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Conversational AI
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Outline

 任务导向型对话系统背景

 对话系统最新进展

 对话系统评测

 实验分析与讨论
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Conversational System

 Dialog 1
M: Hello, welcome to the Cambridge dialog system. What kind of food would you 

like?
H: Yeah I want to find a restaurant that serves European food.
M: Hotel du Vin and Bistro is a nice place. It serves European food.
H: Uh what is the address and phone number?
M: Their address is XXX and their phone is YYY.
H: Thank you, goodbye.
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Conversational System

 Dialog 2
A: How old are you?
B: I’m 16. Why are you asking?
A: I thought you were 12.
B: What made you think so?
A: I don’t know what you are talking about
B: You don’t know what you are saying.
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Conversational System

 Task-Oriented Dialog System
Goal-oriented
Require precise understanding, it’s hard to collect data
Modular, highly hand-crafted, restricted ability, but meaningful and useful

 Chat-Based Conversational Agent
 Chit-chat (no goal)
 Large amounts of data (but probably not helpful so much)
End-to-end, highly data-driven, but meaningless/inappropriate and unreliable
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Task-Oriented Dialog

The common pipeline architecture of a task-oriented dialog system
Zheng Z, et al. 2020. Recent advances and challenges in task-oriented dialog systems. 
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Component-wise Evaluation

 NLU
 identify user intents and extract associated information (e.g. slots and values) 

from users’ raw utterances
 Slot F1, Intent F1

 DST
 encode the extracted information as a compact set of dialog state
 informable slots with user constraints, and requestable slots  
 Slot acc., Joint goal acc.
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Component-wise Evaluation

 Policy
 rely on the dialog state to select a system action
 Inform, Match, Success

 NLG
 generate a natural language response from a structured representation
BLEU, Perplexity, Slot error rate

Each module is evaluated separately
Almost all metrics are in the single-turn setting
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Architecture

NLU DST Policy NLG

Word-DST Policy NLG

NLU DST

Word-DST

Word-Policy

Word-Policy

End-to-End

A wide variety of system configurations settings

 Pipeline or end-to-end?
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Task Complexity

 Scalability and robustness
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Multi-Turn Evaluation

 Both A and B have 80% accuracy, which one is better?

Turn A B

1 ✘ ✔

2 ✔ ✔

3 ✔ ✔

4 ✔ ✔

5 ✔ ✘
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Contribution

 Multi-turn, system-wise simulated & human evaluation over a wide variety 

of configurations & settings to investigate overall performance
Which configurations lead to better goal-oriented dialog systems?
Whether the component-wise, single-turn metrics are consistent with system-wise, 

multi-turn metrics for evaluation?
How does the performance vary when a system is evaluated using tasks of 

different complexities?
Does simulated evaluation correlate well with human evaluation?

Ryuichi T, et al. 2020. Is Your Goal-Oriented Dialog Model Performing Really Well? Empirical Analysis of System-wise Evaluation.
SIGDIAL 2020 Best Paper
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Data

 MultiWOZ
Dialog state
 System dialog acts
User goal
 Lots of baselines for different sub-tasks

 Augment corpus with NLU annotation
User dialog acts

Budzianowski P, et al. 2018. MultiWOZ: A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling
EMNLP 2018 Best Resource Paper
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User Goal

 Description of the state that a user wants to reach in a conversation

 A fixed set of 1,000 user goals for evaluation
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Platform & Simulator

 ConvLab with benchmarks

 Agenda-based user simulator
NLU: MILU (RNN-based)
 Policy: Agenda
NLG: Retrieval

 Dialog acts from the input and output 

of user policy are used for evaluation NLU

Policy

NLG

User Action

System Action

User GoalEvaluation
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System-wise Evaluation

 Multi-turn evaluation

 Dialog cost
Dialog turn (user + system)

 Task success
 Inform F1: requests
Match rate: constraints

Walker M A, et al. 1997. PARADISE: a framework for evaluating spoken dialogue agents. 
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System Configurations & Models

 4 pipeline, 10 joint, 2 end-to-end systems

 NLU
 joint tagging scheme: combine with domain annotation
BERT, MILU

 DST
DA-level: Rule
Word-level: MDBT, TRADE, SUMBT, COMER
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System Configurations & Models

 Policy
DA-level: Rule, GDPL
Word-level: MDRG, HDSA, LaRL

 NLG
Retrieval, SCLSTM

 E2E
 TSCP, DAMD
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Perf. under Different Settings

 SYSTEM 1/2 achieves 

high overall performance

 Pipeline > Joint/End-to-

end
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Perf. under Different Settings

 Database query
A large-scale external 

database

 Some non-pipeline 

systems perform 

relatively well (11, 13, 16)
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Perf. under Different Settings

 NLU + DST >> Word-

DST

Missing intent info. in word-DST
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Perf. under Different Settings

 Policy + NLG > Word-

Policy
Word-DST + Word-

Policy performs relatively 
well

Utterances are encoded 
again in word-policy
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Component-wise vs. System-wise Evaluation

 NLU

 DST
Not consistent
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Component-wise vs. System-wise Evaluation

 Policy

 NLG
Not consistent
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Single-turn vs. Multi-turn Evaluation

 E2E

 Error propagation to 

downstream modules 

and effect on following 

turns
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Perf. of Task with Different Complexities

 Different single domain

Most systems achieve better performance in Restaurant and Train than Attraction
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Perf. of Task with Different Complexities

 Different number of domains

All systems have performance drop as the number of domains increases
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Simulated vs. Human Evaluation

 A subset of 100 goals for human evaluation

 5 systems across different architectures

 Other metrics
 Language understanding
Response appropriateness

 Simulated evaluation correlates moderately well with human evaluation

 Task success rate of most systems decreases significantly
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 SYSTEM-1: Success

 SYSTEM-6: Failure

 fail to track the value of price 
range in the dialog state 

do not answer the postcode

Case Study: Simulated Evaluation
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Case Study: Human Evaluation

 SYSTEM-1: Success

 SYSTEM-6: Failure

do not answer the phone 
number of the requested 
tourist attraction
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Conclusion

 Pipeline systems often achieve better overall performance than joint 

models and end-to-end systems

 Results of component-wise, single-turn evaluation are not always 

consistent with that of system-wise, multi-turn evaluation

 Performance of dialog systems drops significantly with the increase of task 

complexity, while pipeline systems are relatively robust

 Simulated evaluation correlates moderately well with human evaluation
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Discussion

 Good semantic parsing (e.g. dialog acts) is essential to build a dialog system

 Pipeline systems perform better, but require fine-grained annotations

 Proposed models should be assembled into a complete system for 

meaningful evaluation and fair comparison via a standardized platform

 Scalability and robustness are important and should be improved

 Simulated evaluation is still a valid alternative despite the discrepancy



35

Thanks for your attention

Paper: https://arxiv.org/abs/2005.07362

Homepage: https://truthless11.github.io

Contact: gxly19@mails.tsinghua.edu.cn

演示者
演示文稿备注
That’s all for my today’s presentation. Thank you. Any questions?
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