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Abstract—The ability to continuously train Bayesian models in
streaming environments is highly important in the era of big data.
However, it has to face the famous stability-plasticity dilemma
and the problem of noisy and sparse data. We propose a novel and
easy-to-implement framework, called Infinite Dropout (iDropout),
to address these challenges. iDropout has an easy mechanism to
balance between old and new information, which allows models
to trade off stability against plasticity. Thanks to the ability to
reduce overfitting and the ensemble property of Dropout, our
framework obtains better generalization, thus effectively handles
undesirable effects of noise and sparsity. Further, iDropout is
able to adapt quickly to abnormal changes in data streams. We
theoretically analyze the equivalence of Dropout in iDropout to
a regularizer, well applied to a much larger context than what
was known before. Extensive experiments show that iDropout
significantly outperforms the state-of-the-art baselines.

Index Terms—Bayesian models, Data streams, Streaming learn-
ing, Dropout, Regularization

I. INTRODUCTION

We are interested in how to efficiently train a Bayesian model
in streaming conditions where the data comes continuously
and infinitely. Learning from data streams requires to address
the stability-plasticity dilemma [1], i.e., an algorithm should
keep the learned knowledge stable while enabling the model to
adapt well with sudden changes in the environments. Such a
dilemma is present in most continual learning systems. Further,
this learning process can be negatively affected by undesirable
properties of data, including noise, which potentially causes
overfitting, and sparsity, i.e., the situation when model does
not have enough relevant information to make good predictions
for unseen data. Our work focuses on these challenges.

Some recent studies [2]–[4] have provided excellent solu-
tions for learning from data streams. Those methods enable
Bayesian models, which are designed for static conditions, to
work with data streams. However, those methods are limited
when facing the above challenges. For example, we found that
streaming variational Bayes (SVB) [2] becomes too stable
after receiving a large enough amount of data. In other words,
SVB makes models evolve slowly and have difficulties learning
new information, thus fail to adapt sudden changes from the
data stream. This is a serious problem and potentially happens
in other methods, but has not been studied formally in any
research before. Further, existing methods do not have any
efficient way to deal with noisy and sparse data.

In this paper, we propose a novel framework called Infinite
Dropout (iDropout) which enables a wide range of models to
work in streaming environments. Our framework has several
benefits. Firstly, iDropout has an easy mechanism to balance
the information among old and new data throughout the data
stream, which helps tackle the stability-plasticity dilemma.
Secondly, we theoretically prove that Dropout in iDropout
plays as a data-dependent regularizer, which allows our method
to effectively overcome the overfitting issue. Moreover, with a
fast approximation via a scaling factor, Dropout in our method
works as an ensemble of an exponential number of learners,
which is very useful in making good predictions for future data.
These advantages help our method obtain better generalization.
This is extremely important when data comes continuously with
high uncertainty, which has the potential for sudden changes or
undesirable properties such as noise and sparsity. Furthermore,
our analysis about the role Dropout as regularization applies
well to a large class of Bayesian models, extending existing
works [5]–[10] to significantly wider contexts.

We did extensive experiments to compare iDropout with
existing frameworks, using two base models: latent Dirichlet
allocation (LDA) [11] for topic modeling and Naive Bayes
(NB) [12] for classification. Empirical results show that our
framework gives major improvements over existing state-of-
the-art streaming methods on both learning tasks.

ROADMAP: Section 2 briefly provides closely related work.
We formally describe the iDropout framework and its appli-
cations in Section 3. Non-trivial findings about iDropout are
described in Section 4. Finally, extensive evaluation appears
in Section 5.

II. RELATED WORK

Recently, a lot of effort has been made to adapt Bayesian
models from static conditions to streaming ones. Some work [2],
[4], [13] propose recursive updating of the variational dis-
tribution. Streaming variational Bayes (SVB) [2] uses the
variational parameter from preceding time step as the parameter
for the prior distribution of current time step. However, this
mechanism can be inappropriate in data streams, since the
variational parameter learned from past data may not describe
properly the property of current data. In particular, once given
enough data, SVB becomes too stable and thus unable to
learn new information from the data stream. To avoid this
problem, HPP [4] is proposed to exponentially forget the
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variational parameters associated with old data, where the
forgetting rate is considered as a hidden variable. Unfortunately,
the introduction of this new latent variable makes the model
no more conjugate, which requires non-trivial efforts to infer
for the complicated Bayesian models (when the forgetting
rate is considered a fixed hyperparameter, the method is
called SVB-PP). The second direction is to cast the inference
problem as a stochastic optimization problem. Stochastic
variational inference (SVI) [14] is a typical example. However,
SVI conditions on a fixed dataset to reveal the variational
distribution, which isn’t really appropriate in data streams.
Population variational Bayes (PVB) [3], a closely related
framework addresses this problem by assuming that the data
stream is generated by sampling α data points from the
population distribution Fα.

It is worth noting that none of these frameworks consider
seriously the problem of noise and sparsity, which are pervasive
in streaming environments. In order to address these problems,
we consider using Dropout [15], which is a well-known
stochastic regularization technique introduced in the context
of feed forward neural networks. The idea of Dropout is to
randomly omit a subset of features at each iteration of the
training process. Dropout has two great advantages: it prevents
models from overfitting by discouraging co-adaptation of
features and more especially, Dropout provides an efficient way
to approximately combine exponentially many models, working
as a form of ensemble learning. Dropout works well for various
machine learning methods, including neural networks [16],
support vector machine [17], matrix factorization [18] and
topic model [19]. The theory behind Dropout is considered
by some recent researches [6], [8]–[10], [20]. Particularly, [6]
shows that Dropout is equivalent to an L2 regularizer when
applied to generalized linear models.

III. INFINITE DROPOUT

In this section, at first we present the framework for a general
Bayesian model. After that, we explicitly describe applications
to LDA and NB to clarify our framework.

A. The framework

We consider a general model B(β, z, x) [3], [14] involving
observations, global variables and local variables. The global
variable is matrix β which has size K×V , shared among data
points x1:M , while local variable zi only governs ith data point
xi. In traditional Bayesian methods, we condition on a fixed
dataset to reveal the posterior distribution of hidden variables
p(β, z|x). Undoubtedly, this can not work with data streams
where the data come in an infinite sequence of minibatches
C = {D1, D2, · · · , Dt, · · · } and each minibatch t consists of
M observed data points: Dt = {xt1, xt2, · · · , xtM}.

We need to extend the model to also describe the dynamics
of the data stream. Here we assume that only the global variable
β evolves over time, which we indicate with superscript t, i.e.,
βt. We introduce a transition model p(βt|βt−1) to describe
the transformation between two consecutive time steps:

p(βtk|βt−1k ) = N (.|βt−1k , σ2I) (1)
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Fig. 1: Graphical representation for iDropout.

where k is the row index of βt−1 and I is the identity
matrix of size V . The variance σ2 is a hyperparameter, which
describes our assumption about the fluctuation of βk between
two consecutive time steps.

Dropout is utilized in our framework as follows. In each
time step t, we drop randomly a number of elements of matrix
βt. This is implemented by using a hyperparameter called drop
matrix πt to make element-wise product with βt, then going
through a transformation: β̃t = f(βt � πt). Transformation
f should be chosen to assure that β̃t can replace β in model
B(β, z, x) at each time step t (in the later subsections, we
use softmax to be the transformation). Given the new global
variable β̃t at each minibatch t, the generative process of all
data points is similar to the original model B (Fig. 1a). In order
to keep the randomness of Dropout, we use a different drop
matrix at each minibatch. Each element πtij of πt is generated
using one of two options:

1) Bernouli dropout: p(πtij = 1) = 1−dr, p(πtij = 0) = dr
2) Inverted dropout:

p(πtij = 1/(1− dr)) = 1− dr, p(πtij = 0) = dr (2)

in which dr is drop rate. Note that when βt is used at test
time, it has to be rescaled by E[πtij ]. By doing this scaling,
2K×V models with shared parameters can be combined into a
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Algorithm 1 Learning in iDropout

Require: Drop rate dr, variance σ2, data sequence
{D1, D2, · · · }
Ensure: Global variable β
Initialize β0 randomly.
for tth minibatch with data Dt do

Draw drop matrix πt randomly
Do inference w.r.t. the local variables z (e.g., by doing
inference or sampling), given βt and Dt

Estimate βt by using a gradient-based algorithm, given
the statistics from z,Dt

end for

single model to be used at test time, which works as a form
of ensemble learning.

Learning in iDropout is done at each minibatch t by
estimating βt through the posterior p(βt|βt−1, πt, Dt), where
βt−1 is learned from the previous minibatch:

p(βt|βt−1, πt, Dt) ∝ p(βt, Dt|βt−1, πt)
∝ p(βt|βt−1)p(Dt|πt, βt) ∝ p(βt|βt−1)p(Dt|β̃t)

In log form, we obtain:

F (βt) = log p(βt|βt−1, πt, Dt)

= log p(βt|βt−1) + log p(Dt|β̃t) + const (3)

The learning process is composed of two phases: infer local
variables and update global variables, respectively. While the
inference of local variables z is inherited from the original
model B (e.g., by using variational inference or sampling from
p(z|x, β̃t)), we focus on optimizing F with respect to βt. We
extract the component G(βt), which contains βt, from log-
likelihood log p(Dt|β̃t). Then, we obtain the objective function:
F (βt) = log p(βt|βt−1) + G(βt) and maximize it by using
a gradient-based method. Algorithm 1 briefly describes the
learning process.

B. Case study 1: when LDA is the base model

In this subsection, we show an application of iDropout to
latent Dirichlet allocation [11], which is used for document anal-
ysis. Suppose that each minibatch t consists of M documents
and each document d contains Nd words. Hyperparameter α is
the parameter of Dirichlet distribution (Dir) for topic mixture
θ, and the matrix β of size K × V is the topic distribution
over V words in the vocabulary.

The generative process of documents in each minibatch tth

is as follows (Fig. 1b).
1) Draw the global variable βt: βtk ∼ N (βt−1k , σ2I)
2) Calculate the topic distribution matrix:

β̃tkj = softmax(βtk � πtk)j =
exp(βtkjπ

t
kj)∑V

i=1 exp(β
t
kiπ

t
ki)

3) For each document d in minibatch t:
a) Draw topic mixture: θd ∼ Dirichlet(α)

Algorithm 2 iDropout training for LDA

Require: Prior α, drop rate dr, variance σ2, data sequence
{D1, D2, · · · }
Ensure: Global variable β
Initialize β0 randomly.
for tth minibatch with data Dt do

Draw drop matrix πt randomly
for each document d in Dt do

Infer (γd, φd) by alternatively updating (4) and (5)
end for
Find each βtk by maximizing (6)

end for

b) For nth word in document d:
i) Draw topic index: zdn ∼Multinomial(θd)

ii) Draw word: wdn ∼Multinomial(β̃tzdn)

Learning process: As in Algorithm 1, we estimate βt

through the log-posterior:

log p(βt|βt−1, πt, α,Dt)

= log p(βt|βt−1) + log p(Dt|β̃t, α) + const

As mentioned above, inference for local variables θ and
z can be done by utilizing different inference methods,
including variational inference and Gibbs sampling. In the
experiments, we use mean-field variational inference as in the
original paper [11]. For each document d: q(θd, zd|γd, φd) =
q(θd|γd)

∏
n∈[Nd]

q(zdn|φdn) with the variational distribution:
q(θd|γd) = Dir(.|γ) and q(zdn|φdn) = Mult(.|φdn), where
γd and φd are variational parameters. According to [11], these
parameters for each document d are updated until convergence
as follow:

γdk ← αk +

Nd∑
n=1

φdnk for k = 1, · · · ,K (4)

φdnk ∝ exp(Eq[log θdk] +
V∑
v=1

I[wdn = v] log βkv) (5)

where [V ] = {1, · · · , V }, I[.] is the indicator function.
Extracting G(βt) from log p(Dt|β̃t, α), we obtain the objective
function. Since the topics are independent of each other, we
only consider the objective function with respect to βtk:

F (βtk) = log p(βtk|βt−1k ) +

M∑
d=1

Nd∑
n=1

log p(wdn|zdn, β̃t)

=− 1

2σ2
||βtk − βt−1k ||2 +

M∑
d=1

Nd,V∑
n,j=1

φdnkI[wdn = j] log β̃tkj

=− 1

2σ2
||βtk-βtk−1||2 +

M∑
d=1

Nd,V∑
n,j=1

φdnkI[wdn = j]βtkjπ
t
kj

−
M∑
d=1

Nd,V∑
n,j=1

φdnkI[wdn = j] log(

V∑
i=1

exp(βtkiπ
t
ki)) (6)
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The objective function F is guaranteed to be concave. In
deed, − 1

2σ2 ||βtk − β
t−1
k ||2 and βtkjπ

t
kj are obviously concave

with respect to βtk, while the log-sum-exp is also a well-known
convex function. Therefore, F (βtk) is concave with respect to
βtk, and we can find its maximum by applying gradient ascent
on F . We sum up the learning algorithm of iDropout for LDA
in Algorithm 2.

C. Case study 2: when NB is the base model

We use Multinomial Naive Bayes (NB) [12] for document
classification. Suppose that each minibatch consists of M
documents, each document d contains Nd words and belongs
to a class cd ∈ {1, 2, · · ·C}. Each cd is generated by:
cd ∼ Mult(α) in which α is a fixed symmetric vector, and
finally β of size C × V is the class distribution over V words
in the vocabulary.

The generative process for each minibatch t is as follows.
Firstly, draw the global variable βt: βtc ∼ N (βt−1c , σ2I) and
calculate the class matrix: β̃tcj = softmax(βtc � πtc)j . Each
document d is drawn by first choosing the class label cd ∼
Mult(α) and then drawing nth word wdn ∼Mult(β̃tcd).

Learning process: From (3), we extract the term associated
with βt for each class c:

F (βtc) = log p(βtc|βt−1c ) +
∑
d∈Dt

c

Nd∑
n=1

log p(wdn|cd, β̃t)

=− 1

2σ2
||βtc − βt−1c ||22 +

∑
d∈Dt

c

Nd∑
n=1

V∑
j=1

I[wdn = j] log β̃tcj

=− 1

2σ2
||βtc − βt−1c ||22 +

∑
d∈Dt

c

Nd∑
n=1

V∑
j=1

I[wdn = j]βtcjπ
t
cj

−Nc log(
∑
i∈[V ]

exp(βtciπ
t
ci)
)

where Dt
c includes all documents which belong to class c, Nc

is the total number of words in all documents belonging to
class c. Learning for NB is very simple. At each minibatch t,
we use gradient ascent to maximize F (βtc) with respect to βtc.

IV. DISCUSSIONS ABOUT IDROPOUT

This section shows our non-trivial findings about iDropout.
We compare the behavior of iDropout and other frameworks
for data streams, and also consider the theory behind the effect
of Dropout.

A. The stability-plasticity dilemma

In this subsection, we investigate how different streaming
learning frameworks trade off stability against plasticity in
models similar to LDA1, i.e., how they balance between old
and new information from data streams. In particular, SVB [2]
uses the variational parameter of the global variable βt at time
step t, which we denote by λt, as the parameter in the Dirichlet
prior distribution at time step t+ 1. In other words, for each

1Such models require the global variable β to be in a simplex, e.g., NB.

k ∈ {1, · · · ,K}, βt+1
k has the prior distribution Dir(βt+1

k |λtk).
Then we have:

Theorem 1. In SVB: EDir[βt+1
kj ] = βtkj and VarDir[βt+1

kj ]→ 0
as t→∞.

Proof. SVB [2] proposes recursive updating of the variational
distribution. For LDA (conjugate models, exponential family,
i.i.d. data), the variational parameter λt of global variable βt

is updated by: λt = λt−1 + λ̃t, where λt−1 is made available
from the previous minibatch and λ̃t is the learned information
from the current minibatch. In other words, λt is addition of
the learned information from all previous steps:

λt = λ̃t + · · ·+ λ̃1 + λ0

where:

‖|λ̃t‖|1 =

K∑
k=1

V∑
j=1

λ̃tkj =
∑
d∈Dt

Nd∑
n=1

K∑
k=1

V∑
j=1

φdnkI[wdn = j]

=
∑
d∈Dt

Nd∑
n=1

K∑
k=1

φdnk =
∑
d∈Dt

Nd ≥ 1

Therefore, ||λt||1 =
∑T
i=1

∑
d∈Dt Nd ≥ t, which approaches

infinity as t goes to infinity. When a new minibatch t+1 arrives,
λt will be used as the parameter of the prior: p(βt+1

k |λtk) =
Dir(.|λtk). This distribution has the expectation:

EDir[βt+1
k ] ∝ λtk = βtk

and the variance:

Var[βt+1
kj ] =

λtkj(
∑V
i=1 λ

t
ki − λtkj)

(
∑V
i=1 λ

t
ki)

2(
∑V
i=1 λ

t
ki + 1)

which varies inversely with size of λtk. As t→∞, leading to
||λt||1 →∞, we have Var[βt+1

kj ]→ 0.

This problem is potentially present in SVB-PP [4], albeit
λt takes longer to accumulate: λt = ρλt−1 + (1 − ρ)η + λ̃t,
where ρ is the forgetting factor (0 < ρ < 1) and η is the
uninformative prior.

When this happens, SVB and SVB-PP expect the model at
time t+ 1 to be nearly identical to the model at time t. This
phenomenon essentially says that a model will evolve very
slowly and have difficulties in learning new information, thus
could not deal well with sudden changes in the environment.

iDropout does not encounter this problem. In iDropout, we
have an easy mechanism to balance the information between
old and new data. Indeed, to maximize the objective function
F (βtk) = − 1

2σ2 ||βtk − β
t−1
k ||22 + log p(Dt|β̃tk) in (3), we need

to consider both components. While the first term encourages
new model βt to fluctuate around the previously learned βt−1,
the latter allows model to accommodate information from new
data Dt. In other words, iDropout helps model to flexibly learn
new information, while retaining relevant information from
historical observations to maintain the stability.

The balance ability of iDropout is easily controlled by the
variance σ2. The bigger σ2 is, the more we focus on learning
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new information, rather than keeping old information, and
vice versa. This balance is unchanged throughout the learning
process. Unlike iDropout, SVB and SVB-PP cannot control
this balance. Particularly, in LDA, SVB and SVB-PP becomes
too rigid and unable to learn new information after receiving
a large amount of data, due to the reason mentioned above.

B. The role of Dropout in iDropout

In streaming environments, the problem of noisy and sparse
data is unavoidable. Specifically, learning from noisy data
potentially makes models become overfitting, while sparsity in
data may not provide enough relevant information to make good
predictions for unseen data, both leading to poor performance.

To overcome these challenges, we propose to utilize Dropout
by omitting randomly a number of elements of the global
variable βt at each time step t. Dropout in our framework has
two main roles. Firstly, we theoretically prove that it plays as a
data-dependent regularizer, which makes iDropout more robust
against overfitting. Moreover, in our framework, Dropout is
used throughout the data stream, leading to a special effect,
which is ensemble learning. Indeed, at each time step in training
process, the use of Dropout is equivalent to sampling a single
learner from a set of 2K×V possible learners. Then, by rescaling
βt with E[πt], 2K×V learners with shared parameters can be
combined into a single learner to be used at test time.

The ability to prevent overfitting and the ensemble property
make iDropout have better generalization on future data, which
is specially important in streaming learning, because data
streams can be non-stationary and have high uncertainty.

C. Dropout as regularization

We examine the theory behind the effect of Dropout in
iDropout for two models LDA and NB.

Theorem 2. For LDA and NB, Dropout in iDropout is
equivalent to a L2-regularization R(β):

R(β) =
dr

2(1− dr)

K∑
k=1

V∑
j=1

[
µkj(1− µkj)

V∑
i=1

ukj

]
β2
kj

in which µkj is the model probability and:

ukj =



M∑
d=1

Nd∑
n=1

φdnkI[wdn = j] in LDA

∑
d∈Dt

c

Nd∑
n=1

I[wdn = j] in NB

Proof. The learning process at each minibatch in iDropout for
LDA and NB reduces to maximizing the objective function of
the following form:

F = − 1

2σ2
||βk − βprevk ||22 +

V∑
j=1

ukj log
(
softmax(βk � πk)j

)
where βprevk is made available from the previous minibatch
(we omit superscript t for simplicity) and ukj is defined as in
the statement of the theorem.

Consider x1, · · · , xK as K-dimension one-hot vectors (xk
has only kth element activated) and β = [β1β2 · · ·βV ] where
βj is jth column of matrix β, then:

softmax(βk)j = exp(skj −A(sk))

with skj = βTj xk is a undropped score value and A(sk) =

log
∑V
i=1 exp(ski) is the log-partition function.

Assume π is drawn from the distribution ζ, corresponding
the Inverted Dropout: p(πij = 1/(1− dr)) = 1− dr, p(πij =
0) = dr, then Eζ [πkj ] = 1, and:

softmax(βk � πk)j = exp(s̃kj −A(s̃k))

with s̃kj = (βi � πi)Txk, A(s̃k) = log
∑V
i=1 exp(s̃ki).

Using this notation, we can write F as:

F = − 1

2σ2
||βk − βprevk ||22 +

V∑
j=1

ukjEζ [s̃kj −A(s̃k)]

Since Eζ [πkj ] = 1 so the dropout technique preserves mean,
leading to Eζ [s̃kj ] = skj , then we have:

Eζ [s̃kj −A(s̃k)] = skj −A(sk)− (Eζ [A(s̃k)]−A(sk))
= softmax(βk)j − (Eζ [A(s̃k)]−A(sk))

Then we can write:

F =− 1

2σ2
||βk − βprevk ||22 +

V∑
j=1

ukj log
(
softmax(βk)j

)
− (Eζ [A(s̃k)]−A(sk))

V∑
j=1

ukj

Since the log-partition function A(.) is convex, (Eζ [A(s̃k)]−
A(sk)) is always positive by Jensen’s inequality and can there-
fore be interpreted as a regularizer. Indeed, applying second-
order Taylor approximation to A(s̃k) around the undropped
score vector sk, we have means and covariances of the dropout
features:

A(s̃k) = A(sk) +∇A(sk)T (s̃k − sk)

+
1

2
(s̃k − sk)T∇2A(sk)(s̃k − sk)

then we obtain a following regularizer:

Eζ [A(s̃k)]−A(sk) =
1

2
Eζ [(s̃k − sk)T∇2A(sk)(s̃k − sk)]

=
1

2
Tr[∇2A(sk)Covζ(s̃k)] =

1

2

V∑
j=1

µkj(1− µkj)Varζ [s̃kj ]

=
1

2

V∑
j=1

µkj(1− µkj)βTj Covζ(xk)βj

where µkj = softmax(sk)j is the model probability, the
variance µkj(1− µkj) measures model uncertainty, and

βTj Covζ(xk)βj =
K∑
m=1

dr

1− dr
x2kmβ

2
mj =

dr

1− dr
β2
kj

129



0 10 20 30
Minibatch

−8.7

−8.6

−8.5

−8.4

−8.3

−8.2
Lo

g 
Pr
ed

ict
iv
e 
Pr
ob

ab
ilit

y 20New group 

0 20 40 60
Minibatch

−8.0

−7.8

−7.6

−7.4

Lo
g 
Pr
ed

ict
iv
e 
Pr
ob

ab
ilit

y TMN

0 20 40
Minibatch

−8.2

−8.0

−7.8

−7.6

Lo
g 
Pr
ed

ict
iv
e 
Pr
ob

ab
ilit

y Grolier

0 20 40
Minibatch

−8.4

−8.2

−8.0

−7.8

−7.6

Lo
g 
Pr
ed

ict
iv
e 
Pr
ob

ab
ilit

y TMN-title

0 50 100
Minibatch

−8.8

−8.6

−8.4

−8.2

−8.0

Lo
g 

Pr
ed

ict
iv

e 
Pr

ob
ab

ilit
y Yahoo-title

0 100 200 300
Minibatch

−8.8

−8.6

−8.4

−8.2

−8.0

−7.8

Lo
g 

Pr
ed

ict
iv

e 
Pr

ob
ab

ilit
y NYT-title

0 10 20 30
Minibatch

0.05

0.10

0.15

NP
M
I

20Newsgroups

0 20 40 60
Minibatch

−0.20

−0.15

−0.10

−0.05

0.00

NP
M
I

TMN

0 20 40
Minibatch

0.15

0.20

0.25

0.30

NP
M
I

Grolier

0 20 40
Minibatch

−0.75

−0.70

−0.65

−0.60

NP
M
I

TMN-title

0 50 100
Minibatch

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

NP
M
I

Yahoo-title

0 100 200 300
Minibatch

−0.3

−0.2

−0.1

0.0

NP
M
I

NYT-title

SVB SVB-PP PVB dr = 0.35 dr = 0.25 dr = 0.15 dr = 0

Fig. 2: Performance of 4 methods. iDropout uses drop rate dr ∈ {0.35, 0.25, 0.15, 0} and σ2 = 100. LDA is the base model.
Higher is better.

Hence, Eζ [A(s̃k)]−A(sk) = dr
2(1−dr)

∑V
j=1 µkj(1− µkj)β2

kj

has quadratic format w.r.t βk. In other words, the effect of
Dropout in iDropout is equivalent to a L2-regularization R(β):

R(β) = (Eζ [A(s̃k)]−A(sk))
V∑
j=1

ukj

=
dr

2(1− dr)

V∑
j=1

[
µkj(1− µkj)

V∑
j=1

ukj

]
β2
kj .

This is a theoretical interpretation on the ability of iDropout
to reduce overfitting. Unlike other regularization techniques,
each βkj in iDropout has a different regularization parameter

dr
2(1−dr)µkj(1− µkj)

∑V
j=1 ukj , depending on the input data.

This is interesting, since this data-dependent regularization
allows each βkj to have its own search space to catch the
geometric property of data. With this property, dropout in our
method is more effective than other standard computationally
inexpensive regularizers, such as weight decay, filter norm
constraints and sparse activity regularization [21].

V. EMPIRICAL EVALUATION

In this section, we conduct various experiments to evaluate
the performance of iDropout. Firstly, we simulate the streaming

environment using 6 non-chronologically ordered datasets to
thoroughly investigate the behavior of different methods on two
aspects: how they balance between old and new information
from data streams, as well as their ability to deal with noise and
sparsity. Additionally, we examine how these methods adapt
with sudden changes from the data stream in two settings: (1)
using a dataset with time stamp; (2) simulating concept drift.

A. Baselines

We compare iDropout with three state-of-the-art frameworks:
SVB [2], SVB-PP [4]2 and PVB [3]. We use grid search to
select the best version of each framework for each dataset.
The range of each parameter is as follows: the forgetting
factor ρ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.99} for SVB-PP, the popu-
lation size α ∈ {103, 104, 105, 106, 5.103, 5.104, 5.105, 5.106}
and dimming factor κ ∈ {0.5, 0.6, 0.7, 0.8, 0.9} for PVB,
the variance σ2 ∈ {0.01, 0.1, 1, 10, 100} and the drop rate
dr ∈ {0, 0.15, 0.25, 0.35} for iDropout.

B. Experiments on datasets without time stamp

Base model and datasets: We use LDA to analyze 6
popular corporas including 2 regular text datasets (20News-

2SVB-HPP is not included since its application requires non-trivial efforts.
Further, as observed by [4], SVB-HPP is often comparable to the best SVB-PP.
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TABLE I: 6 datasets without time stamp

Dataset Vocab size Training size Testing size words/doc

20Newsgroups 24905 17846 1000 88.2
Grolier 15269 23044 1000 79.9
TMN 11599 31604 1000 24.3
TMN-title 2823 26251 1000 4.6
Yahoo-title 21439 517770 10000 4.6
NYT-title 46854 1664127 10000 5.0

Groups, Grolier3) and 4 short text ones (TagMyNews (TMN)4,
TagMyNews-title (TMN-title), Yahoo-title, NYT-title 5) with
some statistics in Table I.

Settings: Since all 6 datasets are not chronologically ordered,
we simulate the streaming environment by dividing each dataset
into a sequence of minibatches with batchsize: 500 for {Grolier,
20Newsgroups, TMN, TMN-title}, 5000 for {NYT-title, Yahoo-
title}. We set prior of topic mixture α = 0.01, the number of
topic K = 50 for {Grolier, 20Newsgroups, TMN, TMN-title},
K = 100 for {NYT-title, Yahoo-title}.

Evaluation metric: Log predictive probability [14] (LPP)
and Normalized pointwise mutual information (NPMI) [22]
are used. While LPP measures the generalization of a model
on unseen data, NPMI is used to examine the coherence and
interpretability of the learned topics. The details of computing
two metrics are given in the Appendix.

Result: The result is shown in Fig. 2. Overall, iDropout
outperforms the baselines on all datasets, even when dr = 0.
This observation essentially shows that iDropout has a more
effective mechanism to balance information than other methods.
More specifically, we figure out that methods have different
behaviors on different types of datasets:

1) For two long text datasets 20NewsGroups and Grolier:
||λt||1 =

∑T
i=1

∑
d∈Dt Nd accumulates very fast over time,

making SVB and SVB-PP become too stable with a very high
rate, following Theorem 1. As a result, models have difficulties
learning new information, explaining why the performance of
these methods is roughly unchanged. PVB does not encounter
this problem since it assumes the data stream is generated
from a population distribution Fα, where the sample space
is controlled by population size α, thus has a considerable
evolution over time. It is also worth noting that training on these
two datasets does not encounter seriously the problem of noise
and sparsity, which explains why iDropout with different drop
rate dr does not make a noticeable performance improvement.

2) In 4 short text datasets, there are two typical properties
present in the data stream: noise and sparsity. While statistical
noise potentially causes overfitting, sparsity leads to the lack of
relevant information to make good predictions. Since the three
baseline methods and iDropout with dr = 0 do not have an
efficient way to tackle these serious problems, they all have poor
performance over time. By contrast, iDropout with dr 6= 0 has
a superior performance. This is achieved by two advantages of

3https://cs.nyu.edu/∼roweis/data.html
4http://acube.di.unipi.it/tmn-dataset/
5http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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Fig. 3: Sensitivity of iDropout w.r.t variance σ2.
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Dropout. Firstly, it plays as a data-dependent regularizer, which
makes iDropout more robust against overfitting. Moreover,
Dropout in our method can be regarded as an ensemble of
exponentially many learners, which is a well-known solution
to make better predictions for sparse data.

Fig. 3 shows the sensitivity of iDropout w.r.t σ2. 20News-
groups (long text) and TMN-title (short text) are used for
this evaluation, and the settings are the same as above. We
can see that the variance affects the performance of iDropout
significantly. Depending on the characteristics of data, there
will be a trade-off between learning new information and
keeping old information at early steps, corresponding to whether
big or small values of σ2 give better initial performance. In
general, this hyperparameter needs to be tuned carefully in
different datasets to obtain the best result. However, we suggest
that σ2 = 100 can be a good starting point, since this value
gives fairly good performance on almost all datasets in our
experiments.

C. Experiments on datasets with time stamp

Base model and datasets: We use the popular The Irish
Times dataset6, which is chronologically ordered to perform two
different tasks: topic modeling using LDA and classification
using Naive Bayes. In the LDA experiment, we simply throw
away labels and use K = 100 and α = 0.01. The Irish Times
corpus contains 1376099 data instances from 02/01/1996 to
31/12/2017. There are 6 classes and vocab size is 25328.

Settings: Since the dataset is chronologically ordered, we
divide the whole dataset into minibatches such that each
minibatch Dt contains data of month t. We use documents

6https://www.kaggle.com/therohk/ireland-historical-news/
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Fig. 5: Classification accuracy on The Irish Times
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Fig. 6: Sensitivity of iDropout w.r.t variance σ2 on the
classification task

of the next minibatch (month) to evaluate the model at any
minibatch.

Evaluation metric: We use LPP to evaluate the learned
topic model in LDA and accuracy to evaluate the classification
performance.

Result on LDA: The result is shown in Fig. 4, in which
iDropout uses σ2 = 100. It is easy to find that our framework
has a significantly better performance in comparison to other
streaming Bayesian learning methods. With dr = 0, iDropout is
still slightly better than the baselines, which again demonstrates
the effectiveness of the balance mechanism of iDropout. We
can also see that SVB suffers from the serious overfitting
problem and has the severe decline in performance later. This
is explained by Theorem 1, SVB becomes too stable after
receiving a large enough amount of data, which makes model
not able to learn new information, therefore fail to adapt to the
change of data. The Irish Times is a short-text dataset, which
contains undesirable properties, esepecially noise and sparsity.
Same as in the previous experiment, the three baseline methods
and iDropout with dr = 0 encounter the overfitting problem
and have a decrease in performance over time. Then, thanks
to the ability to prevent overfitting and the ensemble property,
Dropout helps our method to obtain better generalization and
thus effectively handles negative effects of noisy and sparse
data. More specific, iDropout with dr = 0.25 and dr = 0.35
has a significant improvement over the baselines. This result
strengthens our argument about the efficiency of Dropout in
our method.

Result on NB: Fig. 5 shows the classification performance
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of four methods. While iDropout with σ2 = 1, dr = 0.25
achieves the highest result on nearly the whole data stream,
better about 6−8% than SVB and about 3−4% than SVB-PP
and PVB, iDropout with dr = 0 only has a similar performance
compared to SVB-PP and PVB. This continues to strengthen
our argument that Dropout plays an important role in our
method. Furthermore, there is a period of time when the
performance of all methods drops (about 175th minibatch) due
to sudden changes in the data stream. Thanks to the balance
ability and the effect of Dropout, iDropout (even with dr = 0)
does not fall too deep and can recover quickly to keep leading
on the remaining minibatches.

Fig. 6 shows the impact of variance σ2 on the performance
of iDropout. More specific, we show the classification results
of iDropout on The Irish Times dataset with different values
of σ2. Looking at Figure 6, we can see that σ2 = 1 gives the
best performance, better about 5% compared to σ2 = 0.01.
This a significant difference, suggesting that we need to tune
this hyperparameter carefully.

D. Evaluation on concept drift

Concept drift [23] is the phenomenon when the underlying
distribution of data changes suddenly. We conduct this experi-
ment to examine our argument about the stability and plasticity
dilemma in IV-A, especially the ability to adapt abrupt changes
in the data stream.

Setting up: We simulate concept drift by using The Irish
Times dataset as follow: data is divided into minibatches, each
minibatch contains 2000 documents of a particular class and
all minibatches of the same class are placed adjacent to each
other. Therefore, the concept drift happens significantly when
data transfers from one class to another. We then use LDA with
K = 100 and α = 0.01 to analyze these documents without
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information from labels. After learning on each minibatch, the
model is evaluated by computing LPP on the next minibatch.

Result: The result is illustrated in Fig. 7, in which top
four figures zoom in the first four drift points, i.e., where the
data stream transfers from a class to another. SVB performs
poorly when facing concept drift. The performance of SVB
plunges after each drift point and recovers slowly due to its too
much stability discussed in Theorem 1. SVB-PP can delay this
problem by exponentially forgetting the information of old data,
which allows it to adapt better new information from new data.
PVB can also adapt to concept drift, since the variance of the
variational posterior never decreases below a given threshold
indirectly controlled by population size α. Finally, iDropout
provides the best result (we continue to use variance σ2 = 100).
The ability to reduce overfitting and the ensemble property
of Dropout allows iDropout to obtain better generalization,
thus prevent the performance from falling too deeply when
facing concept drift. Moreover, the balance mechanism enables
iDropout to easily learn new underlying distribution of data,
which incorporates with the ensemble learning to help our
method adapt quickly to these new changes in data.

VI. CONCLUSION

We presented iDropout, a novel and straightforward frame-
work to address many challenges of learning in streaming
conditions. In particular, iDropout helps Bayesian models to
tackle the stability-plasticity dilemma and handle noisy and
sparse data. Further, iDropout is able to adapt quickly to
abnormal changes in data streams. iDropout can be used for a
wide range of models.
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APPENDIX
EVALUATION METRICS FOR THE UNSUPERVISED TASK

Log Predictive Probability [14]: Predictive Probability
measures the predictiveness and generalization of a model
on new data. Assume that after learning from training data
Dtrain, we obtain the model parameter β. For each document
in testing Dtest with more than or equal to 5 words, we divide
randomly into two disjoint parts wobs and who with a ratio of
80:20. We next do inference for wobs to estimate θobs. Then,
we approximate the predictive probability who as:

p(who | wobs, β) =
∏

w∈who

p(w | wobs, β)

≈
∏

w∈who

p(w | θobs, β)

=
∏

w∈who

K∑
k=1

p(w | z = k, β)p(z = k | θobs)

=
∏

w∈who

K∑
k=1

θobsk βkw

Then Log Predictive Probability of each document d is:

LPPd =
log p(who | wobs, β)

|who|
(7)

(with |who| is the length of d in who) and on the whole testing
Dtest is:

Log Predictive Probability =

∑
d∈Dtest

LPPd

|Dtest|
(8)

Log Predictive Probability was averaged from 5 random splits,
each was on 1000 documents.

Normalized Pointwise Mutual Information [22]: NPMI
is the measure to help us see the coherence or semantic
quality of individual topics. For each topic k, we pick a set
wk = {wk1 , wk2 , ..., wkt }, including t words with the highest
probabilities in topic distribution βk. NPMI of one topic k is
computed as follows:

NPMI(k,wk) =
2

t(t− 1)

t∑
i=2

i−1∑
j=1

log
p(wk

i ,w
k
j )

p(wk
i )p(w

k
j )

− log p(wki , w
k
j )

≈ 2

t(t− 1)

t∑
i=2

i−1∑
j=1

log
D(wk

i ,w
k
j )+10−2

D − log
D(wk

i )D(wk
j )

D2

− log
D(wk

i ,w
k
j )+10−2

D

=
2

t(t− 1)

t∑
i=2

i−1∑
j=1

−1 +
2 logD − logD(wki )− logD(wkj )

logD − log(D(wki , w
k
j ) + 10−2)

where D is the total number of documents, D(wki ) is the
number of docs containing wki , D(wki , w

k
j ) is the number of

docs containing pair (wki , w
k
j ).

Overall, NPMI of a model with all K topics is:

NPMI =
1

K

K∑
k=1

NPMI(k, t) (9)

In the experiments, we choose t = 20 for each topic.
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