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Abstract—Air pollution has become an important factor con-
straining city development and threatening public health in
recent years. Air pollution prediction has been considered as the
key part for the early warning of pollution event. Considering the
multi-scale nature of geo-sensory data such as air pollution signal,
in this paper we adopt a multi-level graph data structure for
better utilization of multi-scale spatio-temporal information. We
further present a novel deep convolutional neural network model,
named Multi-Scale Spatial Temporal Network (MSSTN), for the
learning task on this data structure. The MSSTN is specially
designed to better discover multi-scale spatial temporal patterns
and their high-level interactions, by explicitly using multi-scale
neural network structure in both spatial and temporal compo-
nent. We conduct extensive experiments and ablation studies on
Urban Air Pollution Datasets in North China, where the MSSTN
can make hourly PM2.5 concentration predictions jointly for a
number of cities. And our results shows an outstanding prediction
accuracy as well as high computational efficiency compared to
existing works.

Index Terms—Air Pollution Prediction, Multi-scale Model,
Spatial-Temporal Neural Network

I. INTRODUCTION

In recent years, the public and the governments have become
increasingly concerned about air quality issues, because air
pollution can have negative impact on public health as well
as city development. Under this circumstance, there is a great
need to make accurate air pollution predictions, with which
the government can do further pollution analysis, release early
warnings, and adopt emergency actions. And citizens can
also plan their outdoor activities in advance. In particular,
predictions at different spatio-temporal scales can be helpful
in various scenario, i.e. take appropriate measures to deal with
pollution events of different scales. And therefore the damage
caused by air pollution can be significantly reduced [18].

The multi-scale nature is an ubiquitous feature of geo-
sensory systems like air pollution monitoring systems, from
both spatial and temporal aspects. For instance, there exist
short-term fluctuation, mid-term periodicity and long-term
trend in temporal aspect, city-scale pattern and region-scale
transportation in spatial aspect. There also exist more com-
plicated spatio-temporal interactions, which can be especially
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complicated. It is well acknowledged that this multi-scale
phenomena is the complex result of factors at various scales,
temporally from seasonal changes to daily periodicity, and
spatially from atmospheric circulation to street-level diffusion.
An example from real world air pollution monitoring datasets
is illustrated in Figure 1 (a)(b), where the multi-scale nature
is clearly shown in both spatial and temporal viewpoint. And
therefore the appropriate explicit multi-scale modeling is of
great necessity and is the key to better prediction accuracy.

There have been extensive related researches explored by
scholars of various disciplines. On the one hand, after the
great achievement in atmospheric physics and its success-
ful application in weather forecast, a number of numerical
physical models have been proposed [4, 13] to predict air
pollution. These models usually refer to an interpretable phys-
ical simulations. However, physical models are suffered from
prediction accuracy, computational cost, and transferability, as
air pollution is heavily influenced by human activities and
local conditions which are hard to be modeled physically. On
the other hand, with the rapid development of big data and
machine learning, data-driven models are attracting more and
more attention [12, 23]. Though numerical physical models
have great interpretability, data-driven models are becoming
popular because of high computational efficiency as well as
high accuracy. Recently a lot of deep learning models for air
pollution prediction have been proposed, focusing on from
time series modeling to utilization of spatial information. It
is well acknowledged that explicit modeling that fits data
characteristic can significantly improve the performance of
deep learning models, for instance, CNNs explicitly model
the local correlations in images and so dominate many tasks
in computer vision. However, most of existing deep neural
network solutions neglect the multi-scale nature of air pol-
lution signals, and designed deep models lack the capability
of capturing multi-scale patterns in the data, which leads to
degradation to the performance.

In order to address challenges above, in this paper we adopt
a multi level graph data structure for air pollution monitoring
systems. And we further propose a novel deep convolutional
neural network, called Multi-Scale Spatial Temporal Network
(MSSTN), for the air pollution prediction task in one end-
to-end framework. The architecture of MSSTN is specially978-1-7281-0858-2/19/$31.00 © 2019 IEEE
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Fig. 1. (a)The distribution of sensors in a geo-sensory systems. Each cross stands for a air pollution monitoring stations in the Urban Air Pollution Datasets
in North China. The distance between sensors in a city is at scale of 1km while the distance between cities can be at scale of 100km. This is a example of
spatial multi-scale property because sensors are usually clustered in cities while cites are sparsely distributed. (b)The illustration of sensor reading as a time
series. Here we use temperature reading to show the temporal multi-scale property where signal shows long term trend at scale of 1 year and periodicity at
scale of 1 day as well as fluctuation at scale of 1 hour. (c)The illustration of data structure and notations. The proposed data structure can be abstracted from
the distribution of sensors. Air pollution sensors in a region can be clustered as a multi-level graph. In a city-scale graph (Ga), each node stands for an air
pollution sensor. And in a region-scale graph (G�), each node stands for a city.

designed to better deal with the multi-scale nature of air
pollution data, also considering the dynamic, non-linear and
spatio-temporal characteristic of the data. The proposed model
can learn short-term/long-term temporal dependencies, city-
scale/region-scale spatial patterns, and their interactions in a
joint manner, providing better air pollution prediction accu-
racy.

The MSSTN is a full convolutional neural network consist-
ing of three subnets, named T-Net that extracting multi-scale
temporal features, S-Net that extracting multi-scale spatial
features, and F-Net that make fusion of information and give
final predictions. We use a collection of dilated convolutional
networks (DCNs) as T-Net, whose receptive field grows expo-
nentially as the network go deeper, so that features at different
temporal scale can be extracted at different layers. S-Net is
constructed by a set of graph convolutional neural networks
(GCNs) at different spatial scale, which can adapt to sparse and
irregular spatial data structure and extract features efficiently.
F-Net collects all extracted features and fuse them with a dense
connection. Comprehensive experiments are conducted on a
real-world air pollution datasets named Urban Air Pollution
Datasets in North China, which involve some of largest cities
with urgent air pollution issues in China. The result shows
that the MSSTN is effective in air pollution prediction task
and outperforms several state-of-the-art models. And the ab-
lation result also shows effectiveness of the proposed network
structure. Besides, the high computational efficiency of the
MSSTN, because of its full convolutional structure, make it
more convenient in real time applications.

Our contributions are as follows.

- We suggest to use a multi level graph data structure
to better represent the geo-sensory systems and better
discover high level spatial temporal patterns. Further
we propose a novel deep convolutional neural network
named MSSTN for the air pollution prediction task on
the proposed data structure.

- Three subnets are specially designed for MSSTN in order
to process multi-scale spatial temporal data explicitly, that
are a set of dilated casual convolutional network named T-
Net, a set of graph convolutional neural networks named
S-Net, and a fusion network with dense connections
named F-Net.

- We deploy our model on a real world air pollution
datasets, Urban Air Pollution Datasets in North China,
and result shows an outstanding performance compared
to many state-of-the-art methods.

The rest of this paper are organized as follows. In Section
II we briefly discussed published works related to this topic.
In Section III we introduce the proposed neural network
architecture in detail. In Section IV we present the detailed
experiments settings and conduct a comprehensive ablation
study. And finally in Section V we conclude this paper with
a brief summary.

II. RELATED WORKS

In this section we provide a detailed overview of published
works related to this paper. The application of data mining and
deep learning in the domain of environmental big data have at-
tracted a lots of interest in recent years. The related topics can
involve geo-sensory system analysis tasks like concentration
prediction, field reconstruction, signal decomposition, anomaly
detection and hybrid models etc. Specifically for prediction
tasks, efforts have been devoted into two categories, that are
temporal modeling and utilization of spatial information.

A. Temporal Modeling

Time series modeling have a long history under the topic
of signal processing and statistical signal analysis. Many well-
known models have been successfully applied to predict air
pollutants like PM2.5 (particulate matters with an aerodynamic
diameter less than 2.5 micron meters). As some examples,
Zhang et al. [28] applied AutoRegressive Integrated Moving
Average (ARIMA) model, a popular time-series forecasting
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model, to predict PM2.5 in Fuzhou, China, also providing
analysis about seasonal patterns and correlations with other
pollutants. Ming et al. [14] use a variant of Hidden Markov
Model (HMM) named hidden semi-Markov models (HSMM)
by introducing the temporal structures into the HMM and use
them to predict the concentration levels of PM2.5. All of these
models are usually based on some statistical assumptions like
stationarity or linear dependencies, which can have nonnegli-
gible gap with reality and hence cause accuracy loss.

To address this issue, extensive machine learning methods
have been explored. Long et al. [12] use a Least Square
Support Vector machine (LSSVM) to jointly consider the
non-linear relationship between pollutants concentration and
meteorological data. Yu et al. [26] use a set of linear regression
(LR) models to make fusion of multi-mode information like
pollutant concentration and spatial feature, and different LR
components are responsible for different factors. These classi-
cal machine learning models remove the mentioned statistical
assumptions by parametric settings. However, it remains a
problem to design a representive feature and it is still hard
for these model to catch complicated spatial temporal patterns
in the data.

Considering problems above, deep learning approaches take
the position in the recent years. Fawaz et al. [6] gives a
nice review on the deep learning method for time series
classification. As a nature extension of sequence to sequence
learning (S2S) [19], a lot of recurrent neural network (RNN)
based approaches were proposed by deep learning commu-
nities. Du et al. [5] proposed a hybrid model stacked by a
one dimensional convolutional neural network (CNN) and a
bi-directional Long Short Term Memory network (Bi-LSTM)
for representation learning of multivariate air quality related
time series data, and report an outstanding prediction accu-
racy. Liang et al. [10] adopt a encoder-decoder framework,
together with sophisticated attention mechanism, to apply a
S2S learning. Though RNN based networks like LSTM can
intuitively learn long term dependencies in the data, there
exist researches [7, 20] reporting that they are suffering from
vanishing gradient and parallelization issues and often failed
to learn multi-scale features. To overcome these shortcomings,
numerous full convolutional models (e.g. ConvS2S [7]) and
full attention models (e.g. Transformer [20]) for S2S learning
have been proposed.

In addition to the flaws mentioned above, most existing deep
learning approaches for air pollution prediction are lack of
effective multi-scale temporal modeling. Inspired by WaveNet
presented by Oord et al. [15], where dilated convolution
operation was introduced [25], we design our temporal subnets
in order to extract multi-scale features from data by a full
convolutional way.

B. Spatial Modeling

The unique spatial structure of geo-sensory data like air
pollution signals make it different from other spatio-temporal
data analysis tasks, e.g. video processing and multi-variants
time series processing. The sparseness of sensors location and
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Fig. 2. The illustration of dataflow in MSSTN. The MSSTN is composed
of three subnets, named S-Net, T-Net, and F-Net. The input data at time
stamp t is first processed by S-Net, generating spatial features sn,t for each
node at two different spatial scales. And then sn,t, as well as original data
are fed into T-Net, generating multi-scale temporal features hn,t. Finally all
extracting features are fed into F-Net to generate prediction x̂n,t+1. The loss
function is then evaluated by comparing the prediction and ground truth.

dynamics in sensor numbers make it challenging to adapt
deep learning modules to extract spatial features. As some
examples, Yi et al. [23] design a handcrafted spatial feature
by setting a polar grid at point of interests and aggregating
surrounding information, then use this feature for further
temporal learning. Wang et al. [21] transfer sensor networks
into dense images by simple cubic interpolation method, and
similarly to video processing, a CNN based module is adopted
to extract spatial features. Liang et al. [10] use sophisticated
attention operation with a distance based prior to aggregate
spatial information, while Zhang et al. [27] design a residual
network that apply convolution on space and time simul-
taneously. In addition to these works, Graph Convolutional
Networks (GCNs [16, 29]) based networks have attracted great
interests because the geo-sensory networks can be naturally
described by a topology of graph. Similar to Convolutional
LSTM (ConvLSTM [22]), Yu et al. [24] as well as Lin et al.
[11] combined GCNs with LSTM to get a novel hybrid spatio-
temporal model for the task.

However, most spatial modeling solutions from existing
works mentioned above neglect the inherent multi-scale spatial
correlations in the data. And these models may encounter the
problem of over-fitting because of limited amount of available
data compared to complicated model size. In this paper we
propose to use a set of GCNs to extract spatial features at
different scales, and together with other components to form
a full convolutional framework, which can have less param-
eters while capable of modeling multi-scale spatio-temporal
patterns.

III. THE MSSTN MODEL

A. Formulation

We first introduce some notations that will be used through
this paper. On one hand, the air pollution sensors in a city
(e.g. Beijing) can be denoted as a graph

G = {N,E,X,Z} (1)

where N is the set of nodes (a node for a sensor), E is the
set of (undirected) edges, X = {xn,t} is the set of sensor
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readings and Z = {zn,t} is the set of auxiliary data. A sensor
reading xn,t is a vector composed of readings of pollutants
concentration, for the sensor n at time stamp t. A auxiliary
data zn,t is similarly defined for meteorological records as
well as other used features (categorical features indicating
weekdays and hours in this paper). In addition, there are some
useful attributes of G: |N | denotes the number of nodes in
G. A ∈ R|N |×|N | is adjacency matrix and D ∈ N|N |×|N | is
degree matrix of the graph G.

On the other hand, The air pollution data in a region (e.g.
a group of cities around Beijing) will be similarly denoted
as a graph G = {N,E,X,Z}, however, in region-scale case,
a node will stand for a city. To avoid confusion, we add a
superscript to all notations related to G. For example, we
use Ga, xan,t, and Aa for city a, as a city-scale graph. And
Specifically, superscript ♦ to identify the region-scale graph:
G♦, x♦n,t, and A♦. The data of a city x♦n,t and z♦n,t are defined
as a function of all sensors belong to that city n. And in this
paper, this function is simply a picking-out operation, i.e. pick
out a pre-selected sensor to be the representation of the city.

Whats more, we will use G = {Ga, . . . , G�} to denote the
set of all graphs, including both city-scale and region-scale
graph. We also abbreviate the set {xGn,t}n∈NG to xG·,t and
set {xGn,t}−L≤t<0 to xGn,· for convenience, where superscript
can be further eliminated without causing confusion. The
illustration of notations is shown in Figure 1.

The task of air pollution prediction is to predict future
pollutants concentration for all sensors given all the data in
the past. And this can be formulated as, to find a function f ,
such that

{xG·,t}t=0,1,...,T−1;G∈G = f({G}t=−1,−2,...,−L) (2)

where T is number of time stamps need to predict, and L is
the temporal receptive field of the predicting model.

Specifically, equation (2) is the formulation for Multi Step
Prediction task. However, in this paper we will focusing on
One Step Prediction task, that is only to predict one time
stamp forward with T = 1. The inference algorithm for
Multi Step Prediction under this setting will be discussed
later. This simplification, however, reduce the prediction space
significantly and boost the convergence as well as performance
of the model, under the reality that the amount of training data
is very limited.

B. Overview

Our proposed MSSTN is composed of three subnets, named
S-Net for multi-scale spatial feature extraction, T-Net for
multi-scale temporal feature extraction, and F-Net for feature
fusion and final prediction. The overview of our model is
illustrated in Figure 2. The input data is first processed by
S-Net and T-Net, and then extracted features are fed into F-
Net to generate prediction. The loss function is evaluated by
comparing the prediction and ground truth.

1) S-Net: S-Net is a group of GCNs, which process data on
a time slice. Specifically for each graph G ∈ G, there will be

a corresponding GCN function GCNG(·). At any time stamp
t (−L ≤ t < 0), the formulation of computation is written as

sG·,t = GCNG(xG·,t, z
G
·,t) (3)

where sG·,t is a set of spatial feature vectors defined on G.
Note that GCNG(·) will be different for different graph, but
remains identical at all time stamps for certain graph.

2) T-Net: T-Net is a group of one-dimensional dilated
convolutional networks (DCN), which process data along the
time axis. Specifically for each graph G ∈ G, there will be
a corresponding DCN function DCNG(·), At any node n
(n ∈ N), the formulation of computation is written as

hGn,· = DCNG(xGn,·, z
G
n,·, s

G
n,·, s

�
G,·) (4)

where hGn,· is a set of temporal feature vectors defined on
G. Note that DCNG(·) also take the output of S-Net as
input, in order to take high level spatio-temporal features into
consideration. Besides, DCNG(·) is a casual function, which
only make use of information in the past at any time stamps.
And, again, DCNG(·) will be different for different graph,
but remains identical for any node for certain graph.

3) F-Net: F-Net is a group of dense connection networks
(DNN), which process data locally on a node. Specifically
for each graph G ∈ G, there will be a corresponding DNN
function DNNG(·), At any time stamp t (−L ≤ t < 0) and
any node n (n ∈ N), the formulation of computation is written
as

x̂n,t+1 = DNNG(xn,t, zn,t, sn,t, hn,t) (5)

where x̂n,t+1 is the prediction for pollutants concentration at
node n and at a time step forward.

The illustration of the data flow is shown in Figure 2. And
in the rest of this section, we will present the detailed structure
and formulation for three subnets.

C. S-Net

In the past decade, CNNs have been developed as a powerful
tool for spatial representation learning, especially under the
topic of computer vision and video processing. However, geo-
sensory systems like air pollution sensors network can be
considerable irregular and sparse, as sensors are usually settled
randomly in the city and cities are sparsely distributed in
the region. And therefore, sensor readings at a time slice
do not have a regular grid structure, making it hard to use
classical CNN modules to handle the task. However, originated
from graph spectral theory, GCNs make it possible to apply
convolution operations on graph defined in this paper. For a
graph G ∈ G, Let L = D−A be the Laplacian Matrix of G,
whose eigen-decomposition is denoted as L = QΛQT where
Λ ∈ R|N |×|N | is the matrix of eigenvalues and Q ∈ R|N |×|N |
are corresponding eigenvectors. A GCN defined in spectral
domain then can be written as

u(l+1) = σ(QΘ(l)(Λ)QTu(l)) (6)

where u is a signal on G and l indicates the different layers
of GCN. Θ(l)(Λ) is the spectral of the filters to be designed

1550



�

 !,"
#

 !,"
$

 !,"
%

&'()*

 !,"

+ = 1

+ = 3

+ = 9

�

Node: ' *

*

DCN-

.-

 !,"

Fig. 3. The illustration of T-Net (left) and DCN (right) structure. T-Net is a collection of DCNs, where all nodes in a graph G share a DCN. The DCN
operates on a time series, extracting multi-scale temporal features hn,· for air pollution prediction. Similar to [15], the dilated convolution as well as gated
non-linearity is the key to DCN. The dilated convolution generalize discrete convolution by skip several inputs (dilations). And then by stacking dilated
convolution and gated non-linearity layer by layer with exponentially growing dilated ratio (3l in this paper), informative features at different temporal scales
are generated, which can be concatenated into final output of DCN.
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Fig. 4. The illustration of S-Net and GCN (in dashed box) structure. The
S-Net is a collection of GCNs, where one GCN for one graph including both
city-scale and region-scale graph. The ChebNet, a special version of GCN,
is adopted for multi-scale spatial feature extraction. Since the ChebNet is
strictly localized in space domain, the computation can be viewed as a spatial
information spreading followed by a non-linearity activation, which is similar
to the diffusion process of air pollutants.

or parameterized, usually being a function of Λ for the
computational convenience in the space domain. σ(·) is the
non-linear activation.

In this paper we use a special version of GCNs named
ChebNet [3]. ChebNet use a Kth-order linear combination of
Chebyshev polynomials as filters

Θ(l)(Λ) =

K−1∑
k=0

θ
(l)
k τk(Λ̃) (7)

where τk is the the Chebyshev polynomials of order-k,
Λ̃ = 2Λ/λmax − I , λmax is the maximum eigenvalue in
Λ, I is the identical matrix, and θ

(l)
k are parameters to

be determined. Note that the convolution kernel given by
Equation (7) is strictly K-localized. In a single convolution
operation, the information of a node will only be spread within
its K-neighborhood, which share a similar property with

the diffusion procedure of air pollutants. Under this settings,
the equation (6) can be easily evaluated without eigenvalue
decomposition

u(l+1) = σ
(K−1∑

k=0

θ
(l)
k c

(l)
k

)
(8)

where c(l)k can be calculated by Chebyshev recursive relation

c
(l)
k = 2L̃c

(l)
k−1 − c

(l)
k−2

c
(l)
0 = u(l)

c
(l)
1 = L̃u(l)

(9)

with L̃ = 2L/λmax − I .
We denote Equation (8) and Equation (9) as our GCN

function GCNG(·). Then the S-Net is a collection of GCNs
applied on G ∈ G defined by Equation (3). Specifically, for
any G ∈ G and any time stamp t, concatenate x·,t and z·,t
as a signal on the graph G, i.e. as u(0) in Equation (9).
After processing by GCNG(·), s·,t, a spatial feature on G
is generated. We will have a multi-scale spatial feature on G
after applying it on graphs of different scales. This procedure
is illustrated in Figure 4.

D. T-Net

Most of previous work use RNN based networks for tempo-
ral modeling. However, there exist researches [7, 20] reporting
that RNNs are suffering from vanishing gradient and paral-
lelization issues and often failed to learn multi-scale features.
On the other hand, convolution has been a key concept under
the topic of signal processing, and one dimensional CNN
is considerable popular in time series deep learning. In this
paper, we use a elaborate CNN named dilated convolutional
networks (DCN) with dilated convolution operation and gated
non-linearity [15]. These special designs enable DCN to have
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exponentially growing receptive field as well as high non-
linearity even with few layers, in order to extract features at
different temporal scales explicitly and efficiently.

The d-dilated convolution is different from common discrete
convolution only by using a dilated kernel k(s), i.e. k(s) 6= 0
iff. d|s. An equivalent expression is to use a ordinary kernel
k(s) but a d-dilated convolution operation ∗d defined as [25]

(k ∗d u)(t) =
∑

ds+s′=t
s≥0

k(s)u(s′) (10)

where u is a time series like signal and k is a convolution
kernel with parameters. The bias of convolution is omitted
here. It is easy to find that the dilated convolution defined in
Equation (10) satisfies the causality requirement of DCNG(·),
i.e. the dependencies of (u ∗d k)(t) is strictly restricted to
{u(s)}s≤t, and thus is a valid building block.

The gated non-linearity is a generalization of element-wise
non-linear activation function by adding an parametric gate
to control the recalibration of activations. And it is widely
adopted in neural networks design such as LSTM and SE-
block [8], which is believed to be able to boost the representive
capability of neural networks with little additional computa-
tion. The gated non-linearity, along with residual connections,
in this paper is defined as

h(l) = tanh(W
(l)
0 ∗d(l) u(l))� σ(W

(l)
1 ∗d(l) u(l))

u(l+1) =W
(l)
2 h(l) + u(l)

(11)

where u(l) is a time series like signal in layer l, and h(l) is a
feature map extracted at layer l. W (l)

0 , W (l)
1 , are convolution

parameters for gate and signal respectively, W (l)
2 is parameters

for residual connection, all with bias term but omitted here.
σ(x) = 1/(1 + e−x) is the sigmoid non-linearity. � is the
element-wise production.

In order to extract informative features on multi temporal
scales, we stack the dilated convolution and gated non-linearity
for several layers with exponentially growing dilated factors
d = 3l. As illustrated in Figure 3, intuitively features on
different temporal scales will be extracted across layers, where
short term patterns are described in first layers and long term
dependencies are encoded in last layers. Then we concatenate
all {h(l)} to get

hn,· = Concat({h(l)}) (12)

We denote Equation (10) (11) and (12) as our DCN function
DCNG(·). Then the T-Net is a collection of DCNs applied
on G ∈ G defined by Equation (4). Specifically, for node n in
any G ∈ G, concatenate xn,· and zn,·, together with city-scale
spatial feature sn,· as well as region-scale spatial feature s�G,·
as a time series, i.e. as u(0) in Equation (11). After processing
by DCNG(·), hn,·, a multi-scale temporal feature on G is
generated. This procedure is illustrated in Figure 3.

E. F-Net

We use multi layer perceptrons (MLPs) as building blocks
of F-Net, in order to make fusion of all extracted multi-
scale spatial and temporal features and strengthen high level
spatio-temporal interactions modeling for final predictions.
In detail, the MLP for G ∈ G is of single hidden layer,
mapping all extracted features as well as original data,
Concat(xn,t, zn,t, sn,t, hn,t) to a vector vn,t of length 2nbits ,
with a Softmax activation Softmax(x)(k) = ex(k)/

∑
i e

x(i)

on the last layer.
As a trick to ensure a valid prediction (0 ≤ x̂n,t+1 ≤ xmax

is a valid concentration reading if it is non-negative and within
the measurement range), vn,t ∈ [0, 1]2

nbits will be considered
as a predictive distribution on a predefined alphabet of size
2nbits . With the observation that small pollutant concentration
take a larger part of the data, it is necessary to have a balanced
distribution on the alphabet. For this consideration, we apply
a nbits µ-law logarithm quantization on range [0, xmax]

µQ(x) = Q

⌊
ln(1 +Qx/xmax)

ln(1 +Q)

⌋
(13)

to get a nbits alphabet, where Q = 2nbits , µQ(x) is the
quantization index of input, and b·c is the Floor Function. Then
the final prediction x̂n,t+1 is calculated as the expectation of
distribution vn,t on this alphabet

x̂n,t+1 =

2nbits−1∑
i=0

vn,t(i)µ
−1
Q (i) (14)

where µ−1Q (i) is the decoder of the quantization.
We use Equation (13) and (14) as function DNNG(·) in

Equation (5). In F-Net, one MLP for one graph and all nodes
in a graph share the same MLP. It is well worthy to note
that MLP is equivalent to (ordinary) convolution operation of
kernel size 1. And thus, together with graph convolution in
S-Net and dilated convolution in T-Net, make the MSSTN
a full convolutional neural network, which can have much
smaller amount of parameters as well as great parallelization
advantages for real time applications.

Finally a mean absolute error (MAE) is evaluated as loss
function to form an end-to-end framework as MSSTN

LG =
∑

n∈NG

∑
t

∣∣x̂Gn,t − xGn,t∣∣ (15)

F. Multi-Step Inference

The MSSTN model trained for one step prediction can
be easily extended to execute multi step prediction using a
auto-regressive inference procedure. We can have an arbitrary
length of predictions by using one step predictions as obser-
vations and feeding it back to the model. Note that in this
inference procedure, the pollutant concentrations {xn,t} will
be recursively updated, but the auxiliary information {zn,t} is
considered to be provided. In the case of air pollution predic-
tion task, we use meteorological data as auxiliary information,
and therefore weather forecast data will be required for Multi-
Step Inference.

1552



IV. EXPERIMENTS

In this section we present main experiments result as well as
ablation study result of our MSSTN model. The code, data and
trained models are available at https://github.com/Zhiyuan-
Wu/MSSTN.

A. Settings

Datasets. In order to show the effectiveness of our proposed
MSSTN model on the air pollution prediction task, we apply
our model on a real world air pollution datasets named Urban
Air Pollution Datasets in North China. There are in total 112
air monitoring stations located in 15 cites in the datasets. All
of these cities are around Beijing, the capital of China, and all
monitoring stations have hourly air pollutants concentration
records. The detailed statistical information of the datasets
can be found in Table I. We split data into training sets and
independent testing sets with ratio 10:3. Specifically, records
of first 10 months, i.e. before (UTC) 2017/11/1 14:00 (include)
are used for training the model, and the records of last 3
months i.e. after (UTC) 2017/11/1 15:00 (include) are used
for testing.

TABLE I
DETAILS OF URBAN AIR POLLUTION DATASETS IN NORTH CHINA

Number of Cities 15

Number of Sites 112

Latitude Span 36.53°N - 42.28°N

Longitude Span 111.55°E - 121.97°E

Central City Beijing

Pollutants PM2.5, PM10, O3

Meteorology
temperature, Humidity,

Wind Speed, Wind Direction

Time Span
(UTC) 2017/1/1 14:00

- 2018/1/31 15:00

Records Interval 1 Hour, 3 Hours

Preprocessing. We apply several basic preprocessing pro-
cedure to make datasets ready for learning algorithm. (1)Sam-
pling rate alignment. The recording rate for different items
may be different. For example, the temperature is recorded
hourly only in few large cites, but recorded every three hours in
others. We simply adopt a linear up-sampling to unify all time
series in the datasets into hourly records. (2)The completion of
missing values. There exist approximately 10% missing values
in raw sensor readings records. In most cases, we use a spatial
interpolation value given by Inverse Distance Weighted (IDW)
estimation from valid sensors in the same city at the same time
slice. However, spatial interpolation will fail if most (even all)
sensors are down simultaneously, and we have to use linear
interpolation along the time instead. (3)Normalization. The
numerical values of different quantities can be very different
and it is important to normalize them into similar range for
neural network based models. We apply a linear stretch where
the upper and lower bound is decided by the corresponding
99% and 1% percentiles over the entire datasets. Note that the

max-min normalization is not appropriate to avoid outliers.
(4)The adjacency matrix. The terms in adjacency matrix are
determined by the geographical distance between two nodes.
Specifically, a gaussian kernel is applied on spherical distance
computed by GPS coordinates pair, and values smaller than a
threshold will be discarded, i.e. corresponding nodes pair are
not considered to be connected.

Model structure. On one hand, some important hyper-
parameters for model structures of MSSTN are as follows: For
S-Net, all GCNs are of 3 layers and have maximum Chebyshev
order of 3, and extracted spatial features are in 64 channels.
For T-Net, all DCNs are of 4 dilated convolution layers with
base dilated rate 3 and convolution kernel size 3. The extracted
temporal features at each scales are all 16 channels, but are
expended to 32 channels for next layer’s input. For F-Net, the
hidden number of MLPs are 128, and quantization is taken to
be nbits = 5. On the other hand, our implementation is based
on the Tensorflow package [1], with default Adam optimizer
and learning rate 0.0005. The early stopping trick is used for
best validation performance.

Metrics Besides the mean absolute error (MAE), we also
adopt rooted mean square error (RMSE) which is a popular
metric for regression and prediction task.

EMAE =
1

M

∑
n∈NG

∑
t

∣∣x̂n,t − xn,t∣∣
ERMSE =

√
1

M

∑
n∈NG

∑
t

(
x̂n,t − xn,t

)2 (16)

where M is the total number of terms in summation.

B. Results

One Step Prediction The Table II shows one step prediction
result of the proposed MSSTN as well as many other popular
models on the Urban Air Pollution Datasets in North China.
These models include:

- Support Vector Regression (SVR). SVR is a popular ker-
nel method in regression task. We split data of different
cities into window slice and apply a SVR model with
RBF kernel independently.

- Multi Layer Perceptrons (MLP). As a universal approx-
imator, MLP plays a important role in neural network
family. We use a MLP of 2 hidden layers with ReLu
activation for comparison.

- LightGBM (LGBM) [9]. As an ensemble method, gradi-
ent boost decision tree (GBDT) is a powerful tool for
machine learning task, of which LGBM is a fast and
efficient implementation.

- Long Short Term Memory Network (LSTM). As a rep-
resentation of RNN based time series predictors, we test
a neural networks where we build a GRU network [2] for
each city and map the output of GRU at each time step
for a one step prediction.

- Diffusion Convolution Recurrent Neural Network
(DCRNN) [11]. DCRNN is an outstanding spatial
temporal network based on the combination of GCN
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TABLE II
ONE STEP PREDICTION RESULT FOR 5 MAIN CITIES

Model
Beijing Shijiazhuang Taiyuan Huhhot Dalian Average

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

SVR 24.8063 29.7521 33.5855 43.1055 37.0533 46.3471 33.3685 40.1179 36.2745 41.0015 33.0176 40.4521

MLP 8.1176 13.5282 21.7218 30.5758 18.4101 27.1655 24.5930 32.0519 9.9266 14.5716 16.5538 24.8817

LGBM 6.5846 12.1617 13.0901 21.6894 10.5966 19.5544 11.5215 19.1660 4.7523 11.4777 9.3090 17.3192

LSTM 7.3519 12.7806 13.7945 22.6529 10.6122 19.4796 11.7648 19.5659 4.4704 9.4645 9.5987 17.4834

DCRNN 6.6594 11.7452 13.5136 22.2543 10.6928 18.6544 11.9366 19.3694 4.7834 10.5917 9.5171 17.1379

MSSTN 6.1926 11.2896 12.2947 20.5379 10.0982 18.6705 10.8583 18.7679 4.1202 8.6335 8.7218 16.2764

TABLE III
MULTI STEP PREDICTION RESULT IN BEIJING

Model
1h 3h 6h 12h 24h 48h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

SVR 24.8063 29.7521 25.6133 30.8975 29.0184 34.6545 36.2618 42.9871 47.7185 55.7933 55.0215 62.4976

MLP 8.1176 13.5282 10.6232 16.1388 13.8094 20.4534 19.7239 28.3191 25.2105 34.2607 28.2940 37.3437

LGBM 6.5846 12.1617 8.4465 14.5560 10.9659 19.5151 14.6347 25.3494 17.9910 29.4341 23.1302 37.0699

LSTM 7.3519 12.7806 9.6597 16.3933 11.9673 20.1492 15.3041 25.1131 19.3089 30.9065 22.2848 36.3147

DCRNN 6.6594 11.7452 10.0798 16.8269 13.8846 22.6989 17.9548 29.8268 24.6943 42.9330 27.4210 49.2022

MSSTN 6.1926 11.2896 8.1644 13.4925 10.5302 17.3556 13.5465 22.8253 17.5055 29.8782 19.7373 33.5689

and RNN and is reported to be successfully used in air
pollution prediction.

- Multi Scale Spatial Temporal Networks (MSSTN). The
proposed method.

Table II lists the prediction MAE and RMSE (both the
lower the better) of all models above for 5 cities (Beijing,
Shijiazhuang, Taiyuan, Huhhot and Dalian) in the dataset, and
the average performance of these cities are computed in the
last column. From Table II it is shown that our proposed
MSSTN outperforms all of other baselines at all cites listed.
The MSSTN improve the MAE error by 47.31%, 6.30%,
9.13%, 8.35%, and improve the RMSE error by 34.58%,
6.02%, 6.90%, 5.02% compared to MLP, LGBM, LSTM and
DCRNN respectively. Therefore we can conclude that it is
significantly beneficial to make use of multi-scale spatial
temporal information in the data and to explicitly adopt
a multi-scale network architecture. This make MSSTN be
able to jointly and efficiently discover the related factors at
various spatial temporal aspect and then make a more accurate
prediction.

Multi Step Prediction In order to investigate the multi step
prediction performance of the proposed MSSTN, we adopt
a multi-step inference up to 48 hours for comparison. For
convenience we only show the result in Beijing. Table III
shows the average prediction error under different prediction
window length T ∈{1h(identical to one step prediction), 3h,
6h, 12h, 24h, 48h}. For example, under a 6h-prediction setting,
the model is asked to give predictions in next 6 hours and the
error is computed by averaging result for 1h-6h. The result

shows that the MSSTN keep the advantages in prediction
accuracy for multi step prediction task under various prediction
length. Benefited from the utilization of multi-scale spatial
temporal information, the MSSTN outperforms all baselines
by a large margin especially in long term prediction task
like T = 48h. These result can be intuitively interpreted as
result of successful utilization of multi-scale spatial temporal
information because empirically long term behavior of air
pollution is heavily influenced by region transportation, which
again prove the advantages of MSSTN.

C. Ablation Study

In order to further prove the effectiveness of the proposed
architecture of MSSTN, we design a comprehensive ablation
study.

Spatial Module Ablation. Most existing spatial feature
extraction solutions ignore the multi-scale distribution of the
sensor networks. In order to prove the advantages of multi-
scale spatial modeling capability of S-Net, we verify the one
step prediction performance in Beijing using different spatial
feature extractor, however, with T-Net and F-Net as common
temporal predictor. The baselines include

- No spatial module is used and the model will make the
prediction locally only on temporal information.

- The handcrafted spatial feature proposed by [26], where
the IDW interpolations are estimated within a polar grids
centered at target sensors. And readings from those fake
sensors are concatenated as spatial feature.

- A CNN extractor. The readings of sensor networks are
first interpolated by IDW, and transformed into a heat
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image with regular grids. Then a 3-layer CNN extractor
are applied on the images, and the feature map of last
layer are flattened as the spatial feature.

TABLE IV
SPATIAL MODULE ABLATION RESULT
(ONE STEP PREDICTION IN BEIJING)

Spatial Module MAE RMSE

None 6.4799 12.1641

Yu et al. [26] 6.4152 11.6030

IDW + CNN 6.3310 11.4886

S-Net (MSSTN) 6.1926 11.2896

The Table IV shows the spatial ablation result. The hand-
crafted feature in [26] can be viewed as a special case of graph
convolution operation but with fixed parameters and linear
activation, which constraint the improvements. The CNN
extractor can make adaptive representation automatically but
still with very limited gains without multi-scale information.
The proposed MSSTN shows the best performance in the test.

Temporal Module Ablation. Table V shows the temporal
prediction performance comparisons, where the temporal part
of MSSTN, i.e. T-Net, is fairly compared with baselines
those only make temporal prediction without using any spatial
information. The baselines include SVR, MLP, LGBM and
LSTM. Benefited from ensemble design, the LGBM is very
competitive in this situation. However, the proposed T-Net and
F-Net still have best performance in the test.

TABLE V
TEMPORAL MODULE ABLATION RESULT

(ONE STEP PREDICTION IN BEIJING)

Temporal Module MAE RMSE

SVR 24.8063 29.7521

MLP 8.1176 13.5282

LGBM 6.5846 12.1617

LSTM 7.3519 12.7806

T-Net + F-Net 6.4799 12.1641

D. Discussion

Multi-Task Learning Issue. The optimization of objective
(15) is in fact a multi-task learning problem, where we want
errors from all graphs to be small. The computation of these
errors involved some shared parameters which usually can
be, unfortunately, competitive [17]. In this work we simply
make copy of shared parameters and optimize all errors
independently, which can have slightly better performance than
the naive sum-up solutions, i.e. L =

∑
G∈G LG (See Table

VI). There are inspiring works from community on the topic
of multi-task learning which is left as future work.

Computational Efficiency. It is important for learning
models to be computationally efficient in the applications of
geo-sensory system or IoT system. The MSSTN is a network

TABLE VI
MULTI-TASK OPTIMIZATION COMPARISON OF MSSTN

(MAE FOR ONE STEP PREDICTION IN BEIJING)

Optimization Beijing Shijiazhuang Taiyuan Huhhot Dalian

Sum-up 6.1609 12.7942 10.1957 11.1541 4.1918

Independent 6.1926 12.2947 10.0982 10.8583 4.1202

of full convolutional architecture, which can be efficiently
parallelized on GPU devices by many popular deep learning
packages like Tensorflow. In our experiment, the training time
of MSSTN is around 1 hour for all cities on a single Titan V
GPU, while RNN based method like DCRNN take more than
one day. This make it convenient for applications such as real
time prediction and online learning.

S-Net and Pooling Operation. It is well worthy to note
that the proposed S-Net, as a collection of GCNs on city-scale
graph and region-scale graph, is very similar to the concept of
pooling operation in the convolutional neural networks, both of
which are extracting features from blocks of lower layers for
the input of higher layers. However, in geo-sensory systems,
intuitively it is better to use different convolution kernels for
different blocks of lower layers, indicating more convenience
of our approach.

V. CONCLUSION

In this paper we present the Multi Scale Spatial Temporal
Network (MSSTN) for air pollution prediction task. We pro-
pose to use a multi-level graph data structure to fit the multi-
scale nature of geo-sensory systems and the MSSTN performs
well in this scenario. The MSSTN is specially designed to
better use of multi-scale spatial temporal information and
their high-level interactions, with explicit multi-scale neural
network structure design. The MSSTN is composed of three
subnets, named S-Net, T-Net and F-Net. S-Net is a collection
of GCNs operating on graphs at different scale, extracting
multi-scale spatial representations. T-Net is a collection of
DCNs generating multi-scale temporal features. And F-Net is
a dense network for feature fusion and making final predic-
tions. We conduct comprehensive experiments on Urban Air
Pollution Datasets in North China, whose results demonstrate
the outstanding prediction accuracy compared to many other
popular spatio-temporal models.
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