus on speakers, MEmoR
provides annotations for both speakers and non-speakers. Here we
denote speakers as those speaking in the target emotion moments.
Fig. 5 compares the performances of speakers and non-speakers be-
tween MDL and AMER for each emotion class. We can see that: (1)
With the aforementioned reasoning abilities, the proposed AMER
model outperforms MDL in most emotion categories for both speak-
ers and non-speakers. Indeed, the overall micro-F1 scores are im-
proved by a large margin (speakers T 3.58%, non-speakers T 7.64%).
(2) AMER achieves higher performance for speakers than non-
speakers in 9 of the 14 fine-grained emotions, indicating that the
emotions of non-speakers are more difficult to recognize. (3) While
non-speakers are naturally likely to be passive neutral listeners,
speakers are much possible to convey vivid emotions. Therefore,
it is not surprising that we can detect neutral emotion better from
non-speakers than speakers. Overall, the reasoning abilities benefit
the performance of all persons, especially for the non-speakers.
More details can be seen in the supplementary materials.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduce a challenging dataset MEmoR for the task
of multimodal emotion reasoning in videos. While existing datasets
mainly focus on recognizing the emotions of speakers, MEmoR
is annotated with 14 fine-grained emotions for both speakers and
non-speakers from sitcoms. The challenge to solve the emotion
recognition problem in the real-world scenario is that the subjects
are usually lack of audio-textual signals and visually inconspicuous.
Thus, MEmoR requires the capability of emotion reasoning from
the contexts and the prior knowledge. We describe the process of
building this dataset and provide the multimodal feature sets. We
further propose an attention-based reasoning approach and conduct
extensive experiments to demonstrate the effectiveness of intra-
personal emotion contexts, inter-personal emotion propagation,
and prior knowledge. Finally, we take an in-depth analysis of the
performance across different emotion categories for the speakers
and non-speakers. Besides, the performances are unsatisfactory on
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some fine-grained emotions, indicating the great potential to further
develop powerful techniques of multimodal emotion reasoning.

In addition, in the course of conducting this research, we iden-
tified some critical challenges that we believe are important to
address in future research on multimodal emotional reasoning.

Emotion Feature Design. In this work, we use pre-trained
features that are not explicitly designed for recognizing emotions
and therefore have great potential for improvement with respect
to various emotions. For example, elegantly representing visual
cues is obviously very essential for designing emotion-specific
features, including aesthetic features [21], human expressions [41],
poses [47], actions [9, 52], and their interactions in videos.

Multi-label Emotion Reasoning. We create data samples with
single label agreed by at least two annotators. However, one may
feel sad and angry at the same time. Therefore, a future direction is
multi-label emotion reasoning with MEmoR.

Knowledge-enhanced Emotion Reasoning. External knowl-
edge has been successfully aggregated in visual reasoning applica-
tions [26, 27]. MEmoR can support emotion reasoning from both
commonsense knowledge and specific knowledge. The common-
sense knowledge can be obtained from knowledge bases like Con-
ceptNet [42] and Atomic [38], and MEmoR could provide specific
knowledge about the characters, stories, and backgrounds in TBBT.
Thus, various techniques like neural-symbolic reasoning [31, 49],
knowledge graph reasoning and graph neural network can be lever-
aged in multimodal emotion reasoning.

Explainable Reasoning Procedure. Some research areas like
VQA has moved towards explainable reasoning [48]. While humans
can easily point out how they understand emotions around them,
the emotion reasoning procedure is still a “black-box” in this work. If
we can make explainable reasoning over the causes, outcomes, and
expressions of emotions, it will not only improve the performance
but also reduce ethical risk in practical applications.

Finally, we believe the MEmoR dataset can push the community
of computational emotion analysis from recognition to reasoning
and empower high EQ in the modern intelligence systems.
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