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ABSTRACT
Most metric-based meta-learning methods learn only the sophisti-
cated similarity metric for few-shot classification, which may lead
to the feature deterioration and unreliable prediction. Toward this
end, we propose new mechanisms to learn generalized and dis-
criminative feature embeddings as well as improve the robustness
of classifiers against prediction corruptions for meta-learning. For
this purpose, a new generation operator BlockMix is proposed by
integrating interpolation on the images and labels within metric
learning. Based on the above BlockMix, we propose a novel regular-
ization methodMeta Regularization as an auxiliary task branch with
its own classifier to better constraint the feature embedding mod-
ule and stabilize the meta-learning process. Furthermore, a novel
inference scheme Self-Calibrated Inference is proposed to alleviate
the unreliable prediction problem by calibrating the prototype of
each category with the confidence-weighted average of the support
and generated samples. The proposed mechanisms can be used as
supplementary techniques alongside standard metric-based meta-
learning algorithms without any pre-training. Experimental results
demonstrate the insights and the efficiency of the proposed mecha-
nisms respectively, compared with the state-of-the-art methods on
the prevalent few-shot benchmarks.
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1 INTRODUCTION
For many challenging tasks in the field of multimedia, deep learning
methods have achieved great success [25, 26, 55]. To successfully
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Figure 1: Visual comparisons of the proposed BlockMix (e.g.,
3 × 3) with the Mixup [13], Cutout [8] and CutMix [57].

learn a deep neural network model, millions of labeled data in thou-
sands of categories are required. In practice, not only it is very
expensive to collect such a large number of labeled data [46, 47],
but also the data of some novel categories are scarce. In the mean-
while, few training examples often result in overfitting in the deep
network, which greatly limits the applicability of learned mod-
els. However, human-level intelligence has a better generalization
ability to classify categories that have been never seen before or
observed with only few examples. Consequently, few-shot learn-
ing has attracted widespread attention due to relieving the above
gap by training models to generalize to novel categories from few
examples.

The most representative paradigm in existing works for few-
shot learning is meta-learning [19, 48, 49]. Meta-learning methods
train a network that can generalize to novel categories by learning
some transferable knowledge from base classes with vast amounts
of examples. These transferable knowledge has good network ini-
tialization [10], discriminative similarity metric [41, 51], efficient
optimization strategy [36], etc. Among these meta-learning ap-
proaches, the most representative research direction is metric-based
algorithm [30, 41, 44] which prompts the frontier of few-shot clas-
sification. Specifically, the features are extracted firstly from the
support and query examples by the feature embedding module
and then are used to build the nearest neighbor classifier based on
the calculated distances on them. Besides, fine-tuning based meth-
ods [4, 11, 27] with standard transfer learning are proposed and
also achieve encouraging results on unseen categories, compared
with current state-of-the-art meta-learning methods. Therefore, the
notable difference from the former is that the latter further explores
the knowledge learned from base categories and generalizes it to
the novel categories without meta-learning paradigm.
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Figure 2: Framework illustration of the proposed Meta Regularization. The proposed method learns the generalized and dis-
criminative feature embeddings as well as improves the robustness of classifiers against prediction corruptions. The solid lines
branch learns the mean-centroid classifier for meta-task. Meanwhile, the dotted lines branch learns the auxiliary classifier
for regularization task. Both branches are co-trained in a meta-learning paradigm.

In this paper, we are interested to take a close look at the metric-
based meta-learning algorithms and come up with our motiva-
tions from two important observations: (1) Feature deterioration.
Learning a robust and general-purpose category representation is
the first step of the metric-based approach and the prototype of
each support category is usually calculated by averaging the corre-
sponding feature representations. However, the feature embedding
module pre-trained on the base categories may lose its generalized
and discriminative property on the novel categories. (2) Unreli-
able prediction. In the most metric-based approaches [3, 41, 44],
each query sample is assigned to the support prototype with the
closest distance to itself, where the support prototype is often di-
rectly calculated by averaging the feature representations. But this
straightforward comparison may result in unreliable confidence
and incorrectness in predictions. Thus how to represent the data dis-
tribution of each support category as true as possible with limited
labeled samples remains challenging.

To alleviate the above issues, this work firstly proposes a new gen-
eration operator BlockMix: sub-blocks are randomly selected and
mixed between two various images, where the ground truth labels
are mixed proportionally according to the number of the combined
blocks (See Figure 1). Then, a novel regularization methodMeta Reg-
ularization is proposed to improve the generalization ability and re-
duce the uncertainty in predictions for metric-based meta-learning
algorithms. InMeta Regularization, the sub-blocks between support
and query examples are mixed in an episode where the ground
truth labels are also mixed proportionally to the number of the
combined blocks. Specifically, this method only uses the resources
of the network itself to regularize the feature embedding module. It
is common knowledge that the explicit regularization for posterior
probability has been proven as an effective means [8, 32] to increase
the robustness of the model. Therefore, we employ an auxiliary

task co-training branch with its own classifier to constraint the
feature embedding module and stabilize the meta-learning process,
as illustrated in Figure 2. In practice, the feature embedding module
is enforced to be shared between the meta-learning branch and the
regularization branch, and the experimental results show that both
branches are complementarity and force the predictions of each
other not to be over-confident. To some extent, the BlockMix can be
seen as a kind of regional dropout method sharing similarity with
CutMix [57]. It essentially makes full use of the block-level pixels
of training examples and maintains the effect of regional dropout
regularization during the training.

In addition, we further propose a novel inference scheme called
Self-Calibrated Inference for metric-based meta-learning algorithms,
in which BlockMix can be explored to effectively alleviate the prob-
lem of unreliable prediction in the inference phase. Adopting the
idea of pseudo-labeling [21] for reference, as a sample generation
operator, BlockMix can adaptively generate diverse BlockMix-ed
examples with semantically similar to the support example. The gen-
erated BlockMix-ed examples, as well as the support examples, are
weighted summed as the enhanced prototype of the corresponding
novel category. Specifically, this inference scheme has the calibra-
tion property: (1) Confidence-based Mixing. The mixing process
of BlockMix is decided by predicted confidences from the softmax
function, which makes generated semantically similar examples
follow the true distribution of the novel category. (2) Confidence-
weighted Updating. The generated examples are not treated equally
and the category prototype is updated by the sum of weighted
BlockMix-ed examples to further alleviate the intrinsic unreliability.
Finally, the meta-classifier is discriminative enough to classify novel
query examples correctly with the category prototype updated by
multiple iterations.
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Overall, the key contributions of this paper are summarized as
follows:
• We propose a novel generation operator BlockMix: the sub-
blocks are randomly selected and mixed between two dif-
ferent images while the labels are also mixed proportionally
to the number of the mixed blocks. It can also be seen as a
simple yet effective dropout strategy that can discard global
structure and keep local details.
• An elaborative regularization method Meta Regularization is
developed to conduct in an episodic manner, which can be as
a flexible plug-and-play technique alongside standard metric-
based meta-learning algorithms. To our best knowledge, it
is the first time to explore the regularization strategy for
metric-based meta-learning.
• A novel inference scheme Self-Calibrated Inference is pro-
posed to alleviate the unreliable prediction issue. Specifi-
cally, the semantically similar example will be adaptively
generated to enrich the prototype and make the calibrated
meta-classifier correctly classify the novel categories, which
is less explored in the inference for meta-learning algorithms
and achieves state-of-the-art results.

2 RELATEDWORKS
2.1 Regularization
Regularization is a common technique for training deep networks
whichmakes deepmodels with better robustness and generalization.
This is generally done by adding a few noises to some parameters
during the training according to various modes. Dropout [42] and
its variants have been proved to avoid over-fitting predictions and
improve the generalization performance of models. Besides, label
smoothing [45] and knowledge distillation [17] make efforts to
alleviate the above issues by regularizing the posterior probability.
Recently, regional dropout strategy[8] and its variants[13, 43, 57]
have been proposed as a class of effective regularization, which is
in the form of data augmentation. For example, Mixup [13] and
CutMix [57] effectively perturb the input information to enhance
the performance of the convolutional neural network during the
training. In this paper, we mainly investigate a training framework
that integrates a novel regularization method based on the pro-
posed novel operator called BlockMix for meta-learning. Similar to
Mixup [13] and CutMix [57], the proposed regularization method
only needs to operate on the input data and easily is applied to any
meta-learning paradigm for the few-shot classification.

2.2 Few-shot Learning
Few-shot learning aims to learn classifiers to generalize novel cate-
gories from few examples under given a large amount of labeled
data from base categories. Some works [4, 19, 54] have shown
tremendous success. In the view of the availability of the unlabeled
query set, we can divide the few-shot classification researches into
two groups: inductive settings and transductive settings.

Inductive Algorithm. Currently the main perspective for in-
ductive few-shot learning is the meta-learning paradigm[48, 49],
which designs the meta-learner to learn some meta-knowledge on
the base tasks that can be quickly transferred to similar new tasks
with scarce labeled data. Meta-learning methods can be roughly

divided into several categories. Optimization-based methods [10, 36]
aim to learn a good initialization that makes the model easily gener-
alize to new tasks with only a small amount of gradient. Parameter-
generating based methods [12, 35] usually learn to predict the classi-
fier weights from the feature representations of the novel categories.
Metric-learning based methods [41, 44, 51] learn a common feature
space where the query set examples can be correctly classified based
on the distance metric. In this work, our proposed mechanisms are
built on the metric-learning based methods which consider the
mean of feature embeddings as the category prototype to directly
compare the distance between the query and support examples
with a certain metric. Specifically, our work proposes to alleviate
the feature deterioration by introducing the Meta Regularization
method to restrain the feature embedding module for each episode.

In addition to the above methods, recent works [5, 6, 15, 53, 58]
based on sophisticated sample generation gradually become an-
other popular direction for few-shot classification. How to generate
semantic-similar and high-quality data based on a few examples
remains a challenging open problem. The proposed method shares
similarity with chen et al. [5] that replaces the blocks between two
samples, while the critical difference is that the latter uses a fixed
augmented set to augment all images and needs to manually find
the optimal replacement number. By contrast, the proposed Meta
Regularizationmixes the sub-blocks and labels between support and
query examples on the fly in each training episode, and BlockMix
can also be seamlessly integrated with the pseudo-labels and confi-
dences computed from the model to enhance category prototypes
in the inference phase. In addition, the proposed method is mainly
for the meta-learning paradigm, but the latter is not.

Transductive Algorithm. Since the limited amount of labeled
support examples in the few-shot classification, some works try to
make full use of the unlabeled query examples, which is referred to
as transductive inference [50]. Liu et al. [28] firstly introduces trans-
ductive inference in the few-shot classification by constructing a
graph both on support and query sets and propagating labels to the
unlabeled query examples within the graph. The work proposed
by Kim et al. [20] is very similar to the [28], but the former utilizes
the features of both edge and node in the update steps. In addi-
tion to the above methods, Ren et al. [37] proposes meta-learning
for semi-supervised few-shot classification by utilizing unlabeled
data to adjust the learned category prototype. Recently, Hou et
al. [18] proposes to enrich the category features by picking top-k
confident query samples with confidence criterion. The idea behind
Self-Calibrated Inference is inspired by the pseudo-labeling strat-
egy [21] in semi-supervised learning, where predictions of models
are converted to hard labels and only be retained when the largest
class probability is sufficiently confident. We propose to generate
the semantic-similar examples with the Blockmix operator applied
to pseudo-labeled examples to augment the labeled support set and
the diversity of category prototypes can be self-calibrated enhanced
in the inference stage.

3 THE PROPOSED METHOD
3.1 Preliminary
Given a dataset D, it is divided into three subsets: a training set
D𝑡𝑟𝑎𝑖𝑛 with large amount of labeled examples, a support setD𝑠𝑢𝑝𝑝𝑜𝑟𝑡
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Algorithm 1 The proposed Meta Regularization

Input: The set of all query examples 𝑄𝑥 and labels 𝑄𝑦
The set of all support examples 𝑆𝑥 and labels 𝑆𝑦
The maximum number of mixed blocks 𝑁𝑚𝑎𝑥

1: for each episode do
2: 𝑆𝑥 , 𝑆𝑦, 𝑄𝑥 , 𝑄𝑦 = get_episode(dataset)
3: if mode == training then
4: 𝑆𝑥 , 𝑆𝑦 = shuffle (𝑆𝑥 , 𝑆𝑦 )
5: W ∈ {0, 1}𝑁×𝑁 ←− 𝑁𝑚𝑖𝑥 = Randint (1, 𝑁𝑚𝑎𝑥 + 1)
6: 𝛼 =

∑∑
W(𝑖, 𝑗)

𝑁×𝑁 = 1 − 𝑁𝑚𝑖𝑥

𝑁×𝑁
7: input = W ⊙ 𝑄𝑥 + (1 −W) ⊙ 𝑆𝑥
8: target = 𝛼 ∗𝑄𝑦 + (1 − 𝛼) ∗ 𝑆𝑦
9: end if
10: output = model_forward(input)
11: R = compute_loss(output, target)
12: end for

with a few labeled examples and a query setD𝑞𝑢𝑒𝑟𝑦 with unlabeled
examples. The training set has a separate category space while
the support set and query set share the same category space. The
categories in D𝑡𝑟𝑎𝑖𝑛 are defined as base categories C𝑏𝑎𝑠𝑒 , and the
categories in the D𝑠𝑢𝑝𝑝𝑜𝑟𝑡 as well as D𝑞𝑢𝑒𝑟𝑦 are defined as novel
categories C𝑛𝑜𝑣𝑒𝑙 . That is, C𝑏𝑎𝑠𝑒 is disjoint with C𝑛𝑜𝑣𝑒𝑙 . Meta learn-
ing aims to correctly classify images in query setD𝑞𝑢𝑒𝑟𝑦 with prior
meta-knowledge learned on the training set 𝐷𝑡𝑟𝑎𝑖𝑛 , when given the
support set D𝑠𝑢𝑝𝑝𝑜𝑟𝑡 . In particular, if the support set contains 𝑁
unique categories and each category has 𝐾 labeled examples, this
few-shot learning problem is termed as the standard 𝑁 -way 𝐾-shot
classification scenario which firstly defined by Vinyals et al. [51].
In general, most previous meta-learning methods develop episodic
training to mimic the few-shot learning setting. Specifically, in each
training iteration process, an episode is constructed by a support
setS𝑡𝑟𝑎𝑖𝑛 and a query set Q𝑡𝑟𝑎𝑖𝑛 that are sampled from the training
set, which simulates the mode of the episodic meta-testing.

3.2 Sample Generation via BlockMix Operator
The goal of the BlockMix operator is to introduce new semantic
information by generating a new training sample (𝑥,𝑦) given two
distinct training samples (𝑥𝐴, 𝑦𝐴) and (𝑥𝐵, 𝑦𝐵). Here, 𝑥 ∈ R𝑊 ×𝐻×𝐶
and 𝑦 denote one image and its label, respectively. Specifically,
images are resized to the same fixed size and divided into 𝑁 × 𝑁
sub-blocks, and the BlockMix operator can be defined as

𝑥 = W ⊙ 𝑥𝐴 + (1 −W) ⊙ 𝑥𝐵,
𝑦 = 𝛼𝑦𝐴 + (1 − 𝛼)𝑦𝐵,

(1)

whereW ∈ {0, 1}𝑁×𝑁 denotes a binary mask indicating each block
in the new sample belongs to which of the two examples, 1 is a
binary mask all filled with ones and ⊙ denotes the element-wise
multiplication. Specifically the blocks in 𝑥𝐴 where the regions are
filled with zeros in binary mask W are cutting out and replaced by
the blocks cropped from 𝑥𝐵 where the regions are filled with ones
in binary mask W. The combination ratio 𝛼 between two samples
is determined by the proportion of replaced regions to the original
image, so the 𝛼 is set to

∑∑
W(𝑖, 𝑗)

𝑁×𝑁 . In fact, the BlockMix operator
is also as simple as other data augmentation methods [8, 13, 57]

Algorithm 2 The proposed Self-Calibrated Inference

Input: The set of all query examples 𝑄𝑡𝑒𝑠𝑡
The set of support examples 𝑆𝑐𝑡𝑒𝑠𝑡 , for each category 𝑐 = 1, . . . ,𝐶
The number of update steps 𝑇

Output: Category prototype 𝑃𝑐𝑡 updated after 𝑇 steps.
1: for 𝑐 = 1, . . . ,𝐶 do
2: Compute initial (𝑡 = 0) prototype P𝑐0 by Eq. (10);
3: end for
4: for 𝑥 ∈ 𝑄𝑡𝑒𝑠𝑡 do
5: Compute initial (𝑡 = 0) pseudo-label 𝑦 and confidence score

𝐾 (𝑦 |𝑥) by Eq. (11);
6: Incorporated (𝑥,𝑦, 𝐾 (𝑦 |𝑥)) into corresponding pseudo-

labeled set 𝑄𝑐𝑡𝑒𝑠𝑡 ;
7: end for
8: for 𝑐 = 1, . . . ,𝐶 do
9: Generate corresponding BlockMix-ed set S𝑐

𝑚𝑖𝑥
;

10: end for
11: for 𝑡 = 1, . . . ,𝑇 do
12: for 𝑐 = 1, . . . ,𝐶 do
13: Update prototype 𝑃𝑐𝑡 by Eq. (12);
14: end for
15: Compute pseudo-labeled query set𝑄𝑐,𝑡𝑡𝑒𝑠𝑡 , for all 𝑐 = 1, . . . ,𝐶
16: Generate BlockMix-ed set S𝑐,𝑡

𝑚𝑖𝑥
, for all 𝑐 = 1, . . . ,𝐶

17: end for

with negligible computational overhead, and we select the version
of 3× 3 sub-blocks (i.e., 𝑁 = 3) as the final operator is shown in the
bottom of Figure 1.

3.3 Metric Learning with Meta Regularization
The overall co-training pipeline of the metric-based meta-learning
algorithm with Meta Regularization is shown in Figure 2, and the
inputs are organized into two task branches: meta-task (solid lines)
and regularization task (dotted lines).

The inputs of the meta-task branch consist of the following two
parts: support set S and query set Q, where S,Q ∈ D𝑡𝑟𝑎𝑖𝑛 . Follow-
ing [31, 33, 35], all images are mapped to 𝐿2−normalized feature
vectors 𝑓𝜃 (x) ∈ R𝐶 ( i.e., ∥ 𝑓𝜃 (x)∥2 = 1 ) by the feature embedding
module 𝑓𝜃 , where the parameters 𝜃 represent the weights of the
feature embedding module. In practice, the meta-task is a 𝑁 -way
classification task, so we build amean-centroid classifier M ∈ R𝑁×𝐶 ,
each row𝑚𝑛 ∈ R𝐶 in M represents the category prototype. The
category prototype for the 𝑛-th category is the 𝐿2−normalized av-
erage feature of all the 𝐾 support examples that can be defined as
follow:

P𝑛 =
1
𝐾

𝐾∑
𝑘=1

𝑓𝜃 (x), (2)

Finally, a query example x𝑞 ∈ Q is fed into constructed mean-
centroid classifier and assigned to the nearest centroid’s category
by computing the distance between the query feature 𝑓𝜃 (x𝑞) and
category prototype P𝑛 . Maximizing the inner-product is equiva-
lent to minimizing the Euclidean Distance between corresponding
normalized vectors

min𝑑 (𝑓𝜃 (x𝑞),P𝑛) ≜ maxP⊤𝑛 𝑓𝜃 (x𝑞), (3)
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Thus, themeta-task is trained byminimizing the following objective
function:

Lmeta = − log
exp

(
𝜂P⊤𝑛 𝑓𝜃 (x𝑞)

)∑𝑁
𝑖=1 exp

(
𝜂P⊤

𝑖
𝑓𝜃 (x𝑞)

) , (4)

Here, 𝜂 is a learnable parameter that can increase stability and
robustness of the classifier. Obviously, the mean-centroid classifier
is differentiable and can be updated by standard back-propagation
according to the Eq. (4).

The inputs of the regularization task branch are generated by
the BlockMix Generator, as shown in Figure 2. In each training
episode, we first exploit BlockMix operator on the query set Q
to generate a BlockMix-ed set Q𝑚𝑖𝑥 . Specifically, for each image(
x𝑞, y𝑞

)
∈ Q, we randomly select another image (x𝑠 , y𝑠 ) ∈ S with a

non-trivial probability that two different images have the same label,
where y𝑠 , y𝑞 ∈ C𝑏𝑎𝑠𝑒 . Then, a BlockMix-ed sample (𝑥,𝑦) ∈ Q𝑚𝑖𝑥
is generated by BlockMix Generator according to Eq. (1). In practice,
we set a threshold 𝑁𝑚𝑎𝑥 in BlockMix Generator which indicates
the maximum number of blocks allowed to be mix, so the number
𝑁𝑚𝑖𝑥 of blocks to be mixed is sampled according to:

𝑁𝑚𝑖𝑥 = Randint (1, 𝑁𝑚𝑎𝑥 + 1) , (5)

In order to alleviate the risk of mixing procedure biased towards a
frequent pattern, we randomly determine the blocks to be mixed.
The binary mask W ∈ {0, 1}𝑁×𝑁 is generated by filling with zeros
within the corresponding mixed blocks, remaining parts are filled
with ones. So, the lables of two examples are also mixed propor-
tionally to the number of mixed blocks:

𝛼 =

∑
𝑖

∑
𝑗 W(𝑖, 𝑗)

𝑁 × 𝑁 = 1 − 𝑁𝑚𝑖𝑥

𝑁 × 𝑁 ,

𝑦 = 𝛼y𝑞 + (1 − 𝛼)y𝑠 ,
(6)

In order to accelerate the convergence of training and get better
generalization performance, the consistency withmeta-task branch
is maximized. To classify each BlockMix-ed sample among all avail-
able categories on the D𝑡𝑟𝑎𝑖𝑛 , the regularization task is jointly
trained and shared the same feature embedding module with the
meta-task branch. Different from the above mean-centroid classifier,
the auxiliary classifier in regularization task is randomly initial-
ized and updated via back-propagation. With the feature vectors
𝑓𝜃 (𝑥) ∈ R𝐶 and the auxiliary classifier parameter𝑤𝑐 for category
𝑐 ∈ C𝑏𝑎𝑠𝑒 , the classification score 𝑠𝑐 can be computed as follows:

𝑠𝑐 = 𝛽 ·
𝑤⊤𝑐 𝑓𝜃 (𝑥)

𝑤⊤𝑐 

 · ∥ 𝑓𝜃 (𝑥)∥ , (7)

𝛽 is also a learnable parameter. Thus, with the batch size 𝐵, the
regularization task is trained by minimizing the following objective
function:

R = 𝛼

𝐵∑
�̃�,�̃�

[
−𝑠y𝑞 + log

𝐶base∑
𝑐=1

𝑒𝑠𝑐

]
+ (1 − 𝛼)

𝐵∑
�̃�,�̃�

[
−𝑠y𝑠 + log

𝐶base∑
𝑐=1

𝑒𝑠𝑐

]
,

(8)
Finally, incorporating Eq. (4) and Eq. (8), the objective function

is to minimize the following equation:

L = 𝛾1 Lmeta + 𝛾2 R, (9)

where 𝛾1 and 𝛾2 are positive weighted coefficients between Lmeta
and R. Please refer to Figure 2 for an illustrative representation of
the proposed Meta Regularization strategy and the specific proce-
dure is summarized in Algorithm 1.

3.4 Inference with Calibration Property
In the few-shot classification task, a single or few of labeled exam-
ples can not accurately represent the true data distribution. How
to tackle this problem remains very challenging. Inspired by the
concept of Pseudo-labeling [21] in semi-supervised learning, which
assumes that unlabeled query exampls can be accessed and used,
we propose a simple and effective inference algorithm called Self-
Calibrated Inference. Specially, this inference scheme has calibration
property which can adaptively mix support examples with semanti-
cally similar query examples and utilize the BlockMix-ed examples
to enhance category prototype. The overall pipeline of the proposed
algorithm is shown in Algorithm 2.

In the formula, S𝑐𝑡𝑒𝑠𝑡 ∈ D𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is defined as the support set
for category 𝑐 and Q𝑡𝑒𝑠𝑡 is the query set consisting of all unlabeled
query examples in one testing episode. In the inference process,
the feature embedding module and mean-centroid classifier are
supposed that they are all trained reasonably good in meta-learning
with regularization strategy. Firstly, the original support set S𝑐𝑡𝑒𝑠𝑡 is
fed into the feature embedding module and mean-centroid classifier,
the initial prototype P𝑐0 of each category 𝑐 ∈ {1, . . . ,𝐶} can be
computed according to Eq. (2):

P𝑐0 =
1��S𝑐𝑡𝑒𝑠𝑡 �� ∑

𝑥 ∈S𝑐𝑡𝑒𝑠𝑡

𝑓𝜃 (𝑥), (10)

Given the normalized feature vectors 𝑓𝜃 (𝑥) of query example 𝑥 ∈
Q𝑡𝑒𝑠𝑡 and the corresponding category prototypes, the pseudo label
𝑦 and its confidence score 𝐾 (𝑦 |𝑥) are assigned according to Eq. (3)
and Eq. (4):

𝑦 ≜ one-hot
(
argmax

𝑐∈𝐶
𝜂P𝑐⊤0 𝑓𝜃 (𝑥)

)
,

𝐾 (𝑦 |𝑥) =
exp

(
𝜂P �̂�⊤0 𝑓𝜃 (𝑥)

)
∑𝐶
𝑐′=1 exp

(
𝜂P𝑐′⊤0 𝑓𝜃 (𝑥)

) , (11)

Next, the mean-centroid classifier iterates over all of the unla-
beled query examples, and the pseudo-labeled query set Q𝑐𝑡𝑒𝑠𝑡 =
{(𝑥,𝑦 = 𝑐, 𝐾 (𝑦 |𝑥))} can be obtained for each category 𝑐 ∈ {1, . . . ,𝐶}.

According to Eq. (1), for each support example 𝑥𝑐 ∈ S𝑐𝑡𝑒𝑠𝑡 , the
blocks will be mixed by each pseudo-labeled query example (𝑥,𝑦)
with 𝑦 = 𝑐 to generate BlockMix-ed sets S𝑐

𝑚𝑖𝑥
= {(𝑥,𝑦, 𝐾 (𝑦 |𝑥)} in

which new example 𝑥 remains corresponding confidence score (i.e.,
𝐾 (𝑦 |𝑥) = 𝐾 (𝑦 |𝑥)) and pseudo label (i.e., 𝑦 = 𝑦 = 𝑐). Then, the
prototype of category 𝑐 is calibrated based on the confidence scores
for all 𝑥 ∈ S𝑐

𝑚𝑖𝑥
:

P𝑐1 =

∑
𝑥 ∈S𝑐𝑡𝑒𝑠𝑡 1 · 𝑓𝜃 (𝑥) +

∑
�̃�,𝐾 ∈S𝑐

𝑚𝑖𝑥
𝐾 (𝑦 = 𝑐 |𝑥) · 𝑓𝜃 (𝑥)∑

x∈S𝑐𝑡𝑒𝑠𝑡 1 +
∑
�̃�,𝐾 ∈S𝑐

𝑚𝑖𝑥
𝐾 (𝑦 = 𝑐 |𝑥) , (12)

Finally, P𝑐1 is then used to re-assign pseudo label for each unlabeled
query example. The above process iterates step 𝑇 to progressively
generate a more representative and robust category prototype P𝑐𝑡 .
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Table 1: The average Few-shot classification results with 95%
confidence intervals on the MiniImageNet dataset.

Methods Ref. Backbone 1-shot 5-way 5-shot 5-way
MatchNet [51] NeurIPS’16 Conv-64F 43.56 ± 0.84 55.31 ± 0.73
ProtoNet [41] NeurIPS’17 Conv-64F 49.42 ± 0.78 68.20 ± 0.66
MM-Net [1] CVPR’18 Conv-64F 53.37 ± 0.48 66.97 ± 0.35
RelationNet [44] CVPR’18 Conv-64F 50.44 ± 0.82 65.32 ± 0.70
TADAM [30] NeurIPS’18 ResNet-12 58.50 ± 0.30 76.70 ± 0.30
STANet [56] AAAI’18 ResNet-12 58.35 ± 0.57 71.07 ± 0.39
DN4 [24] CVPR’19 Conv-64F 51.24 ± 0.74 71.02 ± 0.64
DCEM [9] ICCV’19 ResNet-18 58.71 ± 0.62 77.28 ± 0.46
LEO [39] ICLR’19 WRN-28-10 61.76 ± 0.08 77.59 ± 0.12
VMS [2] AAAI’20 ResNet-12 60.16 ± 0.47 77.25 ± 0.15
DTN [3] AAAI’20 ResNet-12 60.72 ± 0.72 76.58 ± 0.65
MetaGAN [59] NeurIPS’18 Conv-32F 52.71 ± 0.64 68.63 ± 0.67
Dual TriNet [7] TIP’19 ResNet-18 58.80 ± 1.37 76.71 ± 0.69
Δ-encoder [40] NeurIPS’18 VGG-16 59.50 69.70
IDeMe-Net [6] CVPR’19 ResNet-18 59.14 ± 0.86 74.63 ± 0.74
SalNet [58] CVPR’19 ResNet-101 62.22 ± 0.87 77.95 ± 0.65
AFHN [23] CVPR’20 ResNet-18 62.38 ± 0.72 78.16 ± 0.56
PN_Cos Ours ResNet-12 59.11 ± 0.85 72.29 ± 0.67
PN_Cos+MR Ours ResNet-12 62.48 ± 0.85 78.20 ± 0.59

TPN [28] ICLR’19 ResNet-12 59.46 75.65
TEAM [34] ICCV’19 ResNet-18 60.07 72.04
CAN [18] NeurIPS’19 ResNet-12 67.19 80.64
PN_Cos+MR+SCI1 Ours ResNet-12 67.45 80.02
PN_Cos+MR+SCI2 Ours ResNet-12 69.15 80.12
PN_Cos+MR+SCI3 Ours ResNet-12 69.79 80.19

MR: Meta Regularization, SCI𝑡 : Self-Calibrated Inference (𝑡 ≥ 1)

More importantly, the proposed inference scheme has the cali-
bration property without further training to robustly against the
wrong predictions on unlabeled query exampls (i.e., 𝑦 ≠ 𝑐).
(1) Confidence-based Mixing. Different from meta-learning

with regularization strategy, the mixing process in BlockMix Gen-
erator is controlled adaptively according to the confidence score
𝐾 (𝑦 |𝑥). We randomly determine the position of mixed blocks, but
the number of mixed blocks is computed as:

𝑛𝑚𝑖𝑥 =
∑
𝑖

∑
𝑗

W(𝑖, 𝑗) = Round (𝐾 × 𝑁 × 𝑁 ) . (13)

(2) Confidence-weighted Updating. To further alleviate the
intrinsic unreliability, we add a weighted sum for the all support ex-
amples to more robustly update the category prototype. Specifically,
we consider the weight of each generated example in 𝑥 ∈ S𝑐

𝑚𝑖𝑥
as

the same as the confidence score of corresponding pseudo-labled
query example. Note that theweight of the original support example
is always set to 1.

4 EXPERIMENTS
4.1 Datasets
Extensive experiments are conducted on the standard few-shot
classification dataset: MiniImageNet [51] and another widely used
fine-grained benchmark: CUB-200-2011 [52] to evaluate the effec-
tiveness of the proposed method for metric-based meta-learning. To
verify the method comprehensively, these datasets cover from gen-
eral objects to fine-grained images performed with two settings (i.e.,
1-shot and 5-shot classification).

MiniImageNet. This dataset is a mini-version of the full Ima-
geNet dataset [38], and contains 100 different categories with 600
images per category. We follow the settings in [36] by splitting 64,

Table 2: The average Few-shot classification results with 95%
confidence intervals on the CUB-200-2011 dataset.

Methods Ref. Backbone 1-shot 5-way 5-shot 5-way
MatchNet [51] NeurIPS’16 Conv-64F 49.34 59.31
ProtoNet [41] NeurIPS’17 Conv-64F 45.27 56.35
RelationNet [44] CVPR’18 ResNet-18 67.59 ± 1.02 82.75 ± 0.58
DN4 [24] CVPR’19 Conv-64F 53.15 ± 0.84 81.90 ± 0.60
Baseline++ [4] ICLR’19 ResNet-18 67.68 ± 0.23 82.26 ± 0.15
SAML [14] ICCV’19 Conv-64F 69.33 ± 0.22 81.56 ± 0.15
DTN [3] AAAI’20 ResNet-12 72.0 85.1
DualTriNet [7] TIP’19 ResNet-18 69.61 ± 0.46 84.10 ± 0.35
Δ-encoder [40] NeurIPS’18 VGG-16 69.80 ± 0.46 82.60 ± 0.35
AFHN [23] CVPR’20 ResNet-18 70.53 ± 1.01 83.95 ± 0.63
PN_Cos Ours ResNet-12 70.78 ± 0.89 82.47 ± 0.62
PN_Cos+MR Ours ResNet-12 75.31 ± 0.79 88.53 ± 0.49

TEAM [34] ICCV’19 ResNet-18 80.16 87.17
PN_Cos+MR+SCI1 Ours ResNet-12 81.40 90.07
PN_Cos+MR+SCI2 Ours ResNet-12 83.13 90.17
PN_Cos+MR+SCI3 Ours ResNet-12 83.82 90.22

MR: Meta Regularization, SCI𝑡 : Self-Calibrated Inference (𝑡 ≥ 1)

16 and 20 categories as the training set, validation set, and testing
set, respectively.

CUB-200-2011. This dataset is one widely-used image dataset
for fine-grained object recognition and contains 11,788 images from
200 bird species in total. We follow the commonly-used evaluation
protocol proposed in [4], which randomly splits 100, 50, 50 cate-
gories to construct the training set, validation set, and testing set,
respectively.

4.2 Implementation Details
Following the basic experimental settings in [3], the ResNet-12 [16]
network is used as the visual feature extractor with the same struc-
ture as former methods [22, 29, 30] for a fair comparison. The
ResNet-12 network is composed of 4 residual blocks, each of which
consists of 3 convolution layers. The number of filters is set to 32,
64, 128 and 256 respectively and the size of all filters is set to 3 × 3.
Besides, all the convolutional layers are followed by a Batch Nor-
malization layer, a LeakyReLU nonlinearity layer, and each residual
block is followed by a 2 × 2 max-pooling layer. In all experiments,
we adopt the SGD optimizer with Nesterov momentum of 0.9 and
weight decay of 0.0005 to train 100 epoch from scratch. The ini-
tial learning rate is set to 0.05 and change to 0.4 times of itself
every 20 epoch. In each episode, we randomly sample 5 examples
and 15 examples from each novel category as the query set during
meta-training and meta-testing, respectively. The coefficients 𝛾1
and 𝛾2 in Eq. (9) are set to the same value (i.e., 𝛾1 = 𝛾2 = 0.5) for
all experiments. Considering both the performance and efficiency
synthetically, the number of sub-blocks 𝑁 ×𝑁 in BlockMix operator
is set to 3 × 3. In order to reduce calculational cost and speed up
the inference, the hyper-parameter 𝑁𝑚𝑎𝑥 in Meta Regularization
is set to 5 and the maximum of iterations 𝑇 in Self-Calibrated In-
ference is set to 3 by default. Note that, the meta-trained model
and hyper-parameters are chosen based on the validation set with
5-way 1-shot test accuracy.

4.3 Experimental Results
To verify the effectiveness of the proposed method for the metric-
based meta-learning, we conduct the proposed Meta Regularization
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Figure 3: The results of ablation studies on the Meta Regu-
larization shown in (a) and Self-Calibrated Inference shown
in (b). Best viewed with zoom.

strategy and Self-Calibrated Inference on a baseline and compare it
with some state-of-the-art methods. All results are summarized in
Table 1 and Table 2.

MiniImageNet. Table 1 presents comparison results on MiniIm-
ageNet. It can be easily observed that the proposed PN_Cos (base-
line) with Meta Regularization (MR) achieves competitive perfor-
mance compared with several state-of-the-art few-shot learning
approaches for 1-shot and 5-shot classification tasks. After applying
theMeta Regularization strategy to the baseline, the absolute promo-
tion is 3.37% for 1-shot task and 5.91% for 5-shot task respectively.
The results well show the effectiveness of the proposed method and
the rationality of our motivation. Note that the comparisons with
MetaGAN [59], DualTriNet [7], Δ-encoder [40], IDeMe-Net [6], Sal-
Net [58], AFHN [23] are a little unfair for the proposed method,
since these methods belong to generation-based methods while
our approach (PN_Cos+MR) has no any additional examples to
expand the diversity of novel category. Even so, the proposed ap-
proach is still slightly better than AFHN [23]. In addition to the
above settings, we also conduct some experiments with the Self-
Calibrated Inference (SCI ) which can augment the novel category
with the example generation. The bottom rows of Table1 show the
results of our proposed PN_Cos+MR+SCI𝑡 (𝑡 ≥ 1), compared with
current transductive few-shot learning approaches in which the
model utilizes the entire query set in each episode. It can be seen
that the improvement margin of 1-shot task is considerable where
the labeled support example is extremely limited. Especially, the
accuracy of 5-shot task in CAN [18] is slightly higher than the
proposed method, but the former relies on its complex attention
components. The proposed method achieves the best performance
on the 1-shot task.

CUB-200-2011. Fine-grained few-shot classification task ismore
challenging than the generic one due to the smaller inter-class and
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Figure 4: Quantitative comparisons of the proposed Block-
Mix operator with Mixup [13] and CutMix [57]. In Meta
Regularization and Self-Calibrated Inference, BlockMix pro-
vides better results that demonstrate the effectiveness of
this technique.

larger intra-class variations. From Table 2, it shows that the perfor-
mance of our baselinewithMeta Regularization strategy (PN_Cos+MR)
is far better than the previous methods. Compared with the base-
line, the absolute promotion is 4.53% for 1-shot task and 6.06% for
5-shot task respectively, which further indicates the effectiveness
of ourMeta Regularization strategy. When using the Self-Calibrated
Inference during meta-testing, the PN_Cos+MR+SCI3 achieves sig-
nificant performance over 1-shot and 5-shot tasks. Note that the
margin of the improvement on CUB-200-2011 is larger than that
on MiniImageNet. The reason may be that Meta Regularization
mainly mixes the sub-blocks between the support and query exam-
ples which leads to discard global structure and keep local details.
Based on the above analysis, the proposed BlockMix can force the
model to identify and focus on the discriminative local regions for
fine-grained recognition.

Experiments cross two different benchmark datasets indicate
that: (1) The proposed method can consistently improve the perfor-
mance of few-shot classification on different datasets. This shows
that the metric-based meta-learning algorithm can efficiently alle-
viate feature deterioration and unreliable prediction with the im-
provement of the proposed method. (2) The more available support
examples, the less improved performance. Especially, the perfor-
mance promotion of our method in 1-shot task is more significant
than that in 5-shot task and this similar phenomena also appears in
[28, 34], which conforms to the nature of transduction inference.

5 ABLATION STUDIES
We further conduct ablation studies on the MiniImageNet dataset
to verify the effect of the key components in the proposed method,
and the results are shown in Figure 3.

Impact of hyper-parameter: Considering that the position
and number of blocks are randomly sampled inMeta Regularization,
the hyper-parameter 𝑁𝑚𝑎𝑥 indicating the maximum number of
mixed blocks in Eq. 5 needs to be tuned for the optimal performance
of Meta Regularization. The impact of varying hyper-parameter
across the range of 1 to 9 is presented in Figure 3 (a) and the best
performance trade-off is achieved when 𝑁𝑚𝑎𝑥 = 5. It may be that
there exists a non-trivial probability that the mixed blocks contain
the objects of interest rather than the background. The proposed
method achieves a reasonable balance between replacement and
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Figure 5: The effectiveness of the BlockMix operator within
theMeta Regularization on the base (seen) category.We find
that theMeta Regularization can force themodel to focus on
more discriminative regions under a given object for the 1-
shot task. As a result, themetric-basedmethod can correctly
classify the above query image. Best viewed in color with
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reservation of block-level information on the images, which makes
the BlockMix more robust on images.

Effectiveness of calibration property: To verify the effective-
ness of the Self-Calibrated Inference method, two different vari-
ants: without Mixing and Weighting (i.e., w/o M&W), and without
Weighting (i.e., w/oW) are evaluated. The former is seen as a pseudo
labeling approach and the latter can be seen as a straightforward
data generation approach. The contribution of each component and
the evaluation results on MiniImagenet are shown in Figure 3 (b),
and the proposed method achieves the best performance obviously.
Although the results of pseudo labeling gradually become better
and more stable as the iteration𝑇 increases, it is still worse than the
results obtained by the proposed algorithm with calibration prop-
erty. Especially, it can be observed that the accuracy gap among
the three different inference configurations is subtle when firstly
updating the category prototype for 1-shot settings, but this gap is
widening as the iteration𝑇 increases. This supports our hypothesis:
(1) Calibration property enables the model to robustly alleviate
wrong predictions under the help of confidence-based mixing and
confidence-weighted updating. (2) The semantic information in-
troduced from the BlockMix-ed examples is also robust enough,
which can be used to represent the real data distribution of the
novel category.

6 DISCUSSION
Though the proposed BlockMix shows the significant improvement
for the metric-based meta-learning algorithms. However, it’s hard
to fathom the theoretical foundation of its effectiveness.

For the BlockMix operator in the proposed Meta Regularization,
the input image is firstly divided into local blocks and then the
sub-blocks between the support and query examples are mixed,
which discards the global structure of main classification object
and makes efficient use of training pixels. Moreover, the blocks are
selected from random locations and mixed onto the same area in the
BlockMix-ed image as in the original image. To correctly recognize
BlockMix-ed images, the feature embedding module has to pay
more attention to discriminative regions under a given object. This

(b) PN_Cos(a) PN_Cos + MRLion
(novel category)

Figure 6: The effectiveness of the BlockMix operator within
the Meta Regularization on the novel (unseen) category. Al-
though deep model is biased toward the base (seen) ob-
jects, the metric-based embedding module with the pro-
posed Meta Regularization strategy can enhance the dis-
crimination and richness of information that might be use-
ful for unseen identities.

regularization strategy increases the difficulty of metric learning
and makes it harder for overfitting. A representative comparison of
the proposed BlockMix with other strategies is shown in Figure 1,
and the BlockMix can be seen as a complex version of CutMix
with multi-regions. To demonstrate the effectiveness of BlockMix,
we further replace the BlockMix operator in the proposed Meta
Regularization and Self-Calibrated Inference, and the quantitative
results are shown in Figure 4. It can be observed that the proposed
BlockMix operator outperforms Mixup [13] and CutMix [57] in all
cases, especially in Self-Calibrated Inference.

In addition, the effect visualizations of the BlockMix are shown in
Figure 5 and Figure 6. The class activationmaps on the base category
and novel category show that the BlockMix can help the metric-
based meta-learning model to focus on more informative regions.
We believe that this lightweight operator can also be easily plugged
into other meta-learning algorithms and achieve similar gains, since
the robust and discriminative features extracted from the images
are also the main foundation for the few-shot classification task.

7 CONCLUSIONS
In this work, we first define a novel and feasible generation operator
BlockMix. Then, a scalable regularization strategy Meta Regular-
ization and a novel inference scheme Self-Calibrated Inference are
proposed for the metric-based meta-learning. The former leverages
the mixed sub-blocks of support examples and query examples
to help learn a better feature embedding space for generalizing
to novel categories. The latter can generate semantically similar
examples under the help of the entire query set and take a weighted
combination of examples to enrich the category prototype progres-
sively. The proposed method can be easily plugged into existing
metric-based meta-algorithms with negligible computational over-
head. Comprehensive experimental results show that the proposed
method achieves competitive performance against the state-of-the-
art methods.
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