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ABSTRACT

As one of the core components of customer service bot, User Intent

Prediction (UIP) aims at predicting users’ intents (usually repre-

sented as predefined user questions) before they ask, and has been

widely applied in real applications. However, when developing ama-

chine learning system for this problem, two critical issues, i.e., the

problem of feature drift and class imbalance, may emerge and seri-

ously deprave the system performance. Moreover, various scenarios

may arise due to business demands, making the aforementioned

problems much more severe. To address these two problems, we

propose an attention-based Deep Multi-instance Sequential Cross

Network (aDMSCN) to deal with the UIP task. On the one hand,

the UIP task can be subtly formalized as multi-instance learning

(MIL) task with an attention-based method proposed to alleviate

the influences of feature drift. To the best of our knowledge, this

is the first attempt to model the problem from a MIL perspective.

On the other hand, a ratio-sensitive loss is also developed in our

model, which can mitigate the negative impact of class imbalance.

Extensive experiments on both offline real-world datasets and on-

line A/B testing show that our proposed framework significantly

outperforms other state-of-art methods for the UIP task.
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1 INTRODUCTION

As a core function of customer service bot, User Intent Prediction

(UIP) [22, 25] aims to actively predict customer’s intents before

they ask, enable the bots to provide efficient online self-service. To

achieve this purpose, UIP system usually dependents on a list of pre-

defined questions to tag user intents [5, 6]. For example, a customer

who intends to request payment related service can be potentially

tagged with predefined question "why the payment failed" or "what

is the payment limit". Based on that, the system predicts customers’

intent through standard question recommendation, which can be

handled by various Click-Through Rate (CTR) models [5, 7, 10].

Although these methods have shown promising results, there

are two critical challenges, feature drift [2, 9] and class imbal-

ance [4, 20, 27], which severely deprave model performance. The

feature drift problem stems from the evolution of business scenarios.

Unlike traditional recommendation tasks which focus on a single

business scenario, in the online service system, the user intents may

be raised from different business scenarios/domains, e.g., payment,

loan, insurance, etc. In order to improve the model performance

in the UIP task for all kinds of business scenarios, it is necessary

to design specific features for each scenario, such as "user’s lat-

est payment channel" for the payment scenario and "whether the

user has purchased insurance products" for the insurance scenario.

With the evolution of business, new business scenarios may rapidly

emerge along with the termination of some former businesses. As

illustrated in Figure 1, the valid features for the intent prediction

can change dramatically with the changing business scenarios. As

a result, feature drift problem may naturally occur, where some

features for a particular scenario become or cease to be relevant to

the prediction task. A simple strategy sums up all available features

into a aggregated representation, which pays equal attention to all

features and fails to capture the critical ones.
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Figure 1: Illustration of feature drift in online service bots.

The valid feature set changes with the evolution of business

scenarios, causing inconsistency in feature quantities and

categories.

Meanwhile, most methods [5] formulate UIP task as a multi-

classification problem where items are considered as mutually ex-

clusive classes. As user intents differ significantly especially for

different scenarios where each intent/question is viewed as a unique

class, extreme class imbalance problems may exist. In our customer

service bot, there are over 10,000 unique classes under hundreds

of scenarios, and 90% user intents come from 10% of these classes.

Hence, the UIP model may be overwhelmed by excessive train-

ing signals from dominant classes and thus corrupt the system

performance.

In this paper, we propose an attention-based DeepMulti-instance

Sequential Cross Network framework (aDMSCN) to tackle the afore-

mentioned problems in UIP tasks. Inspired by the success of MIL

in web mining [35], we investigated our UIP tasks from the multi-

instance perspective, where the features are treated as instances and

the user depicted by these features is regarded as a bag. The prede-

fined question interested by the user is regarded as the label of the

bag. The bag representation is calculated by weighted averaging of

the instances feature. A deep neural network is introduced here to

determine the weights by an attention-based mechanism. The MIL

setting eliminates the constraint of the fixed number of features

required for most CTR prediction methods, thus alleviating the

feature drift problem. Moreover, we propose a novel ratio-sensitive

loss function to handle the imbalanced distribution of the classes.

Unlike previous weighted loss methods that rely only on predictive

or ground truth classes [20], our loss function regards the relative

balance between the underlying facts and predictions, assigning

sample-wise loss weights with respect to the balance ratio between

the ground truth and the predictions. In addition, we record the

IDs of different pages of user visits and sort them according to

the access time. The resulting sequence is called the user behavior

trajectory. In order to exploit the value of the user behavior tra-

jectory, a sequential attention method is introduced by combining

LSTM with an attention mechanism to better capture the user be-

havior trajectory features with respect to the user representation

vector learned from the MIL module. The entire multi-scenario UIP

pipeline is illustrated in Figure 2.

behavioral traces

model

intent1
intent2
intent3

…

predicted list

standard intent

front
end

scenario1 scenario2 scenario3

update

user features

Figure 2: Illustration of the UIP pipeline for online service

bots with various scenarios.

The main contributions of this paper are summarized below:

• Wepropose a framework for User Intent Prediction under the

circumstance where valid user features drift with the evolu-

tion of related scenarios. The user features are learned using

multiple instance learning methods, where a self-attention

mechanism determines the instance weights through a deep

neural network. To the best of our knowledge, it is the first

work to marry MIL with the UIP task to address the feature

drift problem.

• We also introduce a novel ratio-sensitive loss to handle the

extreme class imbalances problem in online UIP scenarios.

The loss weights for each sample is adjusted corresponding

to the relative ratio of the prior probabilities between the

predicted class and the ground truth class.

• We propose a sequential attention strategy that combines the

LSTM module with an attention mechanism, in which the

extracted user representation from MIL module are further

utilized to capture critical user behaviors for better intent

prediction.

2 RELATEDWORK

2.1 User Intent Prediction (UIP)

UIP can be regarded as a task of recommending questions that

users are interested in, which is similar to the task of CTR pre-

diction that estimates the clicking likelihood of a user, given fea-

tures of the user and candidate items. Usually, the input feature

is extremely sparse and high-dimensional [13, 24]. As a pioneer

work, NNLM [3] applied embedding technique to learn distributed

representation for sparse feature id, which avoided the dimension

explosion problemwhen dealing with large-scale sparse inputs. Tra-

ditional collaborative filter [18] embedded item and user features

into a common representation space and estimated the probabil-

ity of click by comparing the similarity of the mapped item-user

pair. Meanwhile, there were works concentrating on feature inter-

section to capture the interrelationship between different fields.

FM [23] modeled the first-order and second-order feature inter-

section explicitly, which demonstrated its effectiveness in many

recommendation tasks. FFM [16] and AFM [30] aimed at modeling

cross-field second order interaction, which is considered more ef-

fective than interaction within the field. Based on this paradigm,

more and more models pay attention to the interaction between
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features, including Wide&Deep [8], DeepFM [12] and DCN [29],

where low-order and high-order features are combined to improve

expression ability of the model. Subsequent works focus on higher

order interaction through feed-forward network [13, 24, 31], at-

tention mechanism [26] or feature-wise outer production [19]. To

utilize user behavior sequence, recent studies [33, 34] introduce se-

quential learning structures to capture user interests from historical

behaviors.

2.2 Multiple Instance Learning (MIL)

Multiple Instance Learning (MIL) [11] deals with the tasks in which

each sample is represented by a bag of instances, and a label is

attached only to the bag rather than each instance. It is also known

as learning from weakly annotated [21]. MIL has been widely ap-

plied in many domains, such as drug activity prediction [11], web

mining [35] and text classification [32]. Many approaches have

been proposed for MIL through these years. They can be roughly

classified into three categories, i.e., instance-space methods, bag-

space methods and embedding-space methods. Among all MIL ap-

proaches, methods that extract global bag-level information, have

been shown to achieve superior performance in general [1]. Re-

cently, attention based method [15] is explored in MIL problems

and promising results can be achieved.

3 PROBLEM STATEMENT AND NOTATIONS

In contrast to the conventional recommendation problems, in which

each sample is described by both user and item features, UIP task

deals with the sample that contains only the user-related features.

The user features consist of two parts, i.e., the basic features and the

behavior traces. The basic features encode the basic information of

each user. The behavioral traces reflect the recent interests of the

user. Each user is associated with a large number of labels, which

denote whether the user is interested in a specific question or not.

Formally speaking, the features of each sample can be denoted

as [𝒙, 𝒔], in which 𝒙 is a vector that contains the basic features of

this user, and 𝒔 is a vector that contains the behavior traces of this
user. The basic features can be represented as 𝒙 = [𝒙1, 𝒙2, ..., 𝒙𝑀 ],

where 𝒙𝑖 represents a specific feature 𝑖 (e.g., gender, occupation,
etc.) in one-hot form.𝑀 denotes the total number of features. A 𝑁 -
step behavior traces vector is denoted as 𝒔 = [𝑠1, 𝑠2, ..., 𝑠𝑁 ], where
𝑠𝑖 ∈ 𝑅𝐾𝑠 represents a single behavior id in one-hot form.

4 METHODOLOGY

In this section, we will present the proposed aDMSCN framework

and its key components, i.e., attention-based MIL strategy and ratio-

sensitive loss, which will be elaborated in detail.

4.1 Framework Overview

The whole architecture of the framework is illustrated in Figure 3.

We separate the whole framework into several modules, which will

be briefly described below.

4.1.1 Feature embedding. The embedding technique is used to

obtain dense representation from original high-dimensional sparse

feature. The embedding for one feature 𝒙𝑖 can be obtained by 𝒆𝑖 =
𝐸𝑖𝒙𝑖 , where 𝐸𝑖 ∈ 𝑅𝐷𝑓 ×(𝐾𝑖 ) is the embedding matrix, 𝐷 𝑓 is the

feature embedding dimension All embeddings are stacked into one

vector, i.e.

𝒆 = [𝒆1, 𝒆2, ..., 𝒆𝑀 ] . (1)

Similarly, we embed the sequential feature with 𝒆𝑠 = 𝐸𝑠 𝒔 to allow
the interaction between basic features and behavioral traces, where

𝐸𝑠 ∈ 𝑅𝐷𝑠×𝐾𝑠 .

4.1.2 feature information aggregation. Based on the embedding of

each basic feature, a final user representation can be obtained with

proper operation. Commonly adopted strategy concatenates all fea-

ture embeddings, which would cause nontrivial noise with feature

drift according to the discussion above. Instead, a permutation-

invariant operation such as max pooling or average pooling is

applied to extract stable aggregated representation. However, in

practice, those operations cannot capture the most informative fea-

tures which speculate the user’s intent. In this paper, we propose to

formalize this problem as a multiple instance problem and propose

an attention-based method to learn the contribution weight of each

feature, which will be presented in 4.2.

4.1.3 Behavior information aggregation. Besides user features, his-

torical behavioral trajectory also contains rich information about

the latent user intent. Considering that the length of behavioral

trace varies among users, we take LSTM [14] for dynamic behavior

feature representation.

The LSTM model focuses on all the historical behaviors with

equal attention, while in most cases, only a few critical behaviors

are sufficient to decide the current intent of the user. The other

behaviors are just transitions between these critical ones. Locating

key behaviors can help with predicting user intent and filtering out

unrelated actions. Empirically, critical behaviors connected closely

with the dynamic features. Therefore, we add attention mechanisms

to the hidden state of LSTM and utilize the profile representation as

the align vector to highlight the critical behaviors. The procedure

is shown in Equation 2.

𝑎𝑠𝑖 =
exp(𝜙 (𝒉𝑠𝑖 ,𝒉𝑓 ))∑𝑁
𝑗=1 exp(𝜙 (𝒉𝑠 𝑗 ,𝒉𝑓 ))

,

𝜙 (𝒉𝑠𝑖 ,𝒉𝑓 ) = 〈𝑊𝐾𝒉𝑠𝑖 ,𝑊𝑄𝒉𝑓 〉,

𝒉𝑠 =
𝑁∑

𝑖=1

𝑎𝑖𝒉𝑠𝑖 ,

(2)

where 𝒉𝑓 denotes the feature representation from the MIL pooling

model,𝜙 (·, ·) is the attention function,𝑊𝐾 ∈ 𝑅𝐷
′
×𝐷𝑠 ,𝑊𝑄 ∈ 𝑅𝐷

′
×𝐷𝑓

are transformation matrices, 𝐷 ′ is the dimension of attention space

and 𝒉𝑠 ∈ 𝑅𝐷𝑠 is the final output for the attention-based LSTM.

4.1.4 Cross & MLP layer. Feature interaction is necessary to learn

high-order feature combinations. We adopt the base architecture of

DCN [29] for automatic bit-wise feature interaction. Different from

the fully-connected feed forward layer, the cross layer is calculated

by the following equation:

𝒙𝑘 = 𝒙0𝒙
𝑇
𝑘−1𝒘𝑘 + 𝒃𝑘 + 𝒙𝑘−1, (3)

where 𝑤𝑘 , 𝑏𝑘 are parameters for 𝑘-th cross layer and 𝑥𝑘 is the

output of the 𝑘-th layer. Such cross operation could learn a high-
order feature interaction, which approximates a special type of

polynomial. Following the original architecture, we utilize fully
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Figure 3: The overall aDMSCN framework. The sparse user features are first embedded into dense representations. Then, we

bag the basic features into the MIL module to obtain a stable user profile representation (right branch). Historical behavior

traces are processed by a sequential attention network, where profile representations are also associated as alignment vectors

to highlight critical behaviors (left branch). Finally, we concatenate the information extracted from both behavior traces and

basics features and fed into the Cross layers as well as the MLP layers for high-order feature integration, and a ratio-sensitive

loss is adopted to deal with the extreme class imbalance problems.

connected layers for implicit feature interaction. The represented

features from the two layers and the input behavior embedding are

concatenated together at the output, as shown in Figure 3.

However, we need to address that, in the problem of UIP, two

critical issues, i.e., feature drift [9] and class imbalance, will severely

affect the performance of the whole algorithm. In this paper, pointed

strategies are proposed to handle these problems. On the one hand,

we formalize the UIP problem as multi-instance learning (MIL)

task and handle it with an attention-based method, so that we can

conquer the feature drift issue and capture critical features as the

same time. On the other hand, a ratio-sensitive loss is proposed, to

alleviated the negative effect of class imbalance. We will explain

these two parts in details as below.

4.2 Attention-based MIL Strategy

As mentioned above, some features may become or cease to be

relevant to the prediction task with the evolution of the scenarios.

However, existing CTR prediction models usually require stable

features during the training and inferring process and therefore

have little adaptability to such feature drift. For example, let 𝒆 =
[𝒆1, 𝒆2, 𝒆3, 𝒆4, 𝒆5] represent embedding for feature {𝐴, 𝐵,𝐶, 𝐷, 𝐸}
respectively. As business changes, 𝒆3, 𝒆4, 𝒆5 may become very im-
portant while 𝒆1, 𝒆2 become irrelevant, causing the drift of features.
Instead, we consider the feature embedding set and each feature em-

bedding as the instance bag B and instance 𝒙 , respectively. Then an
embedding-space method is developed to extract bag representation

from instance features by

𝑆 (B) = 𝑔(
∑

𝒙∈B

𝑓 (𝒙)), (4)

where 𝑆 (B) is a symmetric function that is permutation-invariant

to the instances. Notably, the simple strategy average pooling for

feature drift, i.e.,

𝒆𝑎𝑣𝑔 =
1

|B|

∑

𝒙𝑖 ∈B

𝒆𝑖 , (5)

can be regarded as a vanilla MIL approach, where B denotes the

valid feature set and 𝒆𝑖 is the corresponding embedding for feature
𝒙𝑖 .
Since different features may contribute dramatically different

for the final predicted result, the average pooling method may not

be a good choice. In this work, we proposed to employ the atten-

tion mechanism to learn the contribution weight of each feature.

Concretely, the corresponding weight 𝑎𝑖 can be calculated as below,

𝒉𝑖 = tanh(𝑊𝑇
𝑙 𝒆𝑖 ),

𝑚𝑖 = 𝜓 (𝒗 ⊕ 𝒉𝑖 ),

𝑎𝑖 =
𝑒𝑚𝑖

∑𝑁
𝑗=1 𝑒

𝑚 𝑗
,

(6)

where𝑊𝑙 ∈ 𝑅𝐷𝑓 ×𝐷𝑙 , 𝒗 ∈ 𝑅𝐷𝑙 are trainable parameters of the model,

𝐷 𝑓 , 𝐷𝑙 is the dimension of the feature embedding space and the
latent space respectively, 𝜓 denotes a scoring function, which is

a one-hidden-layer ReLU network to determine the compatibility

scores 𝑚𝑖 between vector 𝒗 and 𝒉𝒊 . The attention weight 𝑎𝑖 is
calculated by softmaxing the compatibility score 𝑚𝑖 and could

reflect the consistency between the factor embedding 𝒆𝑖 and the
latent bag embedding. The𝜓 is equivalent to an attention function

that decides the similarity between the query 𝒗 and key 𝒉𝑖 , Here
𝒗 could be regarded as the latent embedding vector of a pseudo
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bag representation which is learned along with the model weights.

The actual bag representation (i.e., the user feature) is calculated

through weighted averaging of all feature embeddings 𝒆𝑖 :

𝒉𝑓 =
∑

𝒙𝑖 ∈B

𝑎𝑖𝒆𝑖 . (7)

The procedure of attention-based MIL is illustrated in the right

part of Figure 3.

4.3 Ratio-sensitive Loss

In this paper, we treat UIP as a multi-classification problem, and

choose negative log-likelihood function as the objective function.

The classical cross-entropy function suffers from the imbalanced

distribution of classes.The model might be overwhelmed by the

major classes, leading to an increasing bias of the predicting re-

sults. A common strategy for the imbalance distribution introduces

weighted cross-entropy is shown in Equation 8,

𝑄𝑤 = −

1

N

N∑

𝑗=1

Y∑

𝑖=1

𝛼𝑖𝑦𝑖 log 𝑝𝑖 (𝒙 𝑗 ) . (8)

In practice, 𝛼𝑖 is tuned to assign larger weight to samples of minor
class. There was also work attempting to differentiate between easy

and hard examples [20] through the predicting confidence of the

model, as shown in Equation 9.

𝑄ℎ = −

1

N

N∑

𝑗=1

Y∑

𝑖=1

(
1 − 𝑝𝑖 (𝒙 𝑗 )

)𝛾 𝑦𝑖 log 𝑝𝑖 (𝒙 𝑗 ), (9)

where 𝛾 is a weight parameter.
Existing works model the class imbalance with respect to the

ground truth or predicted result alone and have achieved promising

results for binary classification tasks. However, formulti-classification

with multiple major and minor classes presented, the relative bal-

ance between the predicted and ground truth class is neglected by

the previous works. We argue that the proportion of both predicted

and ground truth class should be considered when deciding loss

weights. Concretely, more attention should be paid on those mis-

classifications from minor classes to major classes rather than the

other way around. In this paper, we propose a novel ratio-sensitive

loss to model the relative imbalance. The ratio-sensitive loss assigns

distinct weight for each sample with respect to the class propor-

tion ratio between the ground truth and the predicted class. The

formulation is shown in Equation 10:

𝑄𝑟 = −

1

N

N∑

𝑗=1

Y∑

𝑖=1

𝑟 (𝑦𝑖 ,𝒑) 𝑦𝑖 log 𝑝𝑖 (𝒙 𝑗 ), (10)

where

𝑟 (𝑦𝑖 ,𝒑) = (1 − p(𝑦𝑖 ))︸�������︷︷�������︸
𝑇𝑤

Y∑

𝑗=1

𝑝 𝑗𝑦𝑖 logp(𝑦 𝑗 ) p(𝑦𝑖 )

︸�����������������������︷︷�����������������������︸
𝑇𝑟

. (11)

It is composed of two components. The 𝑇𝑤 term denotes the loss

weights assignment with respect to the prior probability of the

ground truth class, which is similar to the vanilla weighted loss.

p(𝑦𝑖 ) denotes the prior probability distribution for the 𝑖-th class.𝑇𝑟
denotes the ratio-sensitive term, where log

p(𝑦 𝑗 ) p(𝑦𝑖 ) depicts the

Table 1: Statistics of feature utilized by online user intent

prediction module. Features are composed of sparse vector

grouped in various fields.

feature type category dimension

4*user feature gender 2

occupation ∼100

... ...

total ∼107

behavioral trace ∼104

relative balance ratio between the predicted classes (the 𝑗-th class)
and the ground truth class (the 𝑖-th class). Generally, the distribu-
tion ratios between classes vary significantly, causing extreme loss

weight value. Thus, we use logarithms to soften the ratio to prevent

gradient explosion.

Note that in most cases the class prior probability information

is unknown during training. In these cases, we approximate p(𝑦𝑖 )

with p(𝑦𝑖 ) =
N𝑦𝑖
N

, which is calculated by dynamically accumulat-

ing the respective amount within each training batch. The same

accumulated prior distribution value is utilized during the inferring

phase.

5 EXPERIMENTAL STUDY

5.1 Dataset

To demonstrate the effectiveness of our framework for online UIP

task, we conduct experiments on the customer service bot dataset

of Alipay, the biggest mobile payment platform in China. This

dataset contains one million records, which was collected from

click logs with the time span of a month. Each record is tagged with

a standard question representing a unique user intent interested

by the customer. In total, there are approximately 7000 standard

questions, 600 feature categories and 4000 behavior ids involved

in the dataset. Each click log records the user id, timestamps, user

features, clicked question’s id and latest 300 historical behaviors

of the user. The feature types involved are illustrated in Table 1.

We sort the logs by date and select the logs recorded during the

last day as the test set, which contains about 30,000 samples. The

remaining logs are used for the training procedure.

5.2 Competitors

In this work we choose following approaches for baselines.

• LR Before the introduction of deep learning techniques, Lo-

gistic Regression (LR) is a widely used model for the CTR

prediction task. It is listed here as a weak baseline.

•MLP Embedding followed by fully connected layers is adopted

as the base architecture for many deep-based CTR modeling.

• DCN DCN is the base architecture of our framework and is

used here as a strong baseline.

• DeepFM DeepFM [12] utilizes factorization machine for the

crossing procedure. The remained part is similar to DCN.

• xDeepFM xDeepFM [19] focuses on explicit feature-level

feature interaction through a novel Compressed Interaction
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Network (CIN). It achieves promising results for CTR tasks

when the categories of user features are stable.

• AutoInt AutoInt [26] performs automatic feature interaction

through self-aligned weighted summation, which can be

classified as a kind of self-attention mechanism utilized by

Transformer [28].

5.3 Evaluation Protocols

To evaluate the performance of our model on UIP task, we introduce

three popular metrics.

• Hit Rate @ k The Hit Rate (HR) is defined as 𝐻𝑅 = 𝑁ℎ𝑖𝑡
𝑁 ,

where𝑁 is the total number of instances and𝑁ℎ𝑖𝑡 is the num-
ber of instances in which the clicked question is presented

in the top-𝑘 list.

•Mean Average Precision Mean Average Precision (MAP)

is calculated by averaging the Average Precision (AP) for all

classes.

•Mean Reciprocal Rank @ k Mean Reciprocal Rank (MRR)

is the average of reciprocal ranks for the correctly-recommended

items. It is defined as𝑀𝑅𝑅 = 1
𝑁

∑𝑁
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

, where 𝑟𝑎𝑛𝑘𝑖 is

the rank position of the ground truth class of the 𝑖-th sample.
When the rank exceeds top-k, the reciprocal rank is set to

zero. A larger MRR indicates a more suitable ranking for the

top-k item list.

5.4 Implementation Details

The embedding dimensions for DCN and aDMSCN were set in

terms of the empirical formulation 𝐷 = 6 4
√

𝐷𝑁 , where 𝐷𝑁 is the

dimension of the sparse feature space. All models were trained

through mini-batch stochastic with Adam [17] optimizer. The batch

size was set at 1024 for AutoInt and 256 for others for the best

performance. In DCN, we stacked three interaction layers for the

crossing part and three fully connected layers for the dense part,

with 1024, 512, 512 as the size of hidden units respectively. Two

interaction layers were stacked for the Compressed Interaction Net-

work in xDeepFM. For AutoInt, we used an embedding size of 8 for

the attention vector and stacked three interaction layers with two

attention heads for each layer. Dropout was added to the output of

each model. The gradient clip was set as 5. For xDeepFM and Au-

toInt model, all basic features and historical behaviors embeddings

were concatenated and padded to a fixed length as input feature.

For other baseline models that perform bit-wise interaction, the

basic feature and behavior embeddings were averaging summed

up separately and concatenated as input features. The parameters

used by all baseline methods are tuned on the same training and

development set to achieve the best performance. We applied expo-

nential decay in the training procedure. The base learning rate was

set to 0.01 and the decay rate was set to 0.9. For all experiments, an
early stopping technique was applied at training step 350, 000 to
prevent the model from overfitting.

5.5 Comparison with Baseline Methods

The performances of different methods are summarized in Table 2,

with the best results highlighted in boldface. Table 2 indicates three

Table 2: Performance comparison on the offline dataset.

HR@1 HR@6 MAP MRR@6

LR 17.38% 34.33% 25.05% 0.2320

MLP 17.62% 34.66% 25.28% 0.2339

DCN 19.70% 37.75% 27.11% 0.2521

DeepFM 17.05% 32.68% 24.24% 0.2239

xDeepFM 14.38% 27.26% 20.40% 0.1867

AutoInt 18.36% 36.12% 27.25% 0.2544

aDMSCN(ours) 20.94% 39.61% 29.11% 0.2725

key observations about the performance comparison among these

approaches.

• Little performance improvement is achieved through stack-

ing additional fully-connected layers based on the compari-

son between LR and MLP. With DCN, however, a significant

improvement can be observed by introducing interaction

layers, which indicates the importance of effective feature

interaction.

• The deepmodels that involve feature-level interaction present

consistent performance downgrades compared to their promis-

ing results on several recommendation benchmarks. Partic-

ularly, xDeepFM achieved the worst performance. These

results contradict the results of some previous works using

other benchmarks [19, 26]. We ascribe such contradiction to

the feature drift issue existing in our UIP task. Notably, the

noise from feature drift is magnified with the increase of the

order of feature interaction. Thus, the higher the order of

feature-wise interaction, the worse performance the model

would achieve. High-order interaction would, therefore, de-

generate the model performance. Meanwhile, aDMSCN can

overcome the influence of feature drift noise, as it integrates

features and only deals with element-wise feature interac-

tion.

• Our proposed framework aDMSCN outperforms all other

baseline models. Compared with the best baseline method,

our aDMSCN makes a relative performance improvement

by up to 6.29%. Notably, in recommendation-related tasks,

a 0.1%-level improvement is significant [5, 34], especially

for practical industrial application scenarios with enormous

daily active users and page views. aDMSCN presents promis-

ing superiority when dealing with online UIP tasks. The pro-

posed models provide effective help to free aDMSCN from

the issues brought by multiple scenarios in online service.

5.6 Ablation Study

In order to analyze the benefits brought by the three models in-

troduced in our framework, we perform an ablation study that

integrates the proposed models separately with the basic model

Deep Sequential Cross Network (DSCN), i.e., DCN with LSTM for

behavioral trace and average pooling for basic feature. The results

are shown in Table 3, in which 𝑆𝐴 denotes Sequential Attention, 𝑅𝑆
denotes Ratio-Sensitive loss and𝑀𝐼𝐿 denotes attention-based MIL

pooling. Table 3 demonstrates that all three models contribute to the
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Table 3: Ablation study for various models in our frame-

work.

HR@1 HR@6 MAP MRR@6

DSCN 20.17% 38.73% 24.84% 0.2653

DSCN&SA 20.31% 38.78% 27.21% 0.2656

DSCN&RS 20.42% 38.83% 28.55% 0.2657

DSCN&MIL 20.89% 39.55% 29.08% 0.2720

Table 4: Comparison for various methods dealing with class

imbalance problem.

HR@1 HR@6 MAP MRR@6

Vanilla cross entropy 20.17% 38.73% 28.24% 0.2656

Label normalization 20.09% 38.38% 28.02% 0.2583

Vanilla weighted loss 20.12% 38.39% 28.16% 0.2624

Focal loss 20.33% 38.67% 28.38% 0.2654

Ratio-sensitive loss 20.42% 38.83% 28.55% 0.2657

performance improvement of our framework. Among these models,

the MIL module contributes to the most significant improvement.

It is consistent with the empirical observation for online service,

where the feature drift issue limits the performance of most existing

models.

5.7 Evaluation of the Ratio-sensitive Loss

Currently, approaches for class imbalance can be broadly divided

into sampling-based methods and weighted-loss-based methods.

The sampling-base methods, e.g., SMOTE [4], require measurable

feature and is infeasible for sparse features used in recommenda-

tion and UIP tasks. Therefore, in this work, we mainly focus on

weighted-loss-basedmethods comparison. Label normalization [27],

vanilla weighted loss and focal loss [20] are selected as baselines.

These methods are combined with the base model DSCN separately.

The results in Table 4 show that label normalization and vanilla

weighted loss make little contribution to the model performance.

Meanwhile, the ratio-sensitive loss outperforms other methods and

achieves a 1.2% relative gain in terms of HR@1. Even compared

with Focal loss, the ratio-sensitive loss still achieves a 0.1% absolute

HR@1 gain as it takes both prediction and ground-truth informa-

tion into consideration when deciding loss weights.

We also visualize the statistical class distribution of the model

output and compare it with the prior class distribution of dataset.

Figure 4 shows that the model with classical cross-entropy loss

suffers from imbalanced data. The majority class overwhelms in-

formation of minor classes in the training process, which may

lead to poor distribution prediction for minor classes. Therefore,

significant bias can be observed in the statistical distribution of

the predicted class. In contrast to the classical cross-entropy loss,

the ratio-sensitive loss takes into consideration the relative bal-

ance/imbalance between prediction and ground truth. Therefore

the class distribution learned by the model using ratio-sensitive

loss presents more consistency with the prior distribution. Figure 4

illustrates the significant improvement of class distribution predic-

tion for imbalanced classes with our proposed ratio-sensitive loss

Figure 4: The comparison between the prior distribution

(ground truth) and the class distributions predicted by the

model with the ratio-sensitive loss (upper sub-figure) and

classical cross-entropy loss (lower sub-figure), respectively.

Figure 5: Online A/B testing comparison between baseline

model DSCN and aDMSCN. Instead of the specific CTR

scores, we use 𝑛 and 𝑛 + 5 as indicators due to confidentiality

reasons.

function and demonstrates the potential of our loss function for

multiple imbalanced classes.

5.8 Online Evaluation

We deployed our model online in an E-payments service bot and

conducted a 14 days A/B testing. During the testing, our aDMSCN

framework is comparedwith the basic DSCNmodel using daily CTR

as the criteria. While the specific CTR scores can not be disclosed

due to confidentiality reasons, we use an indicator n to demonstrate

the superiority of the proposed methods. The results are shown in

Figure 5. Despite some slight fluctuation, aDMSCN outperformed

DSCN during the whole testing phase. On average, the proposed

framework brings a relative improvement of 5.36% in terms of CTR

and 4.85% in terms of user satisfaction rate, which is considered as

a significant improvement for the platform. Note that there were

around 30 features from two business scenarios becoming invalid

during this two-week testing as a result of feature drift. It indicates

that the proposed framework can alleviate the impact of feature drift
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and therefore more suitable for practical scenarios where feature

drift constantly occurs.

6 CONCLUSION

In this paper, we propose a UIP framework to handle multiple

business scenarios evolution in practical online service platform.

We treat the user sample as a bag with all valid features as instances,

formulating the feature drift issue with theMILmodel. An attention-

based method is proposed to extract user representation from the

feature embeddings and highlight the key features simultaneously.

A novel ratio-sensitive loss is proposed to learn adaptive weighted

loss, in terms of the relative ratio of the prior probability between

the ground truth and the predicted class. Besides, we combine the

attention mechanism with the LSTM model to capture critical user

behaviors for better behavioral trace representations. Experiments

on real-world datasets demonstrate that our framework achieves

better performance for UIP task compared with alternative state-

of-the-art methods.
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