AI 2000

人工智能全球2000位最具影响力学者

AI 2000 Most Influential Scholar Award

主 办 单 位:清华 - 中国工程院知识智能联合研究中心

清华大学人工智能研究院

战略合作单位: 北京市科学技术委员会人才交流中心

数 据 提 供: AMiner.cn 技 术 支 持: 智谱.AI

1 概述

1.1 AI 2000 简介

AI 2000 人工智能全球最具影响力学者榜单(以下称为 AI 2000)旨在未来 10 年通过 AMiner 学术数据在全球范围内遴选 2000 位人工智能学科最有影响力、最具活力的顶级学者。AMiner 由清华大学研发,检索了 19 世纪以来全球 1 亿 3 千余万学者发表的 2 亿 7 千万余篇学术论文数据,已吸引全球 220 个国家/地区 1000 多万独立 IP 访问,数据下载量 230 万次,年度访问量超过 1100 万。

AI 2000 涵盖人工智能学科 20 个子领域,具体遴选方法为每个子领域每年选出 10 名获奖者,未来 10 年共产生 2000 名;每年遴选的时候,参考过去十年该领域最有影响力的会议和期刊发表论文的引用情况,排名前 10 的学者当选该领域当年【AI 2000 最具影响力学者奖】,排名前 100 的其他学者获【AI 2000 最具影响力学者提名奖】;每个领域的期刊和会议由技术委员会专家确定。20 个子领域分别为经典 AI(AAAI/IJCAI)、机器学习、计算机视觉、自然语言处理、机器人、知识工程、语音识别、数据挖掘、信息检索与推荐、数据库、人机交互、计算机图形、多媒体、可视化、安全与隐私、计算机网络、计算机系统、计算理论、芯片技术和物联网。

清华大学 AMiner 团队秉持"植根学术土壤,促进学科发展"的初衷,以"客观公正"为原则,以数据为基础构建的全球学术知识图谱、采用人工智能技术自动生成榜单。AMiner 历次榜单发布都受到世界著名大学和研究机构的官方认可,比如加州伯克利大学、康奈尔大学、杜克大学和 新加坡国立大学,其影响力、公信力和专业性,可见一斑。

1.2 评选规则

1.2.1 具体规则

AI 2000 涵盖人工智能学科 20 个子领域,具体遴选方法为每个子领域每年

选出 10 名获奖者,未来 10 年共产生 2000 名;每年遴选的时候,参考过去 10 年该领域最有影响力的会议和期刊发表论文的引用情况,排名前 10 的学者当选该领域当年【AI 2000 最具影响力学者奖】,排名前 100 的其他学者获【AI 2000 最具影响力学者提名奖】。

榜单通过 AMiner 系统中所收录的学术数据用计算机算法自动化生成榜单排名,确保了榜单的客观、公平、公正、公开。榜单采用的引用数据来源于 Google Scholar, 更新日期为 2019 年 12 月 31 日。

1.2.2 领域划分

人工智能既是计算机科学的一个分支,又是一个融合了多种学科的交叉学科,加上其最近几年的高速发展,内涵和外延也在不断的变化,新兴的子领域不断涌现,导致工业界和学术界并没有一个对人工智能的明确定义。在进行榜单生成时,综合参考了计算机领域较为公认的具有权威性的机构(包括: ACM—Association for Computing Machinery 国际计算机学会; CCF—China Computer Federation 中国计算机学会; IEEE—Institute of Electrical and Electronics Engineers 电气和电子工程师协会)中关于学科的分类。同时,又融合了国内外专家学者的建议,选择了经典 AI(AAAI/IJCAI)、机器学习、计算机视觉、自然语言处理、机器人、知识工程、语音识别、数据挖掘、信息检索与推荐、数据库、人机交互、计算机图形、多媒体、可视化、安全与隐私、计算机网络、操作系统、计算理论、芯片技术和物联网 20 个子领域。

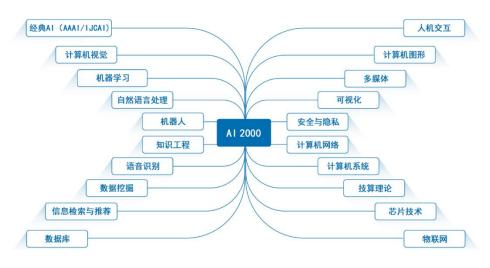


图 1-1 AI 2000 各子领域导图

1.2.3 领域会议和期刊

每个子领域所参考的顶级会议和期刊是根据《CCF 推荐国际学术期刊和会 议目录》和 ACM 计算分类系统相关子领域的 A 类期刊和会议作为数据的来源。 然后征求相关专家和团体意见,补充新涌现的学科顶级期刊和会议。以下列表给 出了20个子领域所采用的顶级会议和期刊。

表 1-1 子领域相应会议/期刊

领域	期刊/会议
经典 AI	AAAI Conference on Artificial Intelligence (AAAI)
(AAAI/IJCAI)	International Joint Conference on Artificial Intelligence (IJCAI)
机器学习	Annual Conference on Neural Information Processing Systems (NeurIPS)
	International Conference on Machine Learning (ICML)
	International Conference on Learning Representations (ICLR)
计算机视觉	IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
	IEEE International Conference on Computer Vision (ICCV)
	European Conference on Computer Vision (ECCV)
自然语言处理	Annual Meeting of the Association for Computational Linguistics (ACL)
	Conference on Empirical Methods in Natural Language Processing (EMNLP)
	North American Chapter of the Association for Computational Linguistics (NAACL)
机器人	IEEE International Conference on Robotics and Automation (ICRA)
	IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
知识工程	International Semantic Web Conference (ISWC)
	International Conference on Principles of Knowledge Representation and Reasoning
	(KR)
语音识别	IEEE International Conference on Acoustics, Speech and Signal Processing
	(ICASSP)
数据挖掘	ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
	(KDD)
	ACM International Conference on Web Search and Data Mining (WSDM)
信息检索与推荐	International ACM SIGIR Conference on Research and Development in Information
	Retrieval (SIGIR)
	ACM Recommender Systems (RecSys)
	International World Wide Web Conference (WWW)
数据库	ACM SIGMOD International Conference on Management of Data (SIGMOD)
	International Conference on Very Large Data Bases (VLDB)
人机交互	ACM CHI Conference on Human Factors in Computing Systems (CHI)
	ACM Conference on Computer-Supported Cooperative Work & Social Computing
	(CSCW)
计算机图形	ACM SIGGRAPH Conference (SIGGRAPH)
多媒体	ACM International Conference on Multimedia (MM)

可视化	IEEE Transactions on Visualization & Computer Graphics (TVCG)
	IEEE Visualization Conference (IEEE VIS)
安全与隐私	ACM Conference on Computer and Communications Security (CCS)
	IEEE Symposium on Security and Privacy (S&P)
	USENIX Security Symposium (USS)
计算机网络	ACM International Conference on Mobile Computing and Networking (MobiCom)
	ACM SIGCOMM Conference (SIGCOMM)
计算机系统	ACM Symposium on Operating Systems Principles (SOSP)
	USENIX Symposium on Operating Systems Design and Implementation (OSDI)
计算理论	ACM Symposium on Theory of Computing (STOC)
	IEEE Annual Symposium on Foundations of Computer Science (FOCS)
芯片技术	IEEE International Solid-State Circuits Conference (ISSCC)
	Design Automation Conference (DAC)
	Symposium on Field Programmable Gate Arrays (FPGA)
物联网	IEEE Internet of Things Journal (IoT-J)
	IEEE Transactions on Wireless Communications (TWC)

2 数据分析

2.1 美国学者数量领跑全球

学者地图用于描述特定领域学者的分布情况,对于进行学者调查、分析各地区竞争力现况尤为重要,下图为 AI 2000 全球学者分布情况:

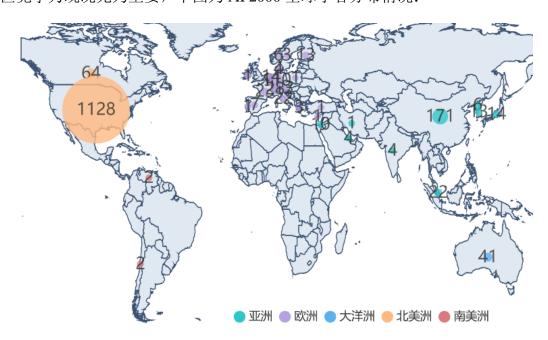


图 2-1 AI 2000 学者全球分布

地图根据学者当前就职机构地理位置进行绘制,其中不同图标颜色代表不同地区的学者,图标大小代表学者数量。从地区角度看,AI 2000 的学者主要集中在北美洲的美国地区;欧洲中西部也有一定的学者分布;亚洲的人才主要分布于我国及日韩地区;其他诸如南美洲、非洲等地区的学者非常稀少。学者人数 TOP10 国家如下所示:

图 2-2 学者人数 TOP10 国家

从国家角度看,美国学者人数的占比最高,有 1128 人,占比 61.4%,超过总人数的一半,独自领跑第一梯队。中国排在美国之后,领跑第二梯队,有 171 人,占比 9.3%。德国位列第三,是欧洲国家中拥有高影响力学者最多的地方;其余国家的学者人数量均少在 100 人以下。

2.2 美国机构数量多实力强

统计各领域高引学者数 TOP10 的研究机构如下图所示,位居首位的是谷歌公司,共 171 人入选榜单,也是唯一一家学者数过百的机构。从国家分布来看,只有清华大学为中国入选机构,其余均为美国研究机构,且美国机构学者总体人数遥遥领先。

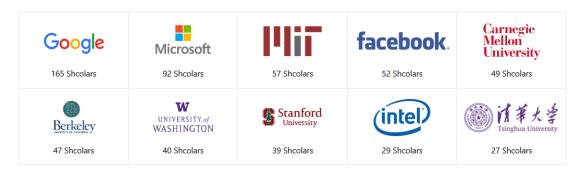


图 2-3 学者人数 TOP10 机构

此外,各领域榜首机构统计如下图所示。谷歌在经典人工智能等 10 个领域的学者数量都位居榜首;麻省理工学院在机器人以及计算理论 2 个领域的学者数量位居榜首;其他领域的榜首分布在不同的机构中,其中,中国科学院在多媒体领域的学者数量最多。

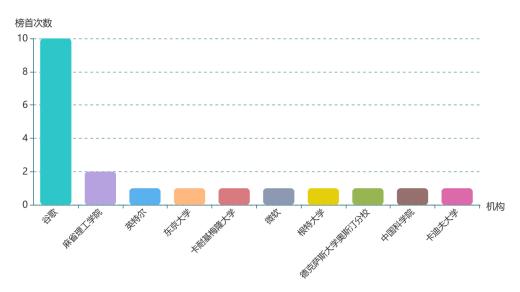


图 2-4 各领域学者数榜首机构统计

2.3 男女比例差异明显

本报告高影响力学者信息的统计中,我们针对所有上榜学者性别做出统计。 男性在各领域中均占多数,共 1658人;女性学者稀少,共 175人。其中,机器 学习领域的男性学者比例最高,达 98%;人机交互领域的女性学者比例最高,但 也只占该领域的 24%。

2.4 学者整体水平较高

h-index 是国内外公认的评价学者学术成就的方法,从下图可以看出本次 AI 2000 学者均具有较高 h-index 值,其中 h-index 大于 60 的人数最多,有 385 人,占比 20.9%。

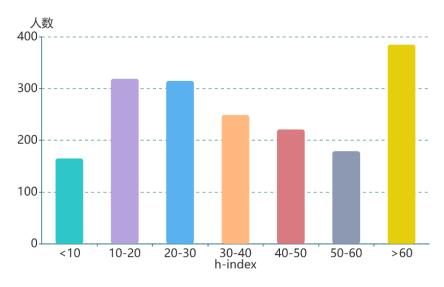


图 2-5 AI 2000 学者 h-index 分布

2.5 研究领域多点开花

AI 2000 的学者中,有多位学者的研究方向涉及了多个领域,其中有 2 位学者出现在四个领域,他们分别是 Yoshua Bengio 以及 Alex J. Smola;此外,有 19 位学者出现在 3 个领域,有 118 位学者出现在 2 个领域。

2.6 领域技术分析系统

领域技术分析系统(http://trend.aminer.cn)可以基于 AMiner 大量的论文和 学者信息进行深入挖掘,对技术趋势、国际趋势等方面进行分析。在本榜单期刊 /会议基础上, AI 2000 的趋势分析如下:

● 技术发展趋势

AI 2000 技术趋势分析如下图所示。图中每条色带表示一个话题,其宽度表示该术语在当年的热度,与当年该话题的论文数量呈正相关,每一年份中按照其热度由高到低进行进行排序。通过技术趋势分析可以发现当前热点研究话题TOP10 是: Neural Network(神经网络)、Convolutional Neural Network(卷积神经网络)、Machine Learning(机器学习)、Computer Vision(计算机视觉)、Mobile Device(移动设备)、Social Network(社交网络)、Speech Recognition(语音识别)、Information Retrieval(信息检索)、Support Vector Machine(支持向量机)、Data Mining(数据挖掘)。技术趋势分析描述了技术的出现、变迁过程,可以帮助研

究人员理解领域的研究历史和现状,快速识别研究的前沿热点问题,例如下图反 映出的神经网络、卷积神经网络等领域在近期的快速发展

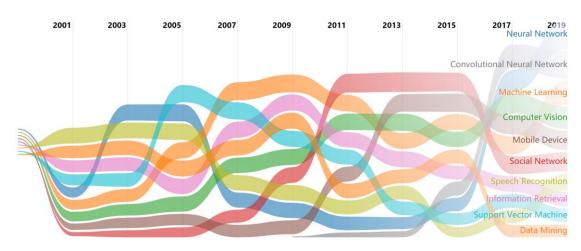


图 2-6 AI 2000 技术发展趋势

● 国家发展趋势

AI 2000 国家趋势分析如下图所示。图中每条色带表示一个国家,其宽度表示该国家在当年的研究热度,与当年该国论文数量呈正相关,每一年份中按照其热度由高到低进行排序。通过国家趋势分析可以发现热度 TOP10 的国家分别是:United States (美国)、China (中国)、United Kingdom (英国)、Germany (德国)、Canada (加拿大)、Japan (日本)、Australia (澳大利亚)、South Korea (韩国)、Italy (意大利)、France (法国)。当前研究热度最高的国家是美国,从全局热度来看,美国早期就有着领先优势并一直保持着最高的热度,同时中国的研究热度紧随美国之后。

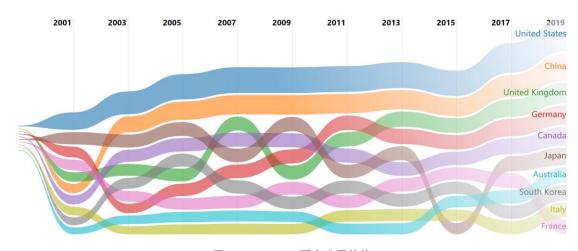


图 2-7 AI 2000 国家发展趋势

● 国家合作

国家间论文合作情况可以根据论文中的单位信息,将作者映射到各个国家中,进而统计各国之间的论文合作情况,合作论文数量 T OP10 的关系如下图所示。在合作论文数量上,中美合作的论文数遥遥领先;在合作对象上,绝大多数的合作关系都包含美国,体现出美国的突出地位。

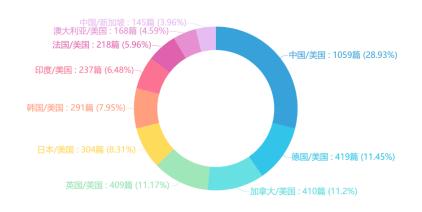


图 2-8 国家间论文合作情况

3 结语

通过以上分析可以发现,在学者数量方面,美国在人工智能整体层面上占有绝对优势,拥有超过一半的高水平学者,为美国人工智能的发展奠定了坚实的人才基础;这些学者又广泛分布在高校、企业等研究机构中,人才聚集必然会带动各机构的快速发展。

相较而言,虽然中国在学者规模上位列第二,但是与美国还有很大的差距,相应地,我国高水平学者集中的研究机构也很匮乏,我国人工智能领域的人才队伍亟待加强。

在学者特点方面,AI 2000 涵盖的学者整体研究水平高,跨领域学者数量多, 有利于各领域的协同发展,但是也有男女比例不均衡等问题。

在趋势发展方面,我们可以通过分析技术趋势了解先进技术的历史和现状, 例如洞察神经网络的发展进程;通过分析国家趋势了解各个国家的发展情况,通 过分析国家合作认识国际合作潮流,例如美国是现在发展热度最高的国家,由此 也带动了其他国家与美国的合作。

相信不久的将来会有更多的人工智能关键技术实现突破,我国人工智能的发展也将更加耀眼,培养更多的人才投入到人工智能领域的发展建设中去。

扫码查看 AI 2000

关注学术头条