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Recent ML Systems Achieve Superhuman Performance

AlphaGo beats Go  

human champ

Deep Net outperforms humans  

in image classification

Deep Net beats human at  

recognizing traffic signs

DeepStack beats  

professional poker players

Computer out-plays  

humans in "doom"

Autonomous search-and-rescue  

drones outperform humans
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IBM's Watson destroys  

humans in jeopardy



Machine Learning as a Black Magic or Black Box

Most machine learning processes are NP-processes 



Explainable AI – What Are We Trying To Do?
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• Why did you do that?

• Why not something else?

• When do you succeed?

• When do you fail?

• When can I trust you?

• How do I correct an error?
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It has fur,

whiskers, and

claws.

• I understand why

• I know when you’ll succeed

• I know when you’ll fail

• I know when to trust you

• I know why you erredUser with

a Task

Explainable Artificial Intelligence - Darpa



DARPA - Explainable Artificial Intelligence (XAI)
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• I understand why

• I understand why not

• I know when you succeed

• I know when you fail

• I know when to trust you

• I know why you erred
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develop a range of new or 

modified machine learning 

techniques to produce 

more explainable models

integrate state-of-the-art HCI 

with new principles, strategies, 

and techniques to generate 

effective explanations

Explainable Models Explanation Interface

summarize, extend, and apply 

current psychological theories 

of explanation to develop a 

computational theory

Psychology of Explanation



Machine Learning Pipeline

Solution = Data + ML Expertise + Computation

Tasks
- Preprocess and clean the data

- Select and construct appropriate features

- Select an appropriate model family

- Optimize model hyperparameters

- Postprocess machine learning models

- Critically analyze the results obtained



Data is the King of Machine Learning!

LabelInspect, IEEE VIS 2018 (TVCG) AEVis, IEEE VIS 2018 (TVCG) 



IEEE VIS 2018



Adversarial Examples

• Intentionally designed to mislead a deep neural 

network (DNN) into making incorrect prediction

Deep neural networks

DNN
Giant panda

Guenon monkey

Robustness?



Technical Challenges

• Extract the datapath for adversarial examples
Normal example

Adversarial example

• Datapath visualization

A datapath 

Hundreds of layers

Millions of neurons

Millions of connections



Datapath Extraction - Motivation

• Current method
• Most activated neurons

• Problem
• Misleading results when existing a 

highly recognizable secondary object

• Reason
• Neurons have complex interactions

• Gap between activation and prediction

Most activated

Neuron 1 Neuron 2

Learned feature

Activations

Neuron



Datapath Extraction - Formulation

• The critical neurons for a prediction: the neurons that highly 

contributed to the final prediction

• Subset selection

– Keep the original prediction by selecting a minimized subset of neurons

• Extend to a set of images X

N: all neurons

Ns: neuron subset

p(): prediction
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Datapath Extraction - Solution

• Directly solving: time-consuming

– NP-complete

– Large search space due to the large number of neurons in a CNN

Divide-and-conquer-based 

search space reduction
Quadratic approximation

An accurate approximation in smaller search space



Datapath Extraction – Search Space Reduction

• Original problem: 57.78 million dims

Processing layer by layer

2k ~ 1.44 million dimss

Aggregate neurons into feature maps

Split into layers

Split into feature maps

Network: ResNet-101

Neurons in a layer Neurons in a feature map

A neuron
64 ~ 2k dimss



Datapath Extraction – Quadratic Approximation

Reformulate

whether the j-th feature 

map in layer i is critical
Discrete to continuous

Needs to calculate 

by BP in each iteration 

Taylor decomposition
: activation vector of 

the j-th feature map

[ , ] )( ) (j i i

j

k

k

p
Q j k

p


 
  
 

a a
a a

1. Bridge the gap 

between activation and 

prediction

2. Each element in Q 

approximately models the 

interaction between 

feature map j and feature 

map k Quadratic optimization 

Still NP



Datapath Visualization

• Explain why an adversarial example is misclassified

• Improve the robustness of the learning model



Why?
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Feature map cluster, color: 
A(normal) – A(adversarial)

Euler-diagram-based 
layout to present 

feature maps in a layer

Shared feature maps

Unique feature maps







Large model, but sparsely activated

Single model to solve many tasks

Visualization and Machine Learning pipeline



Outline

Refinement

Diagnosis

Want huge model capacity 

for large datasets

Understanding



Understanding

Refinement

Diagnosis

Outline



Analyzing the Training Processes of 

Deep Generative Models

Mengchen Liu, Jiaxin Shi, Kelei Cao, Jun Zhu, Shixia Liu

Tsinghua University

IEEE VAST 2017 (IEEE TVCG)



Deep Generative Models (DGMs)

z 

x

𝑝 𝑧 𝑥, 𝑘 ∝ 𝑝 𝑥 𝑧, 𝑘 𝑝(𝑧|𝑘)

Deep neural network

𝑧 = 𝑓(𝑥)

z 

x

Smiling face

Knowledge

Unsupervised /

semi-supervisedRandom variables

VAE

GAN

DGM



Deep Generative Models (DGMs)

Deep neural network

Pose
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Training a DGM is Hard

• DGM often involves both deterministic functions 

and random variables

– CNN: deterministic functions (e.g., convolution)

• DGM involves a top-down generative process 

and a bottom-up Bayesian inference process 

– CNN: a bottom-up process: input at the bottom layer 

-> high-level features -> outputs

z

x

Random

variables

z

x

DGM CNN



Challenges

• Handle a large amount of time series data

– Millions of activations/gradients/weights in a DGM

• Identify the root cause of a failed training process

– Errors may arise from multiple possible sources: abnormal training samples, 

inappropriate network structures, and lack of numerical stability in the library

– Even when we can determine that the error is caused by the network 

structure, it is often difficult to locate the specific neurons



Our Solution

• A blue noise polyline sampling algorithm

– Selects polyline samples the with blue-noise properties

– Preserves outliers and reduce visual clutter

• A credit assignment algorithm

– Discloses how other neurons contribute to the output of the neuron of interest



DGMTracker

• Better understand and diagnose the training process of a DGM
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Case Study: Debugging a Failed Training Process of 

a Variational Autoencoder (VAE) 

• Autoencoder

– Reconstruct their input with minimum information loss

• Variational autoencoder

– Probabilistic version of an autoencoder

– zv : a vector of random variables 

– za : a vector of real numbers

Encoder Decoder
Code: zaInput: x Reconstructed input: x’

Dataset: CIFAR10 dataset

Loss = NaN (10k-30k iterations)

An example case: fails at 24,397 



Loss changes
Fails at iteration 24,397

An abnormal snapshot 



How data flows through a DGM

Focus snapshot

Maximum activation

Average activation

Minimum activation

Time



Source: 2nd Gaussian 

sampling layerLogarithmic variance of the 

Gaussian sampling layer 



Aggregate height and weight



Some of them showed unusual behavior

Most of the activations of this layer remained stable

A sudden increase



Abnormal image Normal image



Solution

• Trial 1:

– Replacing          with         , but the training failed again

– By the same analysis, we find another “bad” image

• Trial 2:
Much smoother

Large variance  large samples  large increase in loss



DGMTracker
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Research Opportunities

• Human-in-the-loop visual analytics for practitioners

– Existing deep learning models are data-driven 

– Combine human expert knowledge and deep learning techniques through 

interactive visualization 

• Progressive visual analytics of deep learning models

– The training of many deep learning models is time-consuming 

– Progressive visual analytics techniques are needed

Jaegul Choo, Shixia Liu.Visual Analytics for Explainable Deep Learning. IEEE Computer 

Graphics and Applications, 2018. 

Liu S, Wang X, Liu M, Zhu J. Towards better analysis of machine learning models: A visual 

analytics perspective. Visual Informatics. 2017 Mar 1;1(1):48-56.



Research Opportunities (Cont’d)

• Improving the robustness of deep learning models for 

secure artificial intelligence

– Deep learning models are generally vulnerable to adversarial perturbations

– Incorporate human knowledge to improve the robustness of deep learning 

models 

• Reducing the size of the required training set

– One-shot learning or zero-shot learning

• Visual analytics for advanced deep learning architectures

– ResNet and DenseNet
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