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Modern ML Toolbox
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Images

Text/Speech

Modern deep learning toolbox is 
designed for simple sequences & grids
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But not everything 
can be represented as 
a sequence or a grid

How can we develop neural 
networks that are much more 

broadly applicable?
New frontiers beyond classic neural 
networks that learn on images and 

sequences



Networks of Interactions

Jure Leskovec, Stanford University 4

Knowledge graphsSocial networks

CodeComplex Systems

Biological networks

Molecules



Goal: Representation Learning

Map nodes to d-dimensional 
embeddings such that similar nodes 
in the network are embedded close 

together

Jure Leskovec, Stanford University 5

representationnode

!: # → ℝ&
ℝ&

Feature representation, 
embedding

u
Learn a neural network



Deep Learning in Graphs

…
z

Input: Network

Predictions: Node labels, 
New links, Generated 
graphs and subgraphs

6Jure Leskovec, Stanford University



Why is it Hard?
Networks are complex!

§ Arbitrary size and complex topological 
structure (i.e., no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features
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vs.

Networks Images

Text

Jure Leskovec, Stanford University
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GraphSAGE: 
Graph Neural Networks

Jure Leskovec, Stanford University

Inductive Representation Learning on Large Graphs. 
W. Hamilton, R. Ying, J. Leskovec. Neural Information Processing Systems (NIPS), 2017.
Representation Learning on Graphs: Methods and Applications. 
W. Hamilton, R. Ying, J. Leskovec. IEEE Data Engineering Bulletin, 2017. 

http://snap.stanford.edu/graphsage

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
http://snap.stanford.edu/graphsage


End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data
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… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

Idea: Convolutional Networks

Goal is to generalize convolutions 
beyond simple lattices

Leverage node features (text, images)

But real-world graphs look like this:

Jure Leskovec, Stanford University 9

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:
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Each node defines a computation graph

§ Each edge in this graph is a 
transformation/aggregation function 

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 

http://ieeexplore.ieee.org/document/4700287/
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Intuition: Nodes aggregate information from 
their neighbors using neural networks

Neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf


Idea: Aggregate Neighbors

Intuition: Network neighborhood 
defines a computation graph

Jure Leskovec, Stanford University 12

Every node defines a computation 
graph based on its neighborhood!

Can be viewed as learning a generic linear combination 
of graph low-pass and high-pass operators
[Bronstein et al., 2017]

https://arxiv.org/abs/1611.08097


Our Approach: GraphSAGE

13Jure Leskovec, Stanford University

[NIPS ‘17]
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GraphSAGE: Training

§ Aggregation parameters are shared for all nodes
§ Number of model parameters is independent of |V|
§ Can use different loss functions:

§ Classification/Regression: ℒ ℎ% = '% − ) ℎ%
*

§ Pairwise Loss: ℒ ℎ%, ℎ, = max(0, 1 − 3456 ℎ%, ℎ, )

Jure Leskovec, Stanford University 14
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[NIPS ‘17]



Inductive Capability

15

train with a snapshot new node arrives
generate embedding 

for new node

Jure Leskovec, Stanford University

zu

Even for nodes we 
never trained on!



DIFFPOOL: Pooling for GNNs

16Jure Leskovec, Stanford University

Don’t just embed individual nodes. Embed the 
entire graph.
Problem: Learn how to hierarchical pool the 
nodes to embed the entire graph
Our solution: DIFFPOOL

§ Learns hierarchical pooling strategy
§ Sets of nodes are pooled hierarchically
§ Soft assignment of nodes to next-level nodes

Hierarchical Graph Representation Learning with Differentiable Pooling. R. Ying, et al. NeurIPS 2018.

[NeurIPS ‘18]

https://arxiv.org/abs/1806.08804


DIFFPOOL: Pooling for GNNs

17Jure Leskovec, Stanford University

Don’t just embed individual nodes. Embed the 
entire graph.
Problem: Learn how to hierarchical pool the 
nodes to embed the entire graph
Our solution: DIFFPOOL

§ Learns hierarchical pooling strategy
§ Sets of nodes are pooled hierarchically
§ Soft assignment of nodes to next-level nodes

Hierarchical Graph Representation Learning with Differentiable Pooling. R. Ying, et al. NeurIPS 2018.

[NeurIPS ‘18]

How expressive are 
Graph Neural Networks?

https://arxiv.org/abs/1806.08804


How expressive are GNNs?

Theoretical framework: Characterize 
GNN’s discriminative power:
§ Characterize upper bound of the 

discriminative power of GNNs
§ Propose a maximally powerful GNN
§ Characterize discriminative power 

of popular GNNs

Jure Leskovec, Stanford University 18How Powerful are Graph Neural Networks? K. Xu, et al. ICLR 2019.

GNN tree:

https://arxiv.org/abs/1810.00826


Key Insight: Rooted Subtrees

Graph:                GNN distinguishes:

Jure Leskovec, Stanford University 19

The most powerful GNN is able to distinguish 
rooted subtrees of different structure



Discriminative Power of GNNs

Idea: If GNN functions are injective, 
GNN can capture/distinguish the 
rooted subtree structures

Theorem: The most discriminative 
GNN uses injective multiset function
for neighbor aggregation
If the aggregation function is injective, GNN can fully 
capture/distinguish the rooted subtree structures

20Jure Leskovec, Stanford University

Multiset



Three Consequences of GNNs

1) The GNN does two things:

§ Learns how to “borrow” 
feature information from 
nearby nodes to enrich 
the target node

§ Each node can have a different 
computation graph and the network is 
also able to capture/learn its structure

Jure Leskovec, Stanford University 21



Three Consequences of GNNs

2) Computation graphs can be chosen:

§ Aggregation does not 
need to happen across
all neighbors

§ Neighbors can be 
strategically chosen/sampled

§ Leads to big gains in practice

Jure Leskovec, Stanford University 22



Three Consequences of GNNs

3) We understand GNN failure cases:

§ GNNs fail to distinguish isomorphic 
nodes

§ Structure-aware Vs. Position-aware

Jure Leskovec, Stanford University 23
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PGNN: Position Aware GNNs

§ Key idea: Anchors

§ Characterize node’s position relative to 
a set of randomly selected anchor 
nodes and sets of nodes

Jure Leskovec, Stanford University 24
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Distance to Anchor:

Position-aware Graph Neural Networks. J. You, R. Ying, J. Leskovec. ICML, 2019.

https://cs.stanford.edu/people/jure/pubs/pgnn-icml19.pdf


PGNN: Visualizing Embeddings

Jure Leskovec, Stanford University 25

GNN embedding P-GNN embeddingInput graph



PGNN: Visualizing Embeddings

Jure Leskovec, Stanford University 26

GNN embedding P-GNN embeddingInput graph

On real datasets PGNN 
obtains +61% ROC AUC 

over GCN, GAT, GIN



PinSAGE for 
Recommender Systems

27

Graph Convolutional Neural Networks for Web-Scale Recommender Systems. R. Ying, R. 
He, K. Chen, P. Eksombatchai, W. L. Hamilton, J. Leskovec. KDD, 2018.

https://cs.stanford.edu/people/jure/pubs/pinsage-kdd18.pdf


Pinterest

§ 300M users

§ 4+B pins, 2+B boards
Jure Leskovec, Stanford University 28



Under review as a conference paper at ICLR 2019

sum - multiset

>
mean - distribution max - set

>
Input

Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over a multiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset a given
aggregator is able to capture: sum captures the full multiset, mean captures the proportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a 1-layer perceptron � �W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by a non-linear activation function such as a ReLU.
Such 1-layer mappings are examples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.

Lemma 7. There exist finite multisets X1 6= X2 so that for any linear mapping W ,P
x2X1

ReLU (Wx) =
P

x2X2
ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlike models using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X) =
P

x2X f(x) with mean or max-pooling as in GCN
and GraphSAGE? Mean and max-pooling aggregators are still well-defined multiset functions because
they are permutation invariant. But, they are not injective. Figure 2 ranks the three aggregators by
their representational power, and Figure 3 illustrates pairs of structures that the mean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f(a) is the same across all nodes (for any
function f ). When performing neighborhood aggregation, the mean or maximum over f(a) remains
f(a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes the structures because 2 · f(a) and 3 · f(a) give different values. The same argument
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Application: Pinterest

PinSage graph convolutional network:
§ Goal: Generate embeddings for nodes in a large-

scale Pinterest graph containing billions of objects
§ Key Idea: Borrow information from nearby nodes

§ E.g., bed rail Pin might look like a garden fence, but 
gates and beds are rarely adjacent in the graph

§ Pin embeddings are essential to various tasks like 
recommendation of Pins, classification, ranking
§ Services like “Related Pins”, “Search”, “Shopping”, “Ads”

Jure Leskovec, Stanford University 29
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Pinterest Graph

30

Human curated collection of pins
Pins: Visual bookmarks someone 
has saved from the internet to a 
board they’ve created.
Pin features: Image, text, links

Boards
7Jure Leskovec, Stanford University



Pin Recommendation

Task: Recommend related pins to users

Source pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings !" such 
that
# !$%&'(, !$%&'*
< #(!$%&'(, !-.'%/'0)

!

Jure Leskovec, Stanford University



PinSAGE Training

Goal: Identify target pin among 3B pins
§ Issue: Need to learn with resolution of 100 vs. 3B
§ Massive size: 3 billion nodes, 20 billion edges
§ Idea: Use harder and harder negative samples

32

Source pin Positive Hard negativeEasy negative
Jure Leskovec, Stanford University



PinSAGE Performance

Related Pin recommendations
§ Given a user is looking at pin Q, predict 

what pin X are they going to save next 

§ Setup: Embed 3B pins, perform nearest 
neighbor to generate recommendations

Jure Leskovec, Stanford University 33
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PinSAGE Example

34Jure Leskovec, Stanford University



Computational Drug 
Discovery: Drug Side 

Effect Prediction

35

Modeling Polypharmacy Side Effects with Graph Convolutional Networks. M. Zitnik, M. Agrawal, J. 
Leskovec. Bioinformatics, 2018.

http://snap.stanford.edu/decagon/

https://cs.stanford.edu/people/jure/pubs/drugcomb-ismb18.pdf
https://cs.stanford.edu/people/jure/pubs/drugcomb-ismb18.pdf


Polypharmacy side effects

Many patients take multiple drugs to 
treat complex or co-existing diseases:
§ 46% of people ages 70-79 take more than 5 drugs

§ Many patients take more than 20 drugs to treat heart 
disease, depression, insomnia, etc.

Task: Given a pair of drugs predict 
adverse side effects

,
30% 
prob.

65% 
prob.

36Jure Leskovec, Stanford University



Approach: Build a Graph

37

r" Edge type #
Drug node

Protein node

Drug-drug 
interaction of type $%, 
e.g., nausea

Drug-target interaction

Protein-protein interaction
Jure Leskovec, Stanford University



Task: Link Prediction

Task: Given a partially observed graph, 
predict labeled edges between 

drug nodes

38

Ciprofloxacin
r1

r2

Simvastatin

Mupirocin

r2

Doxycycline

S

C

MD

Example query: Given drugs !, #, how likely is an edge (!, %&, #)?

Co-prescribed drugs ! and 
# lead to side effect %&

Jure Leskovec, Stanford University



Decagon: Graph Neural Net

39

Node !’s computation 
graph

Network neighborhood of 
node !

Jure Leskovec, Stanford University



Decoder: Link Prediction

40
Parameter weight matrices

Probability of 
edge of type !"

Two nodes

Predicted edges

Tensor factorized model to 
capture dependences between 

different types of edges

Jure Leskovec, Stanford University



Results: Side Effect Prediction

36% average in AP@50 improvement over baselines
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Jure Leskovec, Stanford University 41



De novo Predictions
Drug c Drug d

42Jure Leskovec, Stanford University



De novo Predictions

Evidence foundDrug c Drug d

43Jure Leskovec, Stanford University



Predictions in the Clinic

Clinical validation via drug-drug 
interaction markers, lab values, and 
surrogates

44

First method to predict side effects of drug pairs, even 
for drug combinations not yet used in patients

Jure Leskovec, Stanford University



Reasoning in 
Knowledge Graphs

45

Embedding Logical Queries on Knowledge Graphs. W. Hamilton, P. Bajaj, M. Zitnik, D. 
Jurafsky, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

https://arxiv.org/abs/1806.01445


Knowledge as a Graph

Jure Leskovec, Stanford University 46



Knowledge Graphs (KGs)

§ Knowledge Graphs are heterogenous graphs
§ Multiple types of entities and relations exist

§ Facts are represented as triples ℎ, #, $
§ (‘Alice’, ‘friend_with’, ‘Bob’)

§ (‘Paris’, ‘is_a’, ‘City’)
Jure Leskovec, Stanford University 47



Traditional Tasks

Knowledge Graph Competion/Link 
Prediction
§ Predict the missing head or tail for a 

given triple (ℎ, $, %)
§ Example:

48Jure Leskovec, Stanford University

Barack Obama BornIn United States

Barack Obama Nationality American



Our work: Beyond Link Prediction

Our goal: Reason over the knowledge 
graph using complex multi-hop queries
§ Conjunctive queries: Subset of first-order 

logic with existential quantifier (∃) and 
conjunction (∧)

49

% = '? . ∃ ' ∶ *+,(-./+,0123/4, ') ∧ 6+7+89, 63,343, '
∧ :/34.379 ', '?

Canada

Win

Citizen
Graduate' '?

Turing 
Award

Jure Leskovec, Stanford University

“Where did all Canadian citizens with Turing Award graduate?”



Answering Queries in KGs

Jure Leskovec, Stanford University 50

Canada

Win

Citizen
Graduate! !?

Turing 
Award

Query Graph

Turing 
Award

Win

Canada

Citizen
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Graduate

EdinburghHinton

McGill

Bieber

Bengio

Trudeau

Cambridge

Turing
Award

Canada

Projection

Projection
Projection

Intersection

Intersection

Knowledge Graph Computation Graph

Each point corresponds to a set of entities

“Where did Canadian citizens with Turing Award graduate?”



Why is it Hard?

Key challenge: Big graphs and queries 
can involve noisy and unobserved data!

Problem: Naïve link prediction and graph 
template matching are too expensive

51

Some links might be 
noisy or missing

Jure Leskovec, Stanford University
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Our Idea: Query Embedding
Use representation learning to map a 

graph into a Euclidean space and 
learn to reason in that space

Jure Leskovec, Stanford University 52

Knowledge graph Embedding space

Logical 
query

Reason in the
embedding space



Semantic Embeddings

Remember Word2vec:
§ TransE [Bordes et al., 2013]: 

For a triple ℎ, #, $ : % + ' ≈ )

Jure Leskovec, Stanford University 53

ℎ*+,

$ail

#*0+$123

Obama

American

Nationality



Our Idea: Query2Box
Idea: 
§ 1) Embed nodes of the graph
§ 2) For every logical operator learn a spatial 

operator
So that:
§ 1) Take an arbitrary logical query. Decompose 

it into a set of logical operators (∃,∧,∨)
§ 2) Apply a sequence of spatial operators to 

embed the query
§ 3) Answers to the query are entities close to 

the embedding of the query
54Jure Leskovec, Stanford University



Our Idea: Query2Box
Idea: 
§ 1) Embed nodes of the graph
§ 2) For every logical operator learn a spatial 

operator
So that:
§ 1) Take an arbitrary logical query. Decompose 

it into a set of logical operators (∃,∧,∨)
§ 2) Apply a sequence of spatial operators to 

embed the query
§ 3) Answers to the query are entities close to 

the embedding of the query
55Jure Leskovec, Stanford University

Key insight:
Represent query as a box.

Operations (union, intersection) 
are well defined over boxes.



Embedding Queries

Query2Box embedding:

Embed queries with hyper-rectangles 
(boxes): ! = ($%& ' , )**(')).

Jure Leskovec, Stanford University 56

Edinburgh$%&(')
McGill

Cambridge

Stanford

Embedding Space



Embedding Queries

§ Geometric Projection Operator
§ Geometric Intersection Operator

Jure Leskovec, Stanford University 57

Computation Graph
Turing
Award

Canada

Projection

Projection
Projection

Intersection

Intersection



Projection Operator

Geometric Projection Operator !
§ " : Box × Relation → Box

Jure Leskovec, Stanford University 58
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Projection Operator: Example

Jure Leskovec, Stanford University 59

Win

Hinton
Bengio

Pearl

Turing
Award

Turing 
Award

Win

Pearl

Hinton

Bengio

Graduate

EdinburghHinton

McGill

Bengio

Cambridge

Hinton
Bengio

Graduate

McGill

Edinburgh

Cambridge



Intersection Operator

Geometric Intersection Operator !
§ ℐ : Box ×⋯× Box → Box

§ The new center is a weighted average
§ The new offset shrinks

Jure Leskovec, Stanford University 60



Intersection Operator: Example

Jure Leskovec, Stanford University 61
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Benefits of Query2Box
Scalability and efficiency:
§ Any query can be reduced to a couple of 

matrix operations and a single k-nearest 
neighbor search

Generality:
§ We can answer any query (even those we 

have never seen before)
Robustness to noise:
§ Graph can contain missing and noisy 

relationships

Jure Leskovec, Stanford University 62



Query2Box : Model Training

Training examples: Queries on the graph

§ Positives: Path with a known answer

§ Negatives: Random nodes of the correct 
answer type

§ Goal: Find embeddings and operators so 
that that queries give correct answers

Jure Leskovec, Stanford University 63



Experimental Setup

We essentially learn to “memorize” the 
answers to queries

§ We embed entities so that our geometric 
operators give correct answers

Questions:
§ Does our method generalize to new 

unseen queries?

§ Does our method generalize to new query 
structures?

§ Can method handle missing relations?
Jure Leskovec, Stanford University 64



Experimental Setup

§ Training:
§ Remove 10% of KG edges

§ Sample training queries and (non)answers

§ Train the model

§ Test set:
§ Test queries/answers from the full graph

§ Ensure that the test queries are not directly 
answerable in the training graph
§ Every test query has at least one deleted edge

§ Note: Query template matching would have 
accuracy of random guessing

Jure Leskovec, Stanford University 65



KG and Query Statistics

Jure Leskovec, Stanford University 66

3i2i3p2p1p

Training Conjunctive Queries

ip pi

Unseen Conjunctive Queries

u
u

u
u

2u up

Union Queries

§ Freebase: FB15K, FB15K-237

§ Queries:



Experimental Results

Jure Leskovec, Stanford University 67

Observations:
§ On “training” queries: +20% H@3
§ On new conjunctive query structures: +15%
§ On disjunctive queries: +36%



Embedding Space

Jure Leskovec, Stanford University 68

“List male instrumentalists who play string instruments”
String
Instrument

Male

Projection

Projection

Projection Intersection

Intersection

Embedding of 
14951 entities



Embedding Space

Jure Leskovec, Stanford University 69

Anchor

“List male instrumentalists who play string instruments”
String
Instrument



Embedding Space

Jure Leskovec, Stanford University 70

TP

FP
TN

FN

“List male instrumentalists who play string instruments”
String
Instrument Projection

TPR: 100%
FPR: 0%

# of string instruments: 10



Embedding Space

Jure Leskovec, Stanford University 71

TP

FP
TN

FN

“List male instrumentalists who play string instruments”
String
Instrument Projection Projection

# of instrumentalists: 472

TPR: 98.4%
FPR: 0.01%



Embedding Space

Jure Leskovec, Stanford University 72

“List male instrumentalists who play string instruments”

Male

Anchor



Embedding Space

Jure Leskovec, Stanford University 73

TP

FP
TN

FN

Male
Projection

TPR: 97.9%
FPR: 0.01%

“List male instrumentalists who play string instruments”

# of men: 3555



Embedding Space

Jure Leskovec, Stanford University 74

TP

FP
TN

FN

String
Instrument

Male

Projection

Projection

Projection Intersection

Intersection

“List male instrumentalists who play string instruments”

# of answers: 396

TPR: 99.4%
FPR: 0.01%



Query2Box: Summary

§ Query2Box:
§ Embed the query as a box

§ Logical operations become spatial operations

§ Composability of queries:

§ Generalize well to unseen, extrapolated 
queries

§ Explicitly training for composability is 
important

§ Instance vs. multi-hop generalization
Jure Leskovec, Stanford University 75



How can this technology 
be used for other problems?

Many other applications: 
§ Nodes: Predict tissue-specific protein functions
§ Subgraphs: Predict which drug treats what disease
§ Graph generation: Generate molecules/drugs

We can now apply neural networks 
much more broadly

New frontiers beyond classic neural networks 
that learn on images and sequences

76Jure Leskovec, Stanford University



Summary

§ Graph Convolutional Neural Networks
§ Generalize beyond simple convolutions

§ Fuses node features & graph info
§ State-of-the-art accuracy for node 

classification and link prediction

§ Model size independent of graph size; 
can scale to billions of nodes
§ Largest embedding to date (3B nodes, 20B edges)

§ Leads to significant performance gains
Jure Leskovec, Stanford University 77



Conclusion

Results from the past 2-3 years have shown:

§ Representation learning paradigm can be 
extended to graphs

§ No feature engineering necessary

§ Can effectively combine node attribute data 
with the network information

§ State-of-the-art results in a number of 
domains/tasks

§ Use end-to-end training instead of 
multi-stage approaches for better performance

Jure Leskovec, Stanford University 78
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Postdoc positions in 3 topics:
(1) Core ML on Graphs

(2) Biomedical, Common Sense Reasoning
(3) Societal Applications of ML

Jure Leskovec, Stanford University



References
§ Tutorial on Representation Learning on Networks at WWW 2018 http://snap.stanford.edu/proj/embeddings-

www/

§ Inductive Representation Learning on Large Graphs. 
W. Hamilton, R. Ying, J. Leskovec. NIPS 2017.

§ Representation Learning on Graphs: Methods and Applications. W. Hamilton, R. Ying, J. Leskovec.
IEEE Data Engineering Bulletin, 2017.

§ Graph Convolutional Neural Networks for Web-Scale Recommender Systems. R. Ying, R. He, K. Chen, P. 
Eksombatchai, W. L. Hamilton, J. Leskovec. KDD, 2018.

§ Modeling Polypharmacy Side Effects with Graph Convolutional Networks. M. Zitnik, M. Agrawal, J. 
Leskovec. Bioinformatics, 2018.

§ Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. Liu, R. Ying, V. 
Pande, J. Leskovec, NeurIPS 2018.

§ Embedding Logical Queries on Knowledge Graphs. W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, J. 
Leskovec. NeuIPS, 2018.

§ How Powerful are Graph Neural Networks? K. Xu, W. Hu, J. Leskovec, S. Jegelka. ICLR 2019.

§ Position-aware Graph Neural Networks. J. You, R. Ying, J. Leskovec. ICML, 2019.

§ Code:
§ http://snap.stanford.edu/graphsage
§ http://snap.stanford.edu/decagon/
§ https://github.com/bowenliu16/rl_graph_generation
§ https://github.com/williamleif/graphqembed
§ https://github.com/snap-stanford/GraphRNN

Jure Leskovec, Stanford University 81

http://snap.stanford.edu/proj/embeddings-www/
https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://cs.stanford.edu/people/jure/pubs/pinsage-kdd18.pdf
https://cs.stanford.edu/people/jure/pubs/drugcomb-ismb18.pdf
https://arxiv.org/pdf/1806.08804.pdf
https://arxiv.org/abs/1806.01445
https://arxiv.org/abs/1810.00826
https://cs.stanford.edu/people/jure/pubs/pgnn-icml19.pdf
http://snap.stanford.edu/graphsage
https://cs.stanford.edu/people/jure/pubs/drugcomb-ismb18.pdf
https://github.com/bowenliu16/rl_graph_generation
https://github.com/williamleif/graphqembed
https://github.com/snap-stanford/GraphRNN

