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Introduction of Meta Learning
• Humans learn new concepts or skills faster than machines

• Humans can recognize new species with few photos

• Humans learn to ride a motorcycle fast if they can ride a bicycle.

• Reason:
• Ability to adapt or generalize to new tasks



Introduction of Meta Learning
• Meta-learning (learn to learn)

• Supervised learning: Learn a function 𝑓

• Meta learning: Learn the algorithms
• Learn a function 𝐹 to find a function 𝑓∗ for new task

𝑓 = “giraffe”

𝐹 = 𝑓∗

𝑓∗ = “giraffe”

𝑓

𝐹

Requires few examples



Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

PMLR 2017

Chelsea Finn, Pieter Abbeel, Sergey Levine

Berkeley, OpenAI



Introduction
• Application

• Model-agnostic
• Any supervised (classification/regression) & reinforcement learning models learnt by 

gradient descent.

• Few-shot scenarios
• Many tasks

• Only few examples for the new task

• Idea
• Find a good global parameter that can be adapted to all tasks with few 

examples
• is a task independent parameter, serving as the initial parameters for all tasks.



Model
• MAML for supervise learning (classification & regression)

is a task

A batch of tasks 

K: Shot num

Equ2: mean sqaure loss 
for regression;

Equ3: cross entropy loss 
for classification

Feed forward of base model 
on support set, get gradients

: Support set

Update for one step

Obtain samples for query set

Update based on the performance 
of  on query set 
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Few-shot Text Generation

• Cold start in text generation tasks

• Multi-language machine translation

• Personalized dialogue generation

• Emotional dialogue generation



Methods for Few-shot Dialogue Generation

• W/ task description
• explicit: user profile

• implicit: user description

• Pre-train
• from non-target domain to target domain

• require sufficient data for fine-tuning



Methods for Few-shot Dialogue Generation

• W/O task description
• meta-learning

• Meta-learning
• metric-based methods -> classification

• model-based methods -> classification

• optimization-based methods -> model agnostic

• MAML (model agnostic meta-learning)



MAML

• Training
• find an initialization of all tasks

• Testing:
• fine-tuning

• Model = model structure + model parameters

How about the model structure?
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Adjust MAML for Larger Model Diversity

• Customize models

• different network structures + parameters

• Unique model structure

• memorize task characteristics

• Few-shot setting
• do not require extra data

Customized Model Agnostic Meta-Learning algorithm (CMAML)



The Dialogue Model

• Shared module
• general generation ability

• seq2seq

• shared among tasks

• Gating module
• balance the first two

• shared among tasks

Really
Emm

Really

?
Emm

?

I
I

I

don’t
like

like

know
cats

cats

User-i Decoder

• Private module
• memorize the characteristics of the task
• multi-layer perception
• unique for each task

gating module

shared module

private module

Seq2SPG



Training Overview

• Pre-training
• MAML: meta-training & meta-testing

• models are the same

• Customized Model Training
• private network pruning

• differentiate the MLP structure

• joint meta learning
• re-train 3 modules of each task together



Customized Model Training

• Private network pruning
• only on private module

• L-1 regularization
• make parameters sparse

• Up-to-bottom pruning
• upper layers have been pruned
• keep edges of current layer whose weight > threshold
• a node is pruned, nodes connected to it are pruned



Customized Model Training

• Joint meta-training
• joint training for all modules of tasks
• start from the pre-trained MAML initialization

• Shared & Gating module
• trained with all training data

• Private module
• trained with task-specific data
• no enough data for training



Customized Model Training

• Similar tasks share partial networks

• Dissimilar tasks have no overlaps

CMAML



Experiments

• Persona-chat
• 1137/99/100 users for training/validation/evaluation

• each user has 121 utterances

• MojiTalk
• 50/6/8 emojis for training/validation/evaluation

• each emoji has 1000 training samples



Competing Methods

• Pretrain-Only
• Seq2seq

• Speaker

• Seq2SPG

• Fine-tune
• Seq2seq-F

• Speaker-F

• Seq2SPG-F

• MAML
• MAML-Seq2seq
• MAML-Seq2SPG

• CMAML
• CMAML-Seq2SP’G
• CMAML-Seq2SPG



Evaluation Metrics

• Response quality/diversity
• BLEU

• PPL

• Distinct-1

• Task consistency
• C score

• E-acc

• Model difference
• Diff Score
• ∆ Score
• d

• Human Evaluation
• quality
• task consistency



Results
Fine-tune > Pre-train

Overall performance



Results
MAML > Fine-tune

Overall performance



Results
CMAML > MAML

Overall performance



Results

Pre-train & Fine-tune: data task consistency
MAML & CMAML: data task consistency

Different few-shot settings



Results

Different task consistency settings

Pre-train & Fine-tune: similar tasks
MAML & CMAML: dissimilar tasks



Summary

• Customize models
• different network structures & parameters
• hundreds of training samples in each task

• Unique structure
• memorize characteristics of each task
• similar tasks are sharing data in the view of model structure

• Generation tasks
• applicable to all few-shot generation tasks

• Code is available at: https://github.com/zequnl/CMAML
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Introduction
• Idea

• Import task priors for MAML

• Learn to represent tasks

• Encode the task representation to the initial parameter of MAML

Learn to adapt 
with few shots Learn to adapt 

with few shots

Encoder task prior into

MAML HSML



Model
• Step1 Task representation learning

• Step2 Hierarchical soft task clustering

• Step3 Adaptation on tasks

Support set

Query set



Model
• Step1 Task representation learning

• Step1.1 train sample-level representation with autoencoder
• Embed input x and output y (with CNN)

• Reconstruct with autoencoder models 

• FC- based (Fully Connected Layer) 

• RNN-based: treat all samples in a task as a sequence

• Train by square loss

• Step1.2 aggregate sample-level representation to task representation 
• Merge by max/mean Pooling

Support set

Query set



Model
• Step2 Hierarchical soft clustering on tasks

• Step2.1 Assignment (Soft)
• Prob of task 𝑖 transferring from cluster 𝑘𝑙 (at layer 𝑙) to cluster 𝑘𝑙+1 (at layer 𝑙 + 1)

• Step2.2 Update 
• Update task representations

• Weighted aggregate vectors from lower layers

Support set

Query set

Task representation of task 𝑖 in cluster 𝑘𝑙 at layer 𝑙

Representation of cluster center 𝑘𝑙+1 at layer 𝑙 + 1 (learnable)



Model
• Step3 Adaptation on tasks

• FC (Task embedding      + task representation      at top clustering layer)

• Loss
• Meta-learning Loss as MAML + Reconstruction loss at step1

Support set

Query set
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Introduction
• Motivation (Similar to MAML based)

• Obtain task-specific model parameters      for new task with few examples 

• Idea
• Treats samples in a task as a sequence

• LSTM learns to generate model parameters from a sequence of samples
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Introduction
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• Idea
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• LSTM learns to generate model parameters from a sequence of samples

• Gradient descent

• Few shot: make full use of few samples
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• LSTM+GD
• LSTM balances previous parameters and current gradients 

• learn to generate        from gradient                     and previous

=1



(Base model)

Support set Query set
Model

Task

Sample a batch from support set of this task

All samples in query set compose one batch 

Base model

Query set Training set

Meta-learner

Support set

Meta-learner

Evaluate on query set

Update meta-learner according to the performance on query set



Thanks for listening!


