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Modern ML Toolbox
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Images

Text/Speech

Modern deep learning toolbox Is

designed for simple sequences & grids

Y



But not everything
can be represented as
a sequence or a grid

How can we develop neural
networks that are much more
broadly applicable?

New frontiers beyond classic neural
networks that learn on images and
Sequences




Networks of Interactions

Person 14 July 1990
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\ fei= i)
‘ ‘ c H “for Kéy,value iniobj.iitems():

if isinstan(e(v‘éiﬂ‘é,dl(t) )
e[key] = encode(value)

c c \ elif isinstance(value,complex):
/ \ / N e[key] = {'type’ : ‘complex’,
4] N 'r

r' : value.real,

"i' : value.imag}
return e

H——C——H import ast P
’ tree = ast.parse("™ ")

Complex Systems Molecules Code

Jure Leskovec, Stanford University 4



Goal: Representation Learning

Map nodes to d-dimensional
embeddings such that similar nodes
iNn the network are embedded close

together

resentation

re
Learn a neural network i
>
Fu o R F -\/--!
Rd
Feature representation,
O embedding

node




Deep Learning in Graphs

Graph Regularization, Graph

convolutions e.g., dropout convolutions

)
&
O

X

Activation
function

Predictions: Node labels,
New links, Generated

Input: Network graphs and subgraphs

Jure Leskovec, Stanford University 6




Why is it Hard?

Networks are complex!

= Arbitrary size and complex topological
structure (i.e., no spatial locality like grids)

S o

Networks Images
= No fixed node ordering or reference point
= Often dynamic and have multimodal features

kovec, Stanford University



GraphSAGE:

Graph Neural Networks

Inductive Representation Learning on Large Graphs.
W. Hamilton, R. Ying, J. Leskovec. Neural Information Processing Systems (NIPS), 2017.

Representation Learning on Graphs: Methods and Applications.
W. Hamilton, R. Ying, J. Leskovec. IEEE Data Engineering Bulletin, 2017.

http://snap.stanford.edu/graphsage

Jure Leskovec, Stanford University



https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
http://snap.stanford.edu/graphsage

|dea: Convolutional Networks

Goal Is to generalize convolutions
peyond simple lattices

_everage node features (text, images)
But real-world graphs look like this:

. ,I:I or this: AN '
\ .. < |



Graph Neural Networks
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—ach node defines a computation graph

= Each edge in this graph is a
transformation/aggregation function

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.

Jure Leskovec, Stanford University 10



http://ieeexplore.ieee.org/document/4700287/

Graph Neural Networks

TARGET NODE

l

INPUT GRAPH

Neural networks

Intuition: Nodes aggregate information from
their neighbors using neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.



https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf

|[dea: Aggregate Neighbors

Intuition: Network neighborhood

defines a computation graph

Every node defines a computation
graph based on its neighborhood!
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Can be viewed as learning a generic linear combination
of graph low-pass and high-pass operators

[BronSteln et al; 201 7] Jure Leskovec, Stanford University 12



https://arxiv.org/abs/1611.08097

INIPS “17]

Our Approach: GraphSAGE
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\ v ) xeN(A) \ v J
k + 15t level Transform A’s own Transform and aggregate
embedding of node A  embedding from level k embeddings of neighbors n

k h/(lo) = attributes X, of node 4, o(-) is a sigmoid activation function

Jure Leskovec, Stanford University 13



INIPS “17]

GraphSAGE: Training

= Aggregation parameters are shared for all nodes
= Number of model parameters is independent of |V|

= (Can use different loss functions:
= (Classification/Regression: L(h,) = ||yA —f (hA)||2
= Pairwise Loss: L(hA, hB) — maX(O, 1-— diSt(hA, hB))

TYY ® oo
INPUT GRAPH Compute graph for node A Compute graph for node B

Jure Leskovec, Stanford University 14



Inductive Capability

train with a snapshot

new node arrives

O [ ® O Y \\
$2% 4% W3 2 A% 3%
\; .*;;;—b ry .’..,,,_. :S'G’ % o’“/". e [ \:3'0 ®ees e® ‘e, .'o/

generate embedding
for new node

Even for nodes we
never trained on!



[NeurlPS ‘18]

DIFFPOOL: Pooling for GNNSs

Don’t just embed individual nodes. Embed the
entire graph.
Problem: Learn how to hierarchical pool the
nodes to embed the entire graph
Our solution: DIFFPOOL

= |earns hierarchical pooling strategy

= Sets of nodes are pooled hierarchically
= Soft assianment of nodes to next-level nodes

Hierarchical Graph Representation L earning with Differentiable Pooling. R. Ying, et al. NeurlPS 2018.



https://arxiv.org/abs/1806.08804

[NeurlPS ‘18]

w4  How expressive are

Eg% Graph Neural Networks?

Our

cdl | 1eralrcl Al POOITNO dleqV

= Sets of nodes are pooled hierarchically
= Soft assianment of nodes to next-level nodes

Hierarchical Graph Representation L earning with Differentiable Pooling. R. Ying, et al. NeurlPS 2018.



https://arxiv.org/abs/1806.08804

How expressive are GNNS”?

Theoretical framework: Characterize
GNN'’s discriminative power:

= (Characterize upper bound of the
discriminative power of GNNs

= Propose a maximally powerful GNN w
= Characterize discriminative power GN/N;\ree:
of popular GNNs FER Y

- e . &

-

How Powerful are Graph Neural Networks? K. Xu, et al. ICLR 2019. - .



https://arxiv.org/abs/1810.00826

Key Insight: Rooted Subtrees

Graph: GNN distinguishes:

The most powerful GNN is able to distinguish
rooted subtrees of different structure




Discriminative Power of GNNs

-
- ¢ o & Multiset

Idea: f GNN functions are injective, = |
GNN can capture/distinguish the 7
rooted subtree structures |-
Theorem: The most discriminative A

GNN uses injective multiset function

for neighbor aggregation

If the aggregation function is injective, GNN can fully
capture/distinguish the rooted subtree structures




Three Consequences of GNNs

1) The GNN does two things:

"oLedr

near

the target node

NS

feature

OY

now to “borrow”

| aggregator:
| o A aggregator;
information from

e

nodes to enrich

= Fach node can have a different
computation graph and the network is
also able to capture/learn its structure



Three Consequences of GNNs

2) Computation graphs can be chosen:

» Aggregation does not P
need to happen across i
all neighbors

= Neighbors can be
strategically chosen/sampled

= [ eads to big gains In practice




Three Consequences of GNNs

3) We understand GNN failure cases:

= GNNs fall to distinguish isomorphic
nodes

= Structure-aware Vs. Position-aware

A A
B B A A B B
Vs.
A A A B



PGNN: Position Aware GNNs

= Key idea: Anchors

= Characterize node’s position relative to
a set of randomly selected anchor
nodes and sets of nodes

A B Distance to Anchor:
S1 | S2

(%1 1 2

A B Vg 2 1

Anchor Anchor

Position-aware Graph Neural Networks. J. You, R. Ying, J. Leskovec. ICML, 2019.

Jure Leskovec, Stanford University 24



https://cs.stanford.edu/people/jure/pubs/pgnn-icml19.pdf

PGNN: Visualizing Embeddings

Input graph

GNN embedding

Can.,.,
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P-GNN embedding

S

Jure Leskovec, Stanford University
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PGNN: Visualizing Embeddings

Input graph GNN embedding P-GNN embedding

On real datasets PGNN
obtains +61% ROC AUC

over GCN, GAT, GIN




PINSAGE for
Recommender Systems

Graph Convolutional Neural Networks for Web-Scale Recommender Systems. R. Ying, R.

He, K. Chen, P. Eksombatchai, W. L. Hamilton, J. Leskovec. KDD, 2018.

27


https://cs.stanford.edu/people/jure/pubs/pinsage-kdd18.pdf

Saved from
therecipeblog.com

o 9 people tried it

A b
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®

Visit

90%

Pinterest

= 300M users

" 44+

5 pIns, 2+

Jure Leskovec, Stanford University




Application: Pinterest

PinSage graph convolutional network:

= Goal: Generate embeddings for nodes in a large-
scale Pinterest graph containing billions of objects

= Key Idea: Borrow information from nearby nodes
= E.g., bed rall Pin might look like a garden fence, but

= Pin embeddings are essential to various tasks like
recommendation of Pins, classification, ranking
= Services like “Related Pins”, “Search”, “Shopping”, “Ads”

Jure Leskovec, Stanford University 29



Pinterest Graph @

Human curated collection of pins

Pins: Visual bookmarks someone
has saved from the intemet to a
board they’ve created.

Pin features: Image, text, inks




Pin Recommendation @

Task: Recommend related pins to users
S Task: Learn node

_ embeddings z; such
SUCCESSFUL
RECOMMENDATION tha't
\ d(Zcake1) Zeake2)
Source pin < d(Zcake1r Zsweater)

BAD RECOMMENDATION

Predict whether two nodes in a graph are related

RARRAA G kg




PINSAGE Training @

Goal: Identify target pin among 3B pins

= |ssue: Need to learn with resolution of 100 vs. 3B
= Massive size: 3 billion nodes, 20 billion edges

= |dea: Use harder and harder negative samples

Positive Easy negative Hard negative

Jure Leskovec, Stanford University 32

Source pin



PINSAGE Performance @

Related Pin recommendations

= Given a user is looking at pin Q, predict
what pin X are they going to save next

= Setup: Embed 3B pins, perform nearest
neighbor to generate recommendations

0.35
. 03
c
e 0.25
3
g 0.2
o
‘S 0.15
Q
o
- 0.1
o
S 0.05

0 - I
Plnsage Visual Annotation
Jure Leskovec, Stanford University




PINSAGE Example




Computational Drug
Discovery: Drug Side
Effect Prediction

Modeling Polypharmacy Side Effects with Graph Convolutional Networks. M. Zitnik, M. Agrawal, J.
Leskovec. Bioinformatics, 2018.

http://snap.stanford.edu/decagon/



https://cs.stanford.edu/people/jure/pubs/drugcomb-ismb18.pdf
https://cs.stanford.edu/people/jure/pubs/drugcomb-ismb18.pdf

Polypharmacy side effects

Many patients take multiple drugs to

treat complex or co-existing diseases:

= 46% of people ages 70-79 take more than 5 drugs

= Many patients take more than 20 drugs to treat heart
disease, depression, insomnia, etc.

Task: Given a pair of drugs predict
adverse side effects

29 > (5 )

30% 65%
prob. prob.

Jure Leskovec, Stanford Un 36



Approach: Builld a Graph

Iy Edgetypei
/\ Drug node

© Protein node

Drug-drug
interaction of type r,,
e.g., hausea

Protein-protein interaction

Jure Leskovet=Starrforc=th NVelrSity 37




Task: Link Prediction

Task: Given a partially observed graph,
predict labeled edges between
drug nodes

Example query: Given drugs c, d, how likely is an edge (c,1,,d)?

Simvastatin

P
Ciprofloxaci

Co-prescribed drugs ¢ and
d lead to side effect r,

Mupirocin

Doxycycline

Jure Leskovec, Stanford University 38



Decagon: Graph Neural Net

Network neighborhood of Node C’s computation
node C graph

W(k) M‘i
A _A o
P
r——AN




Decoder: Link Prediction
Predictedw

Two nodes oA, r,A) = o(z'D,,RD,,z,)
B P(A, r;, A) = 0o(z. D, RD;,2,)
»_\ p(A, 13, A) = 0(zID,,RD,,z,)
- /‘ P& rs,A) = 0(z'D,,RD,,z,)
A

. | Probability of
- | edge of type r,

p(&; rn!A) — O_(ZZDT’HRD'F”ZS)

Tensor factorized model to
capture dependences between
different types of edges

R, D, Parameter weight matrices

Jure Leskovec, Stanford University 40



Results: Side Effect Prediction

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

AUROC AP@50
m Decagon RESCAL tensor factorization
DEDICOM tensor factorization Node2vec + Logistic regression

36% average in AP@50 improvement over baselines

Jure Leskovec, Stanford University 41



De novo Predictions

Rank| Drugc Drug d Side effect r
1 Pyrimethamine Aliskiren Sarcoma
2 Tigecycline Bimatoprost ~ Autonomic neuropathy
3 Omeprazole Dacarbazine  Telangiectases
4 | Tolcapone Pyrimethamine Breast disorder
5 Minoxidil Paricalcitol Cluster headache
6 | Omeprazole Amoxicillin  Renal tubular acidosis
7 | Anagrelide Azelaic acid  Cerebral thrombosis
8 | Atorvastatin ~ Amlodipine = Muscle inflammation
9 Aliskiren Tioconazole  Breast inflammation
10 | Estradiol Nadolol Endometriosis

Jure Leskovec, Stanford University 42



De novo Predictions

Rank| Drugc Drug d Side effect r Evidence found
2 Tigecycline Bimatoprost ~ Autonomic neuropathy
3 Omeprazole Dacarbazine  Telangiectases
5 Minoxidil Paricalcitol Cluster headache
7 | Anagrelide Azelaic acid  Cerebral thrombosis

9 | Aliskiren Tioconazole  Breast inflammation  Parving ef al. 2012
10 | Estradiol Nadolol Endometriosis
Case Report

Severe Rhabdomyolysis due to Presumed Drug Interactions
between Atorvastatin with Amlodipine and Ticagrelor

Jure Leskovec, Stanford University 43



Predictions in the Clinic

Clinical validation via drug-drug
mteractlon markers Iab values and

chlorthalidone

insulin glargine

prednisone

zolpidem

Medication List

90 0 Insomnia

Simple Lis

BBBBBB

aaaaaaa

BBBBB

BBBBBB

BBBBBB

eeeeee

Timelir

19 Feb 2011

I l 0
e L
N

edback Task List

19 Sep 2013

NEWTON-WELLESLEY
HOSPITAL

MASSACHUSETTS
GENERAL HOSPITAL

@ Stanford

MEDICINE

f'wg HARVARD

MEDICAL SCHOOL

First method to predict side effects of drug pairs, even

for drug combinations not yet used in patients



Reasoning In
Knowledge Graphs

Embedding Logical Queries on Knowledge Graphs. W. Hamilton, P. Bajaj, M. Zitnik, D.

Jurafsky, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

45


https://arxiv.org/abs/1806.01445

Knowledge as a Graph

Alice Leonardo Da Vinci

is interested in

The Mona Lisa

&%

Person 14 July 1990
G La Joconde a Washington

Jure Leskovec, Stanford University 46



Knowledge Graphs (KGs)

WIKID
m
THE ECONOMIC GRAPH

ATA

X sgencies Sales director

= Knowledge Graphs are heterogenous graphs
= Multiple types of entities and relations exist

= Facts are represented as triples (h, 7, t)
= (‘Alice’, “friend_with’, ‘Bob’)
= (‘Paris’, ‘is_a’, ‘City’)

Jure Leskovec, Stanford University 47



Traditional Tasks

Knowledge Graph Competion/Link
Prediction

= Predict the missing head or tail for a
given triple (h,r,t)

= Example:

Barack Obama Bornln United States

~ =

Barack Obama Nationality American



Our work: Beyond Link Prediction

Our goal: Reason over the knowledge
graph using complex multi-hop queries

= Conjunctive queries: Subset of first-order
logic with existential quantitier (3) and
conjunction (A)

“Where did all Canadian citizens with Turing Award graduate?”

q="V,.3V : Win(TuringAward,V) A Citizen(Canada,V)
A Graduate(V,V,)
Turing

Award Win

Graduate >CV)?

Canada Citizen

Jure Leskovec, Stanford University 49



Answering Queries in KGs

“Where did Canadian citizens with Turing Award graduate?”
Query Graph

Win

Turing
Award

Graduate ’CI/)-?

Canada Citizen

Knowledge Graph Computation Graph

Pearl

dinburgh Turing

Turin — i
Award© “ Award™ projection *+ Intersection
BengioG g ¢
raduate Z —( )
, Cambridge o* Projection

. . ‘
CanadaQ Canadaowg' Intersection

McGill

Each point corresponds to a set of entities

Jure Leskovec, Stanford University 50



Why is it Hard?

Key challenge: Big graphs and queries
can involve noisy and unobserved data!

Pearl

Win Hint

non Edinburgh
Turing
Award

Some links might be
NOISy Or Missing

Bengio
Graduate

f? Cambridge

Bieber -

—0O

Trudeau

Canada

McGill

Problem: Nalve link prediction and graph
template matching are too expensive

Leskovec, Stanford University

51



Our Idea: Query Embedding

Use representation learning to map a
graph into a Euclidean space and
learn to reason in that space

Logical
query
.............................................. o Zu
““““““““““ ENC(u)
\ ““““““ .Zv
/ \ % encode nodes E
™ / \ “““““ ' Reason in the
\ / I S embedding space
ENC(v)
Knowledge graph Embedding space

Jure Leskovec, Stanford University



Semantic Embeddings

Remember Word2vec:

= [ransk

For atriple (h,r,t):h+r=t

tail
(///j;;:;unl

head

Beijin
Russia
Moscow
kkkkkkkkkkkk
PPPPPP
erma
nce "War
5 B,
Pari
>>>>>>>>
Gre
Spai Rome
15 F Portubal tisbo?ad
1
15
ity 53




Our |dea: Query2Box

ldea:
= 1) Embed nodes of the graph

= 2) For every logical operator learn a spatial
operator

So that:

= 1) Take an arbitrary logical query. Decompose
it iInto a set of logical operators (3,A,V)

= 2) Apply a sequence of spatial operators to
embed the query

= 3) Answers to the query are entities close to
the embedding of the query



Our ldea: Query2Box

ldea:
= 1) Embed nodes of the graph

Key insight:
Represent query as a box.

Operations (union, intersection)
are well defined over boxes.

= 3) Answers to the query are entities close to
the embedding of the query



Embedding Queries

Query2Box embedding:

Emlbed queries with hyper-rectangles
(boxes): q = (Cen(q), 0ff(q)).

°Cambridge
Cen(q)e
o McGill

° Edinburgh

e Stanford

Embedding Space



Embedding Queries

Computation Graph

Turing

Award Projection ’0. InterseCtiOH

0..
L/

‘a: Projection
Projecti@n _+**

Canada (===  Intersection

= (Geometric Projection Operator
= Geometric Intersection Operator

Jure Leskovec, Stanford University



Projection Operator

Geometric Projection Operator P
= P : Box X Relation —» Box

e
-
—
-




Projection Operator: Example

Pearl Turing .
" Award s, T e .
2~ Hinton  Win
Turing ™ Pearl
Award ™
' AN Hinton
Bengio .. |Bengio o
\‘ 0o
Hinton Edinburgh )
gl . Cambridge
: ~° McGill )
Bengio g ° o
Graduate _ // Edinburgh
Cambridge el Graduate S
. Hinton ,,—*"/
Bengio o =T
McGill ° -

Jure Leskovec, Stanford University 59



Intersection Operator

Geometric Intersection Operator 7
= 7:Box X ---X Box —» Box

= The new center is a weighted average

= The new offset shrinks




Intersection Operator: Example

Pearl
Hinton ~ Award s TTTTmmeeeee
Turing —=
Award _ Pearl
Bengio » o
Hinton
X Bengio o
Canada Bieber “
"O Bieber
o o
Citizen {[udeau Trudeau

Jure Leskovec, Stanford University 61



Benefits of Query2Box

Scalability and efficiency:

= Any query can be reduced to a couple of
matrix operations and a single k-nearest
neighlbor search

Generality:

= \We can answer any query (even those we
have never seen before)

Robustness to noise:

= Graph can contain missing and Noisy
relationships



Query2Box : Model Training

Training examples: Queries on the graph

= Positives: Path with a known answer

= Negatives: Random nodes of the correct
answer type

= Goal: Find embeddings and operators so
that that queries give correct answers



Experimental Setup

We essentially learn to “memorize” the
answers to queries

= WWe embed entities so that our geometric
operators give correct answers

Questions:

Does our method generalize to new
unseen queries’?

Does our method generalize to new query
structures?

Can method handle mlssmg relations?

Jure Leskovec, Stanford Uni 64



Experimental Setup

*= Training:
= Remove 10% of KG edges
= Sample training queries and (nonjanswers
= Train the model

= Test set:

= Test queries/answers from the full graph

= Ensure that the test queries are not directly
answerable in the training graph
= Every test query has at least one deleted edge

= Note: Query template matching would have
accuracy of random guessing

65



KG and Query Statistics

= Freebase: FB15K, FB15K-237

Dataset Entities | Relations | Training Edges | Validation Edges | Test Edges | Total Edges
FBI5K 14,951 1,345 483,142 50.000 59,071 592213
FB15k-237 | 14,505 237 272,115 17.526 20,438 310,079
» Queries:
Training Conjunctive Queries = Unseen Conjunctive Queries Union Queries
p A ~N e A N
1p 2p 3p 2i 3i ip pi 2u up
Queries Training Validation Test
Dataset Ip others Ip others Ip others
FB15k 273,710 | 273,710 | 59,097 | 8,000 | 67,016 | 8,000
FB15k-237 | 149,689 | 149,689 | 20,101 | 5,000 | 22,812 | 5,000

Jure Leskovec, Stanford University

66




Experimental Results

Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.268 | 0.467 0.24 0.186 | 0.324 0.453 | 0.108 0.205 0.239 0.193
GQE 0.228 | 0.402 0.213 0.155 | 0.292 0.406 | 0.083 0.170 0.169 0.163
GQE-DOUBLE | 0.230 | 0.405 0.213 0.153 | 0.298 0.411 | 0.085 0.182 0.167 0.160
Table 3: H@3 on test set for QUERY2BOX vs. GQE on FB15k-237.
Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.484 | 0.786 0.413 0.303 | 0.593 0.712 | 0.211 0.397 0.608 0.330
GQE 0.386 | 0.636 0.345 0.248 | 0.515 0.624 | 0.151 031 0.376 0.273
GQE-DOUBLE | 0.384 | 0.63 0.346 0.250 | 0.515 0.611 | 0.153 0.32 0.362 0.271

= On new conjunctive query structures:

Table 4: H@3 on test set for QUERY2BOX vs. GQE on FB15k.

Observations:
= On “training” queries: +20% H@3

= On disjunctive queries: +36%

Jure Leskovec, Stanford University

+15%

67



Emlbedding Space

50 -

) Embedding of

14951 entities
O -
_50 -

—-50 0 50
“List male instrumentalists who play string instruments”
String

Instrument = projection  ~ Projection ‘e, Intersection
L 2

.ﬁ
Projection *

o** .

Jure Leskovec, Stanford University



Emlbedding Space

50 -
® Anchor

—50 -

-50 0 50
“List male instrumentalists who play string instruments”
String O

Instrument

Jure Leskovec, Stanford University 69



Emlbedding Space

# of string instruments: 10
50 -
® TP
FN
®FP
0 - - TN
TPR: 100%
—50 - FPR: 0%
. =50 0 50 - )
List male instrumentalists who play string instruments
String

Instrument ™= projection

Jure Leskovec, Stanford University 70



Emlbedding Space

# of instrumentalists: 472
50 -
® TP
FN
X ® FP
0 - TN
; TPR: 98.4%
—50 - FPR: 0.01%
. =50 0 50 - )
List male instrumentalists who play string instruments

String
Instrument ™= projection Projection

Jure Leskovec, Stanford University 71



Emlbedding Space

50 -
® Anchor

—50 - :

—-50 0 50
“List male instrumentalists who play string instruments”

Male O

Jure Leskovec, Stanford University 72



Emlbedding Space

# of men: 3555

50 . ®TP

3 FN

. ®FP

0 - TN
TPR: 97.9%
—50 - FPR: 0.01%

“List male instrumentalists who play string instruments”

Projection

Male HO

Jure Leskovec, Stanford University 73



Emlbedding Space

# of answers: 396
50 - ® TP
FN
X ®FP
0 - . TN
; TPR: 99.4%
—50 - FPR: 0.01%
| 1Y 0 50 -
“List male instrumentalists who play string instruments”

String

Instrument ™ projection Projection %+, Intersection
L 4

.ﬁ
Projection *

o’ i
Male (e * " Intersection

Jure Leskovec, Stanford University 74



Query2Box: Summary

= Query2Box:
= Embed the query as a box
= | ogical operations become spatial operations
= Composability of queries:
= (Generalize well to unseen, extrapolated
queries
= Explicitly training for composabillity is
important

= |nstance vs. multi-hop generalization



How can this technology
be used for other problems?

We can now apply neural networks
much more broadly

New frontiers beyond classic neural networks
that learn on images and sequences

Many other applications:
* Nodes: Predict tissue-specific protein functions
= Subgraphs: Predict which drug treats what disease
= Graph generation: Generate molecules/drugs

Jure Leskovec, Stanford University 76



Summary

Graph Convolutional Neural Networks
= (Generalize beyond simple convolutions

Fuses node features & graph info

= State-of-the-art accuracy for node
classification and link prediction

Model size independent of graph size;

can scale to billions of nodes
= [argest embedding to date (3B nodes, 20B edges)

Leads to significant performance gains

Jure Leskovec, Stanford University



Conclusion

Results from the past 2-3 years have shown:

= Representation learning paradigm can be
extended to graphs

= No feature engineering necessary

= (Can effectively combine node attribute data
with the network information

= State-of-the-art results in a number of
domains/tasks

= Use end-to-end training instead of
multi-stage approaches for better performance

Jure Leskovec, Stanford University
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Postdoc positions in 3 topics:

(1) Core ML on Graphs

(2) Biomedical, Common Sense Reasoning
(3) Societal Applications of ML
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