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Intelligent Big Data Visualization (iDV*) Lab

http://idvxiab.qgithub.i

iIDV* Lab

Intelligent Big Data Visualization Lab is
founded in 2016. It is an international
research lab focuses on design and
develop novel visualization, visual
analysis, and HCI techniques. The Lab
focused on develop novel visualization,
visual analysis, UX, and HCI technologies
to support anomaly detection and apply
them in a variety of application fields,
including internet security, smart city,
business intelligence, healthcare
informatics, and industry 4.0.

Visual Analytics
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Mining
analytics is "the science of

Visual

analytical reasoning facilitated by
interactive visual interfaces." It can
attack certain problems whose size,
complexity, and need for closely coupled
human and machine analysis may make
them otherwise intractable. Visual
analytics advances science and
technology developments in analytical
reasoning, interaction, data
transformations and representations for
computation and visualization, analytic
reporting, and technology transition. Asa
research agenda, visual analytics brings
together several scientific and technical
communities from computer science,
information visualization, cognitive and
perceptual sciences, interactive design,
graphic design, and social sciences.

interactions

InfoSec

Our research of InfoSec focused on detecting
anomalous user behaviors such as intrusion
detection in Internet, fraud detection in finance, and
rob detection on social media.

Anomalous Collective Behaviors

Monitoring and Tracing of
Information Diffusion Process

Visual Analysis and
interpretation of anomalous
information spreading

Interpretation of Ego-Centric
Social Behaviors on Twitter

Visual Analysis System for
Detecting Social Media Users
with Anomalous User
Behaviors such as Bots

Smart City
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A smart city is an urban development vision to
integrate information and communication technology
and Internet of things technology in a secure fashion
to manage a city's assets. A smart city is promoted to
use urban informatics and technology to improve the
efficiency of services. Our research in this filed
focused on the public security problems in the city.
We aim to leverage visual analysis systems to
monitor and detect anomalous traffic and mobility
patterns in the city to avoid incident such as 2014
Shanghai stampede.

Dynamic Region Segmentation
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Anomaly Detection

Health Informatics

Health informatics is informatics in health care. It is a
multidisciplinary field that uses health information
technology (HIT) to improve health care. The
disciplines involved include information science,
computer science, social science, behavioral science,
management science, and others. Our research
focused on detection anomalous genes, patients,
care plans, heatbeats in ECG, etc.

Disease Diagrams and Visualization

Visualizing
diseases and their
<. complications

Detect and interpret
the anomalous cohorts

Anomaly detection (also outlier detection) is the identification of items, events or observations which do not conform to an
expected pattern or other items in a dataset. Visualization techniques are used for addressing two major challenges: (1)
there is no clear boundary between normal and abnormal and (2) the unavailable of ground truth or labelled data making

results validation difficult.




| ANOMALY DETECTION
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Anomaly detection (or outlier
detection) is the identification of
items, events or observations
which do not conform to an

expected pattern or other items
in a dataset.

-- Wikipedia



| KEY CHALLENGES

e It is difficult to define what is normal or abnormal

* Unavailable of ground truth or labelled data making results
validation difficult

* Existing algorithms produce results that are difficult to understand



Intelligent Big Data Visualization (iDV*) Lab

http://idvxiab.qgithub.i

iIDV* Lab

Intelligent Big Data Visualization Lab is
founded in 2016. It is an international
research lab focuses on design and
develop novel visualization, visual
analysis, and HCI techniques. The Lab
focused on develop novel visualization,
visual analysis, UX, and HCI technologies
to support anomaly detection and apply
them in a variety of application fields,
including internet security, smart city,
business intelligence, healthcare
informatics, and industry 4.0.
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Visual analytics is "the science of
analytical reasoning facilitated by
interactive visual interfaces." It can
attack certain problems whose size,
complexity, and need for closely coupled
human and machine analysis may make
them otherwise intractable. Visual
analytics advances science and
technology developments in analytical
reasoning, interaction, data
transformations and representations for
computation and visualization, analytic
reporting, and technology transition. Asa
research agenda, visual analytics brings
together several scientific and technical
communities from computer science,
information visualization, cognitive and
perceptual sciences, interactive design,
graphic design, and social sciences.
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InfoSec

Our research of InfoSec focused on detecting
anomalous user behaviors such as intrusion
detection in Internet, fraud detection in finance, and
rob detection on social media.

Anomalous Collective Behaviors

Monitoring and Tracing of
Information Diffusion Process

Visual Analysis and
interpretation of anomalous
information spreading

Interpretation of Ego-Centric
Social Behaviors on Twitter

Visual Analysis System for
Detecting Social Media Users
with Anomalous User
Behaviors such as Bots

Smart City
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A smart city is an urban development vision to
integrate information and communication technology
and Internet of things technology in a secure fashion
to manage a city's assets. A smart city is promoted to
use urban informatics and technology to improve the
efficiency of services. Our research in this filed
focused on the public security problems in the city.
We aim to leverage visual analysis systems to
monitor and detect anomalous traffic and mobility
patterns in the city to avoid incident such as 2014
Shanghai stampede.

Dynamic Region Segmentation

=== Oer——

Anomaly Detection

Health Informatics

Health informatics is informatics in health care. It is a
multidisciplinary field that uses health information
technology (HIT) to improve health care. The
disciplines involved include information science,
computer science, social science, behavioral science,
management science, and others. Our research
focused on detection anomalous genes, patients,
care plans, heatbeats in ECG, etc.

Disease Diagrams and Visualization

Visualizing
diseases and their
_complications

Detect and interpret
the anomalous cohorts

Anomaly detection (also outlier detection) is the identification of items, events or observations which do not conform to an
expected pattern or other items in a dataset. Visualization techniques are used for addressing two major challenges: (1)
there is no clear boundary between normal and abnormal and (2) the unavailable of ground truth or labelled data making

results validation difficult.




The Growth of Social Media
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Do you trust your friends on social media ?

“On the Internet, Nobody Knows You’re a Dog”:
A Twitter Case Study of Anonymity in Social Networks

Sai Teja Peddinti” Keith W. Ross™* Justin Cappos”

psaiteja@nyu.edu keithwross@nyu.edu jcappos@nyu.edu
"Dept. of Computer Science and Engineering, NYU TNYU Shanghai
Brooklyn, New York, USA Shanghai, China
Oher phe Trrtersie riabody knotws you're @ dog.”
(ACM Conference on Online Social Networks, 2014) An adage since 1993

Anonymous users are potential
threats to the society



Ultimate goal: Catching users with anomalous behaviors
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| SOCIAL MEDIA

People supporting “Obamacare”
during the debate

N\

Divergence 1

started here People against “Obamacare”

during the debate

SocialHelix detects and visualizes significant diverging

Understanding Anomalous
Ego Centric Behaviors

sentiment trends between two user communities on Twitter

Understanding Anomalous
Crowd Behaviors



| Whisper
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"Whisper: Tracing the Spatiotemporal Process of Information Diffusion in Real Time",
IEEE TVCG, IEEE InfoVis 2012



| SocialHelix

Divergence of sentiments about “Obamacare”
during the 2012 US presidential debate (October 3, 2012)
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| FluxFlow
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“#FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media”,
IEEE TVCG, IEEE VAST 2014 (Honorable Mention)
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User Behaviors

e Posting (Tweeting)
* Create a message and post it to others

* Responding (Replying / Retweeting)

* Spread the messages posted by others



Capturing User Behaviors via Features

Statistic Features

Content Features
‘ Temporal Features
Network Features

User

User Profile Features
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feature vector time-series

# of Posting / Retweeting

Sentiments, Keywords
Frequency of Positing
Centrality of the user

# of followers
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Anomaly Detection

TLOF: Temporal Local Outlier Factor

The TLOF gives an anomaly

S(X) = -7 (X) + (1 — (x) 'ZZ(X) measurement for every users by
identifying the features that are
t=T-1 significantly different from other users
Z1 (X) :LOF(xT) — Z LOF(xt)/W in the test data and the past history
=T —W of his own

Zz(X) =1 —PN(LOF(JCT),[J, O')

Breunig, Markus M., et al. "LOF: identifying density-based local
outliers." ACM sigMOD record. Vol. 29. No. 2. ACM, 2000.



Visualization Design



User Interface
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The Inspection View
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Showing Posting and Retweeting Activities

Activity Thread
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Raw Tweet
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Users who retweet the tweet
at different time



Showing Posting and Retweeting Activities

A user is visualized as circle sized by their importance and colored by their
anomaly score



Showing Posting and Retweeting Activities

End Time Start Time

The centric user’s activity history is recorded in
a circular timeline

24



Showing Posting and Retweeting Activities

End Time Start Time

1 ’:33 Activity Threads

the activity’s __--~
Color: sentiments initiate time S

Thickness: # of involving users

When the user posts or retweets a tweet, we draw the corresponding activity threads perpendicular to
the time arc at the point when the activity occurred
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Showing Posting and Retweeting Activities

End Time Start Time
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Showing Posting and Retweeting Activities

End Time Start Time
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The Inspection View
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Showing a User’s Features

Behavior Features

Content Features
‘ Temporal Features
Network Features

User

User Profile Featuers
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feature vector time-series

=

Mean Feature




Visualizing a User’s Features

A user is visualized as circle sized by their importance and colored by their
anomaly score
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Visualizing a User’s Features

Using a baseline circle to indicate the
mean feature values over all the users

32



Visualizing a User’s Features

F1

F5

Feature axes are radially arranged
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Visualizing a User’s Features

Plot the user’s feature values along the feature axes surrounding the
baseline
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Visualizing a User’s Features

Connecting the data points to produce the feature glyph
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Who is the normal user?
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Context View 2: Showmg Feature Dynamics
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Showing the change of users’ features over time in a heatmap

Each user is shown as a
heatmap

Row: different features
Column: different
timestamp

Cell Color: feature
values (red: larger than
mean, blue: smaller
than mean)



Evaluation



Evaluation: Bot Detection Challenge

 The goal of the influence challenge
was to
* design social bots in Twitter to
promote the advantages of
vaccination
* influence a target network of users
who are supporters of anti-vaccine
e Lasted for a month during Dec 2014
Bot Influence Challenge * 8000 target users, 4 million tweets




Evaluation

Bot Detection Challenge









Final Results
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Conclusion

* Part | : Data Visualization
* Part Il: Interactive Visual Anomaly Detection

2012 2013 2014
g - s ":.; Understanding Anomalous
A G Crowd Behaviors
. 2014 - 2015
Understanding Anomalous - ' _; 'H N i
Ego Centric Behaviors b my - E

4/4/2019 Intelligent Big Data Visualization Lab
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Intelligent Big Data Visualization (iDV*) Lab

http://idvxiab.qgithub.i

iIDV* Lab

Intelligent Big Data Visualization Lab is
founded in 2016. It is an international
research lab focuses on design and
develop novel visualization, visual
analysis, and HCI techniques. The Lab
focused on develop novel visualization,
visual analysis, UX, and HCI technologies
to support anomaly detection and apply
them in a variety of application fields,
including internet security, smart city,
business intelligence, healthcare
informatics, and industry 4.0.

Visual Analytics
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Abstract Data Visual Form ' Vlew
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Visual analytics is "the science of
analytical reasoning facilitated by
interactive visual interfaces." It can
attack certain problems whose size,
complexity, and need for closely coupled
human and machine analysis may make
them otherwise intractable. Visual
analytics advances science and
technology developments in analytical
reasoning, interaction, data
transformations and representations for
computation and visualization, analytic
reporting, and technology transition. Asa
research agenda, visual analytics brings
together several scientific and technical
communities from computer science,
information visualization, cognitive and
perceptual sciences, interactive design,
graphic design, and social sciences.
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InfoSec

Our research of InfoSec focused on detecting
anomalous user behaviors such as intrusion
detection in Internet, fraud detection in finance, and
rob detection on social media.

Anomalous Collective Behaviors

Monitoring and Tracing of
Information Diffusion Process

Visual Analysis and
interpretation of anomalous
information spreading

Interpretation of Ego-Centric
Social Behaviors on Twitter

Visual Analysis System for
Detecting Social Media Users
with Anomalous User
Behaviors such as Bots

Smart City
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A smart city is an urban development vision to
integrate information and communication technology
and Internet of things technology in a secure fashion
to manage a city's assets. A smart city is promoted to
use urban informatics and technology to improve the
efficiency of services. Our research in this filed
focused on the public security problems in the city.
We aim to leverage visual analysis systems to
monitor and detect anomalous traffic and mobility
patterns in the city to avoid incident such as 2014
Shanghai stampede.

Dynamic Region Segmentation
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Anomaly Detection

Health Informatics

Health informatics is informatics in health care. It is a
multidisciplinary field that uses health information
technology (HIT) to improve health care. The
disciplines involved include information science,
computer science, social science, behavioral science,
management science, and others. Our research
focused on detection anomalous genes, patients,
care plans, heatbeats in ECG, etc.

Disease Diagrams and Visualization

Visualizing
diseases and their
_complications

Detect and interpret
the anomalous cohorts

Anomaly detection (also outlier detection) is the identification of items, events or observations which do not conform to an
expected pattern or other items in a dataset. Visualization techniques are used for addressing two major challenges: (1)
there is no clear boundary between normal and abnormal and (2) the unavailable of ground truth or labelled data making

results validation difficult.




Voila: Visual Anomaly Detection and
Monitoring with Streaming Spatiotemporal Data
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Research Goal |

Urban computing Meteorology Public Health Surveillance

* Monitoring the dynamic streaming spatiotemporal data

* Detecting anomalous events in time
 Forecasting rare spatiotemporal events (future work)



System Overview

Statistical Analysis

Feature Extraction __ B

Indexing & Filtering

] ‘ ; Tensor Analysis &
, Anomaly Detection
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Tensor Based Anomaly Detection



Tensor based Anomaly Detection

S-1: Data Transformation

S-3: Dynamic Pattern Analysis
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Stage |: Data Transformation

Data Source
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Stage I: Data Transformation

T .
3 S § =
¢ L ol F I o
@ § Nk 7 *B HUNTS POIN
& & 4 g MoTTHAVEN
taR 7 L )
North Bérgen ﬁ’ » S
4 y/ é‘ K D
G
= 4 £ =
& ¥ & Z Sy
& / & o \2784 Rikers Island
« West Ng // 9, <& 5 L\
5 York / S 4 =
S SMREL o (
s E 25
Wm 3 20 p
City 3 R
s / 5 s STEINWAY
3 R @ ) L5
b <y H EAST SIDE &3
& £ % T
& ® %, g
2 & e
1gwken 4 W T oy
/ nER ACs) e nd Cenyrah
g HeLfs KTCHEN Al & Astor
/ & 5 Re,
S S Shter 3 T
; o woron HEIGHTS
AL S
iding © b
3 S D) aooselt Ave
2 oo ISLAND CITY SUNNYBIDE &y,
SF %,
S s,
4 ZERE | 2 w - e
CUNE 2 2 X
e of EAAE] 3 @ 5 A
5 L L MASPET] Laos
- Square Par
| ST % R
LOWER & GREENPOINT
L MANHATTA "ousr,
= P £ NP W
s ' MIDBIE
| 3 %‘ i sl
| “H £ (55 Metropoltan ave
New Yorkl = \
HRHTE
G=C Y N wiliamsaurc) *
3 @ e
: Brooklyn Bijdge. 2SS RIDGFWOOD
/ S
| 2 P




Stage I: Data Transformation
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Stage I: Data Transformation

Take temporal

Data Source information into consideration

& S WS
3 / SF E A &
RS & °& pra 3 7 £ HUNTS POIN ’ I I I I I I I I I
B & RN T
ol & o 3 vorsavpy
1falg / a5 | oo
North Bérgen “ffed \/‘g\

Ll
s m @ =
5 4 & - @ [
£ // s d (275 ) Rikers Island’ 1
f@West N¢g / %/ & c§ L\
£ York 4 S 2 4/\ |
y 4 srEl o (
dm 2 g ANHATTAN o /*/53) (14(\/

5
3 i
City S 4
/5] / / g m STEINWAY 2"_{
& g (7o easT
# 3 o UPPER 2\
N & H EAST SIDE = Cr
# Y @ 2
£7 Yo r—
dwken i © ¥ s s | and Gy [
7 MER 2 Ern B
by HeLfs kcen Y ASTORIA | & Ast :
/ FBTEAEE Ly 7 £
< 2 g ROCKeTelpr Center s
| sk =wash JACKSON o
S MibTOW
/ & 0 HEIGHTS °
. LY @) woookioe by
1] sdag w L
I Edpire state Bilding o ok b WA Q
I e WE isLafp CiTy SUNNYBIDE %,
/ =F il % (2’
T & o
e 5 P . ® —
FSAE| % @ ¥ &
2 & el
g Ofwashi % | wasper R | oee
Isquare Parl —
BT i ] e e,
ower | GREENPOINT
MANHATTA 10“3/0 e
s: o oW >

| s
I iy TIBOLE
: Z ¢
i “H 'ﬁﬂ K g5 Metropoftan Ave
] A
NeWw Yorkl | D £ ) n-l
| G Tie i Cimssunc] <
EN ) () =1Brooklyn Bridge. v\ﬁ“\“@ A
= 2 %, t3

S5y

tl

features




Data Source

5

1%

4O

=)
X

Stage I: Data Transformation

‘ \{q@l?;‘:y

IR

'S KITCHEN

0
D s‘?lu,

g,

52

seamk

MIDTOW

KB
ing ©

ZEREUE

TN

1S W69

region

Square Parl

Etog,
to

'5#{;,/

— —1
((( B
ﬁBrookiy’n‘B

feature

3-way tensor, with each
dimension respectively
represent region, feature,
and time




Stage |: Data Transformation

Data Source

ID/

region

(i, k
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Tensor Time Series
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Stage |: Data Transformation
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Stage Il: Expected Patten Analysis
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O@P: Super diagonal core tensor with the
diagonal elements indicates the
weight

P : # of latent patterns

A : The distribution of latent
patterns over regions

C : The distribution of latent
patterns over time

B : Pattern- Feature matrix that interprets
the meaning of the latent pattern
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Stage Il: Expected Patten Analysis
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Stage IlI: Extracting Dynamic Patterns
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Stage IV: Anomaly Detection
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Stage V: Visualization
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Showing Context: Expected Patterns
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Expected Patterns
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Showing Context: Expected Patterns
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Quantitative Evaluation
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What did we found ?
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Intelligent Big Data Visualization (iDV*) Lab

http://idvxiab.qgithub.i

iIDV* Lab

Intelligent Big Data Visualization Lab is
founded in 2016. It is an international
research lab focuses on design and
develop novel visualization, visual
analysis, and HCI techniques. The Lab
focused on develop novel visualization,
visual analysis, UX, and HCI technologies
to support anomaly detection and apply
them in a variety of application fields,
including internet security, smart city,
business intelligence, healthcare
informatics, and industry 4.0.

Visual Analytics
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1 1
Abstract Data Visual Form ' Vlew

-“ S i

vu&
Data Encoding and
Mining Layout

Visual analytics is "the science of
analytical reasoning facilitated by
interactive visual interfaces." It can
attack certain problems whose size,
complexity, and need for closely coupled
human and machine analysis may make
them otherwise intractable. Visual
analytics advances science and
technology developments in analytical
reasoning, interaction, data
transformations and representations for
computation and visualization, analytic
reporting, and technology transition. Asa
research agenda, visual analytics brings
together several scientific and technical
communities from computer science,
information visualization, cognitive and
perceptual sciences, interactive design,
graphic design, and social sciences.

|nteractlons

InfoSec

Our research of InfoSec focused on detecting
anomalous user behaviors such as intrusion
detection in Internet, fraud detection in finance, and
rob detection on social media.

Anomalous Collective Behaviors

Monitoring and Tracing of
Information Diffusion Process

Visual Analysis and
interpretation of anomalous
information spreading

Interpretation of Ego-Centric
Social Behaviors on Twitter

Visual Analysis System for
Detecting Social Media Users
with Anomalous User
Behaviors such as Bots

Smart City
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A smart city is an urban development vision to
integrate information and communication technology
and Internet of things technology in a secure fashion
to manage a city's assets. A smart city is promoted to
use urban informatics and technology to improve the
efficiency of services. Our research in this filed
focused on the public security problems in the city.
We aim to leverage visual analysis systems to
monitor and detect anomalous traffic and mobility
patterns in the city to avoid incident such as 2014
Shanghai stampede.

Dynamic Region Segmentation

=== Oer——

Anomaly Detection

Health Informatics

Health informatics is informatics in health care. It is a
multidisciplinary field that uses health information
technology (HIT) to improve health care. The
disciplines involved include information science,
computer science, social science, behavioral science,
management science, and others. Our research
focused on detection anomalous genes, patients,
care plans, heatbeats in ECG, etc.

Disease Diagrams and Visualization

Visualizing
diseases and their
_complications

Detect and interpret
the anomalous cohorts

Anomaly detection (also outlier detection) is the identification of items, events or observations which do not conform to an
expected pattern or other items in a dataset. Visualization techniques are used for addressing two major challenges: (1)
there is no clear boundary between normal and abnormal and (2) the unavailable of ground truth or labelled data making

results validation difficult.
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| ECG DATA

* At least 24-hour data
 Sample frequency 360Hz
* 360 * 24 * 60 = 518400
* Driver’s Behavior Data

* Normal heart rate ranging from
60 to 100 in a minute

e 80 *24 * 60 = 11520 heartbeats

A Hand-held ECG Halter Monitoring Recorder



| DEEP LEARNING

Convolution . Convolution Fully- soft
+ pooling Concatenation + pooling  connected oftmax
pr— gr— —_— pr— pr—
= == = = *RelU +RelU
r original 1
| I— —
Identity mapping | J
—_

{ Multi-Frequency

I S—
T Smoothing | Heartbeat
| | —_— I Classification
\ : 7 -

Down-sampling ( Multi-scale \
NP
AN

-_— o -

o e o s -

\_'_.l ! J

i
(2) Local Convolution Stage (3) Full Convolution Stage

L )
(1) Transformgtion Stage

Heartbeat Classification

Ventricular ectopic beats

Fusion ectopic Ibealts ‘

| A

e

Sinus beats
. E | e

Accuracy : 91.5%




| ECGLens

1
e ——————— m i
- | 7 ]
N Yy & Jameslee [ Oct 1949 L - ° H
2
l ! Y Heat Disease . 123-456-789 ;u- @ :
%M- o 1
= ° ”~ 1
= & o1 '. ® & ° 1
::% heaity gu . ‘} +
e én {’ 7 (-]
o7 e
o 7
03 o0s oS

%g..oo

Plntv: 81ms PAMP. QI2mV R AMP: 224 mV
PRIntv: 142ms ST SEG: 044mV QRS-C: 78ms
HR: 136bimin QT 443ms TAMP: Q.12mV

Qe

i |,

Color coding of A-glyph background

718 17 17 1. T -
Size by LOF value e Wit N ——— :
0000000 1 (@) | T ol [ | I I
Lass sbnomel More abnormal t.l‘ll!. 1 73 L : B 1831 s R 154 Less am" V More abnormal

ECGLens: Interactive Visual Exploration of Large Scale ECG Data for Arrhythmia Detection
ACM CHI 2018 (Honorable Mention Award)









Intelligent Big Data Visualization (iDV*) Lab

http://idvxlab.github.io

iIDV* Lab

Intelligent Big Data Visualization Lab is
founded in 2016. It is an international
research lab focuses on design and
develop novel visualization, visual
analysis, and HCI techniques. The Lab
focused on develop novel visualization,
visual analysis, UX, and HCI technologies
to support anomaly detection and apply
them in a variety of application fields,
including internet security, smart city,
business intelligence, healthcare
informatics, and industry 4.0.

Visual Analytics
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Visual analytics is "the science of
analytical reasoning facilitated by
interactive visual interfaces." It can
attack certain problems whose size,
complexity, and need for closely coupled
human and machine analysis may make
them otherwise intractable. Visual
analytics advances science and
technology developments in analytical
reasoning, interaction, data
transformations and representations for
computation and visualization, analytic
reporting, and technology transition. Asa
research agenda, visual analytics brings
together several scientific and technical
communities from computer science,
information visualization, cognitive and
perceptual sciences, interactive design,
graphic design, and social sciences.

InfoSec

Our research of InfoSec focused on detecting
anomalous user behaviors such as intrusion
detection in Internet, fraud detection in finance, and
rob detection on social media.

Anomalous Collective Behaviors

Monitoring and Tracing of
Information Diffusion Process

Visual Analysis and
interpretation of anomalous
information spreading

Interpretation of Ego-Centric
Social Behaviors on Twitter

Visual Analysis System for
Detecting Social Media Users
with Anomalous User
Behaviors such as Bots

Smart City
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A smart city is an urban development vision to
integrate information and communication technology
and Internet of things technology in a secure fashion
to manage a city's assets. A smart city is promoted to
use urban informatics and technology to improve the
efficiency of services. Our research in this filed
focused on the public security problems in the city.
We aim to leverage visual analysis systems to
monitor and detect anomalous traffic and mobility
patterns in the city to avoid incident such as 2014
Shanghai stampede.

Dynamic Region Segmentation

Anomalous Mobility Pattern Detection
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Anomaly Detection

Health Informatics

&80

Health informatics is informatics in health care. It is a
multidisciplinary field that uses health information
technology (HIT) to improve health care. The
disciplines involved include information science,
computer science, social science, behavioral science,
management science, and others. Our research
focused on detection anomalous genes, patients,
care plans, heatbeats in ECG, etc.

Disease Diagrams and Visualization

Visualizing
diseases and their
_complications

Detect and interpret
the anomalous cohorts

Anomaly detection (also outlier detection) is the identification of items, events or observations which do not conform to an
expected pattern or other items in a dataset. Visualization techniques are used for addressing two major challenges: (1)
there is no clear boundary between normal and abnormal and (2) the unavailable of ground truth or labelled data making

results validation difficult.










Interactive Visual Anomaly Detection
and its Application
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