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- 主页：https://xumengwei.github.io/
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Background

• The increasing attention on AI systems
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Background

• The increasing attention on (mobile and edge) AI systems
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M. Xu, X. Liu, et al. A First Look at Deep Learning Apps on 
Smartphones. WWW 2019.

• The number of DL apps on Google Play has

increased by 27% in the 3rd season of 2018。
• Those DL apps contribute to more than 10%

user downloads and reviews

Mobile/edge DL frameworks
are more diverse than cloud!



Research Overview

• Supporting DL on smartphones

• CNN Cache to reduce inference time/energy (MobiCom 2018)

• On-device training for input personalization (UbiComp 2018)

• The first empirical study on smartphone DL apps (WWW 2019)

• Adaptive Local Offloading for On-Wearable DL (TMC 2019)
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Video Analytics is a Killer App

• Busy cross roads

• Retailing store

• Sports stadium

• Parking lots

• …
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Video Analytics is a Killer App

• Busy cross roads

• Retailing store

• Sports stadium

• Parking lots

• …

Urban, residential areas

✓ Wired electricity
✓ Good internet
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Video Analytics is a Killer App

• Busy cross roads

• Retailing store

• Sports stadium

• Parking lots

• …

Urban, residential areas Rural, off-grid areas

• Construction sites

• Cattle farms

• Highways

• Wildlifes

• …

?
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Autonomous Camera

• Energy-independent and Compute-independent
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Autonomous Camera

• Energy-independent and Compute-independent

Commodity SoCs, RPI-
like, chargeable battery

Small-sized
energy harvester

LPWAN like LoRaWAN,
At most a few Kbps

Concise, numerical
video summaries

e.g., “10Wh today”
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Elf for Autonomous Cameras

• Target video query: object counting

Object 
Counts
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Elf for Autonomous Cameras

• Target video query: object counting

Query: (car, 30 mins)

Install

18



Elf for Autonomous Cameras

• Target video query: object counting

Install

Sample & capture
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Elf for Autonomous Cameras

• Target video query: object counting

Install

7:00AM-7:30AM [500 + 100] Cars

7:30AM-8:00AM [700 + 140] Cars

8:00AM-8:30AM [800 + 180] Cars

8:30AM-9:00AM [400 + 100] Cars

9:30AM-10:00AM [200 + 80] CarsSample & capture
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Query: (car, 30 mins)



Elf for Autonomous Cameras

• Target video query: object counting with confidence interval (CI)

Install

7:00AM-7:30AM [500 + 100] Cars

7:30AM-8:00AM [700 + 140] Cars

8:00AM-8:30AM [800 + 180] Cars

8:30AM-9:00AM [400 + 100] Cars

9:30AM-10:00AM [200 + 80] CarsSample & capture

200-80 +80
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Query: (car, 30 mins)



Elf for Autonomous Cameras

• Target video query: object counting with confidence interval (CI)

• The central problem: planning constrained energy for counting

oEnergy model: a budget that cannot be exceeded in a horizon (e.g., 24 hrs)

oTrade-offs: frame sampling and NN selection

oTarget: smallest mean CI widths across all (30-min) windows in a horizon
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Elf Overview

Camera Operating System

Reinforcement Learning Planner

Sampled frames

Aggregator
with error
Integration

Selected Neural Net

Object counts
with CIs
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Check our paper for details

Focus of the talk



Elf tech #1: per-window energy/CI fronts

• What’s the best count action for a window?

• A count action: determining (1) an NN and (2) # of frames to process
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Elf tech #1: per-window energy/CI fronts

• What’s the best count action for a window? No silver bullet.

• A count action: determining (1) an NN and (2) # of frames to process

When energy is low: cheaper NNs win

• Bottlenecked by sampling error (frame quantity)
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Elf tech #1: per-window energy/CI fronts

• What’s the best count action for a window? No silver bullet.

• A count action: determining (1) an NN and (2) # of frames to process

Energy/CI front: the combination of all
“optimal” count actions with varied energy
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Elf tech #1: per-window energy/CI fronts

• What’s the best count action for a window? No silver bullet.

• A count action: determining (1) an NN and (2) # of frames to process

Energy/CI front: the combination of all
“optimal” count actions with varied energy
• How to construct? Error integration
• Depends on the video characteristics
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• What’s the best count action for a window? No silver bullet.
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Different windows have
different energy/CI fronts
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Elf tech #2: across-window joint planning

• An Oracle Planner: best performance but unrealistic

• knows all energy/CI fronts
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Elf tech #2: across-window joint planning

• An Oracle Planner: best performance but unrealistic

• knows all energy/CI fronts
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A greedy approach: giving energy
to the window with the most
benefit (i.e., CI width reduction).

[500±80] [450±70] [600±95] [50±55]

An oracle
planner Energy: 100%

Allocate 10%

[580±75]



• An Oracle Planner: best performance but unrealistic

• knows all energy/CI fronts

[580±75]

Elf tech #2: across-window joint planning
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[500±80] [450±70] [50±55]

An orcle planner Energy: 90%

Allocate 10%

[510±60]

A greedy approach: giving energy
to the window with the most
benefit (CI width reduction)

An oracle
planner



• An Oracle Planner: best performance but unrealistic

• knows all energy/CI fronts

[580±75]

Elf tech #2: across-window joint planning
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[500±60] [450±70] [50±55]

An oracle
planner

Energy: 80%

Allocate 10%

[400±55]

A greedy approach: giving energy
to the window with the most
benefit (CI width reduction)

An oracle
planner



• An Oracle Planner: best performance but unrealistic

• knows all energy/CI fronts

[580±75]

Elf tech #2: across-window joint planning

36

[500±60] [400±55] [50±55]

An oracle
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Energy: 80%
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to the window with the most
benefit (CI width reduction)
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Elf tech #2: across-window joint planning

• An Oracle Planner: best performance but unrealistic

• knows all energy/CI fronts

• planned offline

• A learning-based planner: imitating the oracle planner

• basis: reinforcement learning

• rationale: daily and temporal patterns
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Elf tech #2: across-window joint planning

• An Oracle Planner: best performance but unrealistic

• knows all energy/CI fronts

• planned offline

• A learning-based planner: imitating the oracle planner

• basis: reinforcement learning

• rationale: daily and temporal patterns

• offline training -> online prediction

• Two agents: NN selection and # of frames

• Observations: knowledge of past windows

• Penalty: deviation from oracle’s decision
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Elf tech #2: across-window joint planning

• An Oracle Planner: best performance but unrealistic

• knows all energy/CI fronts

• planned offline

• A learning-based planner: imitating the oracle planner

• basis: reinforcement learning

• rationale: daily and temporal patterns

• offline training -> online prediction

• Enforce energy budget: make reservation for future windows

• 30 frames to be statistically meaningful
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Elf Implementation

• Capture & processing decoupled for higher energy efficiency

• Processing batched at the end of each window

40



Elf Evaluation

• Over 1,000-hr videos

• Public, 2-week long each stream

• Baselines

1. GoldenNN: most accurate NN

2. UniNN: one fixed best NN

3. Oracle: offline planned

• Small solar panel

• 10Wh~30Wh per day

Auburn, AL

Hampton, NY Jackson, WY

Taipei Taipei
41
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• Average: 11% error, valid and 17%-width CI

• 95% confidence level

Ground
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• Average: 11% error, valid and 17%-width CI

• Significant improvements over baselines in CI widths

• 66.6%, 59.8%, and 56.2% smaller over GoldenNN (up to 3.4x)

• 41.1%, 16.6%, and 9.7% smaller over UniNN

10Wh

per day

20Wh

per day

30Wh

per day
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• Average: 11% error, valid and 17%-width CI

• Significant improvements over baselines in CI widths

• Very close to Oracle

• < 5% wider CI

• Well imitating the oracle planner
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Oracle planner

Elf’s learning-

based planner

Elf Evaluation



• Average: 11% error, valid and 17%-width CI

• Significant improvements over baselines in CI widths

• Very close to Oracle

• What if we have AI accelerators?

• CIs are reduced noticeably (by 22.1%–33.1%) 

• Still cannot process every frame (short of energy)
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Summary

• Autonomous camera: expanding the geo-frontier of video analytics

• Energy-independent and compute-independent

• Elf: the first runtime for autonomous camera

• Target query: object counting

• Key idea: count planning per- and across-windows

• Prototyped on heterogeneous hardware

• Evaluated on over 1,000-hr videos

• 11% error, 17% CI width
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