DEEP LEARNING

Ian Goodfellow, Yoshua Bengio, and Aaron Courville

NeurIPS'2019 Keynote December 11th, 2019, Vancouver BC

FROM SYSTEM 1 DEEP LEARNING TO SYSTEM 2 **DEEP LEARNING** YOSHUA BENGIO

CIFAR CANADIAN INSTITUTE FOR DVANCED RESEARCH

ICRA INSTITUT CANADIEN DE RECHERCHES

THE STATE OF DEEP LEARNING

Amazing progress in this century

• Is it enough to just grow datasets, model sizes, computer speed?

Still far from human-level AI!

- Sample efficiency
- Human-provided labels
- Stupid errors
- Next step completely different from deep learning?

Just get a bigger brain?

SYSTEM 1 VS. SYSTEM 2 COGNITION

2 systems (and categories of cognitive tasks):

System 1

- Intuitive, fast, **UNCONSCIOUS**, non-linguistic, habitual
- Current DL

WINNER OF THE NOBEL PRIZE IN ECONOMICS

Manipulates high-level / semantic concepts, which can be recombined combinatorially

System 2

- Slow, logical, sequential, **CONSCIOUS**, linguistic, algorithmic, planning, reasoning
- Future DL

MISSING TO EXTEND DEEP LEARNING TO REACH HUMAN-LEVEL AI

- Out-of-distribution generalization & transfer
- Higher-level cognition: system $1 \rightarrow$ system 2
 - *High-level semantic representations*
 - *Compositionality*
 - Causality
- Agent perspective:
 - Better world models
 - Knowledge-seeking
- Connections between all 3 above!

CONSCIOUSNESS FUNCTIONALITIES: ROADMAP FOR PRIORS EMPOWERING SYSTEM 2

- ML Goals: handle changes in distribution, necessary for agents lacksquare
- System 2 basics: attention & consciousness
- Consciousness prior: sparse factor graph
- Theoretical framework: meta-Learning, localized change hypothesis, causal discovery \bullet
- Structured architecture: operating on sets of pointable objects with dynamically recombined modules

DEALING WITH CHANGES IN DISTRIBUTION

FROM IID TO OOD

Classical ML theory for iid data

Artificially shuffle the data to achieve that?

Out-of-distribution generalization

No free lunch: need new assumptions to replace iid assumption, for ood generalization

The Black Swan

Source: Chris Mandel, Sedgwick Inc.

AGENT LEARNING NEEDS **OOD GENERALIZATION**

Agents face non-stationarities

Changes in distribution due to

- their actions
- actions of other agents
- different places, times, sensors, actuators, goals, policies, etc.

Multi-agent systems: many changes in distribution *Ood generalization needed for continual learning*

COMPOSITIONALITY HELPS IID AND OOD GENERALIZATION

Different forms of compositionality

- Distributed representations *(Pascanu et al ICLR 2014)*
- Composition of layers in deep nets *(Montufar et al NeurIPS 2014)*
- Systematic generalization in language, analogies, abstract reasoning? TBD

(Lee, Grosse, Ranganath & Ng, ICML 2009)

SYSTEMATIC GENERALIZATION

- Studied in linguistics
- Dynamically recombine existing concepts
- Even when new combinations have 0 probability under training distribution
 - E.g. Science fiction scenarios
 - E.g. Escaping a car by hitting the glass window with a headrest
- Not very successful with current DL

(Bahdanau et al & Courville ICLR 2019) (Lake & Baroni 2017)

(Lake et al 2015)

CONTRAST WITH THE SYMBOLIC AI PROGRAM

Avoid pitfalls of classical AI rule-based symbol-manipulation

- Need efficient large-scale learning
- Need semantic grounding in system 1
- Need distributed representations for generalization
- Need efficient = trained search (also system 1)
- Need uncertainty handling

But want

- Systematic generalization
- Factorizing knowledge in small exchangeable pieces
- Manipulating variables, instances, references & indirection

SYSTEM 2 BASICS: ATTENTION AND CONSCIOUSNESS

CORE INGREDIENT FOR CONSCIOUSNESS: ATTENTION

Focus on a one or a few elements at a time \bullet

Soft attention is convenient, can backprop ulletto learn where to attend

Attention is an internal action, needs a ullet**learned attention policy** (Egger et al 2019)

ATTENTION BENEFITS

- Neural Machine Translation revolution *(Bahdanau et al ICLR 2015)*
- Memory-extended neural nets
- Address vanishing gradients (Ke & al NeurIPS 2018)
- SOTA in NLP (self-attention, transformers)
- Operating on unordered SETS of (key, value) pairs

FROM ATTENTION TO INDIRECTION

- Attention = dynamic connection ullet
- Receiver gets the selected value ullet
- Value of what? From where? lacksquare
- Keep track of 'named' objects: indirection ullet
- Manipulate sets of objects (transformers) ${\color{black}\bullet}$

 \rightarrow Also send 'name' (or key) of sender

FROM ATTENTION TO CONSCIOUSNESS

C-word not taboo anymore in cognitive neuroscience

Global Workspace Theory

(Baars 1988++, Dehaene 2003++)

- Bottleneck of conscious processing
- Selected item is broadcast, stored in short-term memory, conditions perception and action
- System 2-like sequential processing, conscious reasoning & planning & imagination

ML FOR CONSCIOUSNESS & CONSCIOUSNESS FOR ML

- Can Lie See that trick again please?
- www.jolyon.co.uk

- Formalize and test specific hypothesized functionalities of consciousness
- Get the magic out of consciousness
 - Understand evolutionary advantage of consciousness: computational and statistical (e.g. systematic generalization)
- Provide these advantages to learning agents

THOUGHTS, CONSCIOUSNESS, LANGUAGE

- Consciousness: from humans reporting
- High-level representations \iff language
- High-level concepts: meaning anchored in lowlevel perception and action → tie system 1 & 2
- Grounded high-level concepts
 - \rightarrow better natural language understanding
 - Grounded language learning, BabyAI: *(Chevalier-Boisvert and al ICLR 2019)*

THE CONSCIOUSNESS PRIOR: SPARSE FACTOR GRAPH

CONSCIOUSNESS PRIOR

Different kinds of attention in the brain

Bengio 2017, arXiv:1709.08568

Attention: to form conscious state, thought A thought is a low-dimensional object, few selected aspects of the unconscious state

- Need 2 high-level states:
 - Large unconscious state
 - Tiny conscious state

Part of inference mechanism wrt joint distribution of high-level variables

CONSCIOUSNESS PRIOR → SPARSE FACTOR GRAPH

Bengio 2017, arXiv:1709.08568

Property of high-level variables which we manipulate with language:

we can predict some given very few others

- E.g. "if I drop the ball, it will fall on the ground" ullet
- **Disentangled factors** != marginally independent, e.g. ball & hand
- **Prior**: sparse factor graph join distribution between high-level variables

CONSCIOUSNESS PRIOR → SPARSE FACTOR GRAPH

$P(V) \propto \prod_{k} \phi_k(V_{s_k})$

Where V_{s_k} is the subset of Vwith indices s_k Prior puts pressure on encoder computing implicitly P(V|observations x)

Bengio 2017, arXiv:1709.08568

META-LEARNING: END-TO-END OOD GENERALIZATION, LOCALIZED CHANGE HYPOTHESIS

META-LEARNING FOR TRAINING TOWARDS OOD GENERALIZATION

- Meta-learning or learning to learn (Bengio et al 1991; Schmidhuber 1992)
 - Backprop through inner loop or REINFORCE-like estimators **Bi-level** optimization
- - Inner loop (may optimize something) \rightarrow outer loss
 - Outer loop: optimizes E[outer loss] (over tasks, environments)
- E.g.
 - Evolution individual learning
 - Lifetime learning fast adaptation to new environments
- Multiple time-scales of learning
- **End-to-end learning to generalize ood + fast transfer**

WHAT CAUSES CHANGES IN DISTRIBUTION?

Hypothesis to replace iid assumption: changes = consequence of an intervention on few causes or mechanisms = local inference or adaptation in the right model

Extends the (informationally) Independent Mechanisms hypothesis (Scholkopf et al 2012)

Underlying physics: actions are localized in space and time.

COUNTING ARGUMENT: LOCALIZED CHANGE→OOD TRANSFER

Good representation of variables and mechanisms + localized change hypothesis

- \rightarrow few bits need to be accounted for (by inference or adaptation)
- \rightarrow few observations (of modified distribution) are required
- \rightarrow good ood generalization/fast transfer/small ood sample complexity

META-LEARNING KNOWLEDGE REPRESENTATION FOR GOOD OOD PERFORMANCE

- Use ood generalization as training objective
- Good knowledge representation \rightarrow good ood performance
- Good ood performance = training signal

EXAMPLE: DISCOVERING CAUSE AND EFFECT = HOW TO FACTORIZE A JOINT DISTRIBUTION?

A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

- Learning whether A causes B or vice-versa
- Learning to disentangle (A,B) from observed (X.Y)
- Exploit changes in distribution and speed of adaptation to guess causal direction

Bengio et al 2019 arXiv:1901.10912

-4.2

-4.4

-4

-4.8

-5.0

 $\log P(D \mid \cdot \rightarrow \cdot)$

EXAMPLE: DISCOVERING CAUSE AND EFFECT = HOW TO FACTORIZE A JOINT DISTRIBUTION?

Learning Neural Causal Models from Unknown Interventions

- Learning small causal graphs, avoid exponential explosion of # of graphs by parametrizing factorized distribution over graphs
- Inference over the intervention: faster causal discovery

Ke et al 2019 arXiv:1910.01075

Asia graph, CE on ground truth edges, comparison against other causal induction methods

Our me 0.0

ethod	(Eaton & Murphy, 2007a)	(Peters et al., 2016)	(Zheng et al., 2018)
0	0.0	10.7	3.1

OPERATING ON SETS OF POINTABLE OBJECTS WITH DYNAMICALLY RECOMBINED MODULES

RIMS: MODULARIZE COMPUTATION AND OPERATE ON SETS OF NAMED AND TYPED OBJECTS

Recurrent Independent Mechanisms

Multiple recurrent sparsely interacting modules, each with their own dynamics, with object (key/value pairs) input/outputs selected by multi-head attention

Results: better ood generalization

Goyal et al 2019, arXiv:1909.10893

RESULTS WITH RECURRENT INDEPENDENT MECHANISMS

- RIMs drop-in replacement for LSTMs in PPO baseline over all Atari games.
- Above 0 (horizontal axis) = improvement over LSTM.

HYPOTHESES FOR CONSCIOUS PROCESSING BY AGENTS, SYSTEMATIC GENERALIZATION

- Sparse factor graph in space of high-level semantic variables
- Semantic variables are causal: agents, intentions, controllable objects
- Shared 'rules' across instance tuples (arguments)
- Distributional changes from localized causal interventions (in semantic space)
- Meaning (e.g. grounded by an encoder) stable & robust wrt changes in distribution

CONCLUSIONS

- After cog. neuroscience, time is ripe for ML to explore consciousness ullet
- Could bring new priors to help systematic & ood generalization lacksquare
- Could benefit cognitive neuroscience too \bullet
- Would allow to expand DL from system 1 to system 2
- Hypothesis: need good system 1 functionalities to make system 2 efficient

System 2

THANK YOU

-

0

