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Abstract

Tensor-based multimodal fusion techniques have exhibited great predictive perfor-
mance. However, one limitation is that existing approaches only consider bilinear
or trilinear pooling, which fails to unleash the complete expressive power of mul-
tilinear fusion with restricted orders of interactions. More importantly, simply
fusing features all at once ignores the complex local intercorrelations, leading
to the deterioration of prediction. In this work, we first propose a polynomial
tensor pooling (PTP) block for integrating multimodal features by considering
high-order moments, followed by a tensorized fully connected layer. Treating
PTP as a building block, we further establish a hierarchical polynomial fusion
network (HPFN) to recursively transmit local correlations into global ones. By
stacking multiple PTPs, the expressivity capacity of HPFN enjoys an exponential
growth w.r.t. the number of layers, which is shown by the equivalence to a very
deep convolutional arithmetic circuits. Various experiments demonstrate that it can
achieve the state-of-the-art performance.

1 Introduction

Multimodal representation learning has been a very actively growing research field in artificial
intelligence and human communication analysis. Its applications have proliferated across human
multimodal tasks such as emotion recognition [2], personality traits recognition [22] and sentiment
analysis [18]. The multimodal signals collected from diverse modalities (spoken language, visual and
acoustic signals) exhibit properties of consistency and complementarity [28]. Extensive studies are
dedicated to modelling the multiple modalities and their complex interactions [28, 14, 15, 13]. These
interactions are hard to model due to the factors like non-trivial multimodal alignment and unreliable
or contradictory information among modalities. It yet remains a major challenge on improving the
generalization ability of the model by exploring heterogeneous properties of the multimodal data.

The very key step of multimodal modelling is referred as multimodal fusion, with the aim at integrating
features of multiple modalities for yielding more robust predictions. Typically, the multimodal feature
fusion can be categorized as early, late and hybrid fusion [1]. Among those, early fusion utilizes
the concatenated signals from different sources as the model input [7]. Late fusion, on the other
hand, attempts to model each modality separately and thus merge them at the decision level, either by
voting or averaging [19, 25]. In hybrid fusion, the output depends on both the predictions of unimodal
and the early fusion. Despite being simple, aforementioned conventional fusion techniques are all
restricted to the concatenation or averaging of, or more generally, linear combination of multimodal
features. And the linear modelling may not be sufficient to capture the complicated intercorrelations.
∗The authors contribute equally
†The corresponding author
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Figure 1: The scheme of 5-order polynomial tensor pooling (PTP) block for fusing z1 and z2.

By leveraging tensor product representations, recent fusion models [16, 27] are geared towards
modelling bilinear/trilinear cross-modal interactions and boost the performance significantly. Never-
theless, such representations suffer from an exponential growth in feature dimensions, with regard to
both the unimodal’s dimensionality and the number of modalities, producing a tremendous amount of
parameters. To tackle this, the work [17] efficiently reduces fusion parameters by learning low-rank
tensor factors, while preserving the capacity of expressing the trimodal (trilinear) interactions.

However, their model fails to unleash the full representation power of multilinear feature intercor-
relations by restricting the order of interactions. In other words, the interaction is linear w.r.t. each
modality, e.g., only up to trilinear interactions for three modalities. More importantly, their framework
focuses on simply fusing multimodal features all at once, totally ignoring the local dynamics of
interactions that are crucial to the final prediction. The evolving temporal-modality correlations thus
cannot be grasped, which may lead to a deteriorated prediction, especially when long time series are
involved.

In this work, we start by proposing a polynomial tensor pooling (PTP) block that can fuse locally
mixed temporal-modality features. PTP allows for the higher order moments to capture complex
nonlinear multimodal correlations. Building upon the basic PTP block, we further establish a hierar-
chical architecture that recursively integrates and transmits the local temporal-modality correlations
into global ones. This way, fusing multimodal time series data becomes feasible. We refer to the
proposed framework as hierarchical polynomial fusion network (HPFN). Using our HPFN brings
dual benefits: 1) the local interactions can be grasped at a much finer granularity, and the dominant
local correlations can be efficiently transmitted to the global scale. 2) an exponential growth of
the expressivity capacity can be achieved by stacking PTPs into multiple layers, which is shown
by a connection of HPFN to a very deep convolutional arithmetic circuits. We verify the superior
performance of HPFN on two multimodal tasks.

2 Preliminaries

We refer multiway arrays of real numbers as tensors [12]. We denote a P -order tensor W ∈
RI1×···×IP with P modes. The (i1, ..., iP )-th entry of W is denoted as Wi1,...,iP with ip ∈ [Ip]
for all p ∈ [P ], in which the expression [P ] represents the set {1, 2, ..., P}. The tensor product
denoted as ⊗ is a fundamental operator in tensor analysis. Given two tensors A ∈ RI1,...,IP and
B ∈ RIP+1,...,IP+Q , the tensor product produces a (P +Q)-order tensor A⊗ B ∈ RI1,...,IP+Q as

A⊗ B = AI1,...,IP · BIP+1,...,IP+Q
. (1)

The tensor product reduces to the standard outer product for the vector inputs. A tensor product
of P vectors v(p) ∈ RIp for p ∈ [P ] yields a rank-1 tensor A = w(1) ⊗ · · · ⊗ w(P ). The CAN-
DECOMP/PARAFAC (CP) decomposition [3] ofW can be written as a sum of rank-1 tensors as
W =

∑R
r=1 w(1)

r ⊗ · · · ⊗ w(P )
r , where R is defined as tensor rank. Tensor networks (TNs) [4] gener-

alize tensor decompositions by factorizing a higher order tensor into a set of sparsely interconnected
lower order tensors. TN representation greatly diminishes the effect of curse of dimensionality related
to high-order dense tensors. TNs include a number of special cases such as CP, Tucker [26], tensor
train (TT) [21] and tensor ring (TR) [32] formats.

3 Methodology

We start this section by presenting a product pooling strategy named polynomial tensor pooling
(PTP) that serves as a basic building block for our hierarchical polynomial fusion framework (HPFN).

2
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Figure 2: (a) An illustrative example of a fusion network with a single PTP block, whose receptive ‘window’
size is [8× 3]. (b) An example of two-layer HPFN. For the input layer, the overlapped ‘window’ has size [4× 3]
with stride step size 2 along time dimension. For the hidden layer, the ‘window’ with size [3× 1] covers all the
intermediate features from the previous layer. H1-1 stands for the ‘1st’ column index of feature nodes in the ‘1st’
hidden layer.

The motivations for PTP are twofold: 1) it explicitly model high-order nonlinear intra-modal and
cross-modal interactions; 2) for multimodal time series, it can directly model local interactions within
a scanning receptive ‘window’ across both temporal and modality dimensions.

3.1 High-order polynomial tensor pooling (PTP)

The objective of a PTP block is to efficiently merge a collection of features {zm}Mm=1 into a joint
compact representation z by exploiting the explicit interactions of high-order moments. Figure 1
depicts the flowchart of operations in a PTP block. More specifically, a set of M feature vectors
{zm}Mm=1 are first concatenated together into a long feature vector z12···M :

zT12···M = [1, zT1 , zT2 , · · · , zTM ]. (2)

Then, a degree of P polynomial feature tensor ZP is formulated using a P -order tensor product of
the concatenated feature vector z12···M as

ZP = z12···M ⊗1 z12···M ⊗2 · · · ⊗P z12···M , (3)

where {⊗p}Pp=1 are the tensor product operators. Notice ZP is capable of representing all possible
polynomial expansions up to order P due to the incorporation of the constant term ‘1’ in (2). The
effect of P polynomial interaction between features is completely measured by the pooling weight
tensorW = [W1, ...,Wh, ...,WH ] as:

zh =
∑

i1,i2,··· ,iP

Wh
i1i2···iP · ZP

i1i2···iP , (4)

where zh indicates the h-th element of the H-dimensional fused vector z, while ip indices the
high-order terms in p-th mode. Unfortunately, the number of parameters of Wh in (4) grows
exponentially with the polynomial order P . To tackle this issue, we adopt the low-rank TNs to
efficiently approximate theWh. SupposeWh admits a rank-R CP format, then (4) becomes

zh =
∑

i1,i2,··· ,iP

(

R∑
r=1

ahr

P∏
p=1

wh(p)
r;ip

)(

P∏
p=1

z12···M ;ip) =

R∑
r=1

ahr

P∏
p=1

I∑
ip

wh(p)
r;ip

z12···M ;ip . (5)

Since the explicitly constructed feature tensor is super symmetric, it then makes sense to assume
wh

r = wh(p)
r for all p ∈ [P ]. Hence, the {{ahr ,wh

r}Rr=1}Hh=1 are the collection of fusion parameters to
estimate. IfWh admits a TR format, then the following formula can be derived from (4) as

zh =
∑

i1,i2,··· ,iP

(
∑

r1,r2,··· ,rP

P∏
p=1

Gh(p)rp;ip;rp+1
)(

P∏
p=1

z12···M ;ip)

=
∑

r1,r2,··· ,rP

P∏
p=1

I∑
ip

Gh(p)rp;ip;rp+1
z12···M ;ip =

∑
r1,r2,··· ,rP

P∏
p=1

G̃h(p)
rp;rp+1

= Trace(
P∏

p=1

G̃h(p)), (6)
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(a) one-layer HPFN
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(b) two-layer HPFN
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Figure 3: An example of a three-layer HPFN.

where the 3rd-order core tensors {{Gh(p)}Pp=1}Hh=1 are the fusion parameters. {rp}Pp=1 are defined
as TR-ranks with rP+1 = r1. It is also reasonable to assume a shared Gh = Gh(p) for all p ∈ [P ]. In
this manner, the fusion computations can be efficiently carried out along each dimension implicitly,
thus avoiding the curse of dimensionality on both feature and weight tensors.

3.2 Hierarchical polynomial fusion network (HPFN)

Having introduced our basic pooling block, we move on to present the general framework for fusing
multimodal data. Generally, if we rearrange multimodal time series as a ‘2D feature map’, the
patterns of correlations may manifest themselves in a receptive ‘window’ covering a local mixture of
temporal-modality features across both dimensions. Then, interactions can be gauged by associating
a single PTP block to that local ‘window’. Using a hierarchical architecture, the local temporal-
modality patterns of correlations can be recursively integrated via stacking PTPs in multiple layers.
At the end, significant correlations are identified and transmitted to the global scale.

Figure 2 (a) shows a simple one-layer fusion network, with a single PTP operating on one receptive
‘window’ that covers features across all 8 time steps and 3 modalities. This way, PTP makes it
feasible to capture the high-order nonlinear interactions among the total 24 mixed features within
the ‘window’. We observe a PTP naturally characterizes local correlations if it is linked to a small
receptive ‘window’. And several PTP blocks can be placed on the local ‘windows’ of mixed features
at distinct locations in a ‘2D feature map’. It is then straightforward to distribute the fusion process
into a number of layers by attaching PTP blocks to small ‘windows’ at each layer. In fact, the fused
node in higher layer corresponds to a larger effect receptive ‘window’ of features at the lower layer.
As a result, more expressive local and global correlations can be efficiently modelled with a great
flexibility. The proposed framework is termed as hierarchical polynomial fusion network (HPFN).

Figure 3 displays an instance of three-layer HPFN. At the first hidden layer, each PTP attempts to
model local interactions in a ‘window’ of 2 time steps and 2 modalities. For instance, the audio and
video features spanning time T1 and T2 are merged into the resulting hidden node H1-1 at time T2;
likewise, the hidden node H1-3 at time T2 is outputted by fusing audio and text features of T1 and T2.
The second hidden layer is fed with intermediate features of the previous layer. At the output layer,
the final feature is obtained by employing PTP on the intermediate features of 3 modalities in second
hidden layer for the time T4 and T8.

Due to the flexibility of our HPFN, various choices for the architecture design are possible. In
principle, adding more intermediate layers leads to more complicated and higher-order interactions
within a much larger effective receptive ‘window’. More complex interactions can also be modelled
by allowing the ‘windows’ to be overlapped. Figure 2 (b) demonstrates an architecture of two-layer
HPFN where the fusing ‘windows’ of [4 × 3] are overlapped at a stride size of 2 along the time
dimension. More variations can be realized by making an analogy of our PTP to a convolution filter.
Just like CNN, a PTP operator can viewed as a ‘fusion filter’. In this way, our HPFN may also
borrow some similar benefits from the architecture of regular CNN. More precisely, at each layer the
PTP ‘fusion filter’ could be shared when the scanning ‘window’ slides along the time dimension, so
as to catch the important patterns of correlations repeated in time series. Furthermore, associating
several PTP ‘fusion filters’ with one ‘window’ at the same time is able to capture multiple patterns of
correlations existing in that ‘window’.

The empirical success of densely connected networks (DenseNets) [11] serves another inspiration to
extend HPFN architecture. The incorporation of dense connectivity enhances the expressive capacity
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Figure 4: An example of densely connected fourth-layer HPFN with growth rate k = 1.

of the fusion model. Adding dense inter-connections could be beneficial in dealing with sequential
signals. Specifically, dense connectivity is realizable via the direct inclusion of the features from
previous layers into the current layer. The number of previous layers k ∈ N involved in connections
is defined as the growth rate. Figure 4 depicts an instance of dense HPFN with growth rate k = 1.

3.3 Connections to convolutional arithmetic circuits

It is interesting to observe that equation (5) suggests PTP actually conducts a combined operations of
convolution, pooling and linear transformation. This is quite analogous to convolutional arithmetic
circuits (ConvACs) [5] which can be seen as special variants of CNNs. Rather than the rectifier
activation and average/max pooling, ConACs are equipped with linear activation and product pooling
layers. The authors of [5] analyze the expressivity capacity of the deep ConACs by deriving their
equivalence with the hierarchical tucker decomposition (HTD) [9]. It has been proved that deep
ConvACs enjoy a greater expressive power than the regular rectifier based CNNs [5]. In fact, a single
PTP block corresponds to a shallow ConvAC if the CP format is utilized, and further corresponds to
a deep ConAC if the HTD is adopted for the pooling weight tensor. The major difference between
ConAC and PTP is that, the product pooling of the standard ConAC is conducted over the locations
of features, whereas the product pooling of PTP is over the polynomial orders of concatenated
features. Stacking PTP blocks into multiple layers is essentially equivalent to employing multiple
HTDs in a recursive manner, resulting in a correspondence of our HPFN to a even deeper ConAC. As
a consequence, more flexible higher-order local and global intercorrelations can be explicitly and
implicitly captured by HPFN, whose great expressive power can be implied by the connection of
HPFN to a very deep ConAC.

3.4 Model complexity

This section compares the model complexity of HPFN with two other tensor based models: TFN
[27] and LMF [17]. As for PTP, exploiting the symmetry property of the feature tensor, the number
of parameters in weight tensor is independent of order P , and linearly scales with the concatenated
mixed features in ‘windows’. For L-layer HPFN, the amount of parameters is linearly related to the
total number of PTP ‘windows’

∑L
l=1 Nl, where Nl is the number of ‘windows’ at layer l ∈ [L]. In

practice, Nl is usually small and decreasing along layers, e.g. N1 > N2 > · · · > NL. Adopting the
sharing strategy along the time dimension makes Nl even smaller. In principle, as referred in Table 1,
the parameter of HPFN is larger than or comparable to LMF, but significantly less than that of TFN.

Table 1: Model complexity comparisons of TFN, LMF and our HPFN. Iy is the output feature length. M is
the number of modalities. R is the tensor rank. For PTP and HPFN, [ T , S ] is the local ‘window’ size with
S ≤ M . It,m is the dimension of features from modality m at time t.

Model TFN [non-temporal] LMF [non-temporal] PTP [temporal] HPFN (L layers) [temporal]
Param. O(Iy

∏M
m=1 Im) O(IyR(

∑M
m=1 Im)) O(IyR(

∑T
t=1

∑S
m=1 It,m)) O(IyR(

∑L
l=1 Nl)(

∑T
t=1

∑S
m=1 It,m))

4 Related work

There exist two major lines of multimodal fusion research: non-temporal models summarize the
observations of each unimodal by averaging the features along the temporal dimension. These models
have found their utility in the early work of multimodal sentiment analysis [18, 31]. Recently, tensor
fusion network (TFN) [27] exploits tensor product to model non-temporal unimodal, bimodal and
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Table 2: Specifications of network architecture for non-temporal version of HPFN. [-] indicates the configuration
of a specific layer. PTPkm denotes the ‘m’th fused feature node in the layer ‘k’.

Model Description of Layer-wise Configuration
HPFN [PTPo1(a, v, l)]

HPFN-L2 [PTPh11 (a, v), PTPh12 (v, l), PTPh13 (a, l)] – [PTPo1(PTP
h1
1 , PTPh12 , PTPh13 )]

HPFN-L2-S1 [PTPh11 (a, v, l)] – [PTPo1(PTP
h1
1 , a, v, l)]

HPFN-L2-S2 [PTPh11 (a, v), PTPh12 (v, l), PTPh13 (a, l)] – [PTPo1(PTP
h1
1 , PTPh12 , PTPh13 , a, v, l)]

HPFN-L3 [PTPh11 (a, v), PTPh12 (v, l), PTPh13 (a, l)] –
[PTPh21 (PTPh11 , PTPh12 ), PTPh22 (PTPh11 , PTPh13 ), PTPh23 (PTPh12 , PTPh13 )] – [PTPo1(PTP

h2
1 , PTPh22 , PTPh23 )]

HPFN-L4
[PTPh11 (a, v), PTPh12 (v, l), PTPh13 (a, l)] –

[PTPh21 (PTPh11 , PTPh12 ), PTPh22 (PTPh11 , PTPh13 ), PTPh23 (PTPh12 , PTPh13 )] –
[PTPh31 (PTPh21 , PTPh22 ), PTPh32 (PTPh21 , PTPh23 ), PTPh33 (PTPh22 , PTPh23 )] – [PTPo1(PTP

h3
1 , PTPh32 , PTPh33 )]

trimodal interactions between modalities. To handle the curse of dimensionality issue, low-rank
multimodal fusion network (LMF) [17] further enhances the scalability of non-temporal fusion with
modality-specific low-rank factors. All those approaches, with the averaged statistics of features,
attempt to identify the correlations all at once without using temporal information. Although being
simple, they are unable to learn the intra-modal and cross-modal dynamics evolving along the time
sequence, thus suffering from the accuracy loss for prediction.

Multimodal temporal models, on the other hand, handle multimodal interactions at a much finer
granularity along the time dimension. The long-short term memory (LSTM) [10] has been extensively
used for the sequential multimodal setting. Among them, multi-view LSTM (MV-LSTM) [24]
partitions the memory cell corresponding to specific modality to capture both view-specific and
cross-view interactions; bidirectional contextual LSTM (BC-LSTM) [23] is proposed to conduct
context-dependent sentiment analysis and emotion recognition with multimodal time series. The
memory fusion network (MFN) [28] stores cross-modal and intra-modal interactions along time
domain with a multi-view gated memory, while the multi-attention recurrent network (MARN) [29]
employs a multi-attention block to discover cross-modality dynamics with attention coefficients. More
recently, the recurrent multistage fusion network (RMFN) [14] decomposes the fusion into multiple
stages, with each focusing on a subset of signals whose fusion outcomes build upon intermediate
representations of previous stages. However, compared with tensor based multimodal fusions, all
above approaches are limited to model only the linear interactions, unable to identify complicated
multimodal correlations.

5 Experiments

5.1 Experiment setups

Datasets. CMU-MOSI dataset [30] consists of 2, 199 opinion video clips from YouTube movie
reviews. Each clip is assigned with a specified sentiment in the range [−3, 3] from high negative
to high positive. There are 1, 284 segments in the train set, 229 segments in the validation set and
686 segments in the test set. IEMOCAP dataset [2] contains a total number of 302 videos. The
segments from videos are annotated with discrete emotions (neutral, fear, happy, angry, disappointed,
sad, frustrated, excited, surprised), as well as dominance, valance and arousal. The division of the
train, validation and test sets is 6, 373, 1, 775 and 1, 807, respectively. The splits of two datasets are
speaker-independent, ensuring the specified speaker can only belong to one of the three sets.

Features. For IEMOCAP, we adopt the preprocessed non-temporal inputs following the work of
LMF [17], in which the acoustic and visual features are obtained by averaging out the time dimension.
For CMU-MOSI: temporal features are utilized in the same way as MFN [28], where the extracted
features of three modalities are synchronized at word level in accordance with the text modality.

Comparisons. We include the following cutting-edge tensor and non-tensor based models into our
comparisons with HPFN: memory fusion network (MFN) [28], multi-attention recurrent network
(MARN) [29], tensor fusion network (TFN) [27] and low-rank multimodal fusion network (LMF)
[17], as well as some other baselines. We report mean absolute error (MAE) and Pearson correlation,
accuracy and F1 measure. For our HPFN, the evaluations are repeated 5 times for the optimal settings.

Model architectures. The architectures of HPFN adopted in our experiments are described in Table
2, including the two-layer densely connected variants HPFN-L2-S1 and HPFN-L2-S2 .
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Table 3: Results for sentiment analysis on CMU-MOSI and emotion recognition on IEMOCAP.

Models CMU-MOSI IEMOCAP
MAE Corr Acc-2 F1 Acc-7 F1-Happy F1-Sad F1-Angry F1-Neutral

SVM [6] 1.864 0.057 50.2 50.1 17.5 81.5 78.8 82.4 64.9
DF [20] 1.143 0.518 72.3 72.1 26.8 81.0 81.2 65.4 44.0

BC-LSTM [23] 1.079 0.581 73.9 73.9 28.7 81.7 81.7 84.2 64.1
MV-LSTM [24] 1.019 0.601 73.9 74.0 33.2 81.3 74.0 84.3 66.7

MARN [29] 0.968 0.625 77.1 77.0 34.7 83.6 81.2 84.2 65.9
MFN [28] 0.965 0.632 77.4 77.3 34.1 84.0 82.1 83.7 69.2
TFN [27] 0.970 0.633 73.9 73.4 32.1 83.6 82.8 84.2 65.4
LMF [17] 0.912 0.668 76.4 75.7 32.8 85.8 85.9 89.0 71.7

HPFN, P=[4] (audio) 1.404 0.223 57.3 57.4 19.0 79.4 81.8 84.9 63.6
HPFN, P=[4] (video) 1.409 0.221 57.0 57.1 20.6 83.2 73.2 72.3 58.5
HPFN, P=[4] (text) 0.975 0.634 76.4 76.4 35.1 85.3 83.0 85.6 70.8

HPFN, P=[4] 0.965 0.650 77.5 77.4 36.0 85.7 86.4 88.3 72.1
HPFN, P=[8] 0.968 0.648 77.2 77.2 36.9 85.7 86.5 87.9 71.8

HPFN-L2, P=[2, 2] 0.945 0.672 77.5 77.4 36.7 86.2 86.6 88.8 72.5

Implementation details. Following LMF [17], we use CP format as the ‘workhorse’ low-rank TN
in our experiments for weight compression in PTP. The candidate CP ranks are {1, 4, 8, 16}. Other
TNs variants will be investigated in future work. Since HPFN involves high-order moments when
calculating element-wise multiplication, the values of intermediate features may vary drastically and
hence lead to unstable predictions. To make the model numerically more stable, similar to [8], we
could optionally apply power normalization (element-wise signed squared root) or l2 normalization.

5.2 Experimental results

Performance comparison with state-of-the-art models. We first compare with the baselines and
the cutting-edge models on the tasks of sentiment analysis and emotion recognition. The bottom rows
in Table 3 record the performance of our model. We see that ours (on multimodal data) outperform
the competitors in most of the metrics. Particularly, on the sentiment task, our HPFN at 8th order
exceeds the previous best MARN on the ‘Acc-7’ by a margin of 2.2%. The overall best results are
achieved by HPFN-L2, which implies the superior expressive power and efficacy of the hierarchical
fusion structures. It is also interesting to notice that, even fed with unimodal input (text), our HPFN of
order 4 obtains much better ‘Acc-7’ (35.1) and ‘F1-Neutral’ (70.8) precisions than almost all other
methods, indicating the benefits brought by modelling high-order interactions.

1 2 3 4 5 6 7 8 9 10
Polynomial order

76.5

77

77.5

P
re

d
ic

ti
o

n

CMU-MOSI

F1
Acc-2

1 2 3 4 5 6 7 8 9 10
Polynomial order

71

71.5

72

72.5

73

P
re

d
ic

ti
o

n

IEMOCAP-Neutral

1 2 3 4 5 6 7 8 9 10
Polynomial order

87

87.5

88

88.5

P
re

d
ic

ti
o

n

IEMOCAP-Angry

1 2 3 4 5 6 7 8 9 10
Polynomial order

85

85.5

86

86.5

87

87.5

88

P
re

d
ic

ti
o

n

IEMOCAP-Happy

1 2 3 4 5 6 7 8 9 10
Polynomial order

85.5

86

86.5

87

87.5

P
re

d
ic

ti
o

n

IEMOCAP-Sad

Figure 5: Results of the effect of orders of polynomial interactions on IEMOCAP and CMU-MOSI.

Effect of the order of polynomial fusion. As high-order moments play a critical role in our fusion
strategy, we are interested to examine how distinct orders affect the predictive performance. For
simplicity, we directly apply HPFN with power normalization to the non-temporal multimodal features
(via averaging out the time dimension). The order P varies from 1 to 10. In Figure 5, HPFN is able
to achieve fairly good accuracies w.r.t. the tested orders. In particular, we can see HPFN maximizes
predictions at the order 4 for the case of CMU-MOSI. For IEMOCAP, we observe the relatively
higher performance peak at the orders of 3 and 4 in the ‘neutral’ and ‘angry’ emotions. As for the
rest emotions, the desirable orders range 5 from 8. These observations signify the necessity and
effectiveness of exploring high-order interactions in fusing multimodal features.

Effect of the depth and dense connectivity. In this part, we investigate the impact of various
architecture designs, i.e., depth and dense connectivity, on the predictive performance. To focus on
the change of the depth, we apply architectures to non-temporal multimodal features. For the depth
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Table 4: Results of HPFN on non-temporal multimodal features w.r.t. the depth and dense connectivity.

Models IEMOCAP CMU-MOSI
F1-Happy F1-Sad F1-Angry F1-Neutral MAE Corr Acc-2 F1 Acc-7

HPFN, P=[2] 85.7 86.2 87.8 71.9 0.973 0.635 77.1 77.0 35.9
HPFN-L2, P=[2, 2] 86.2 86.6 88.8 72.5 0.958 0.652 77.1 77.1 36.3

HPFN-L2-S1, P=[2, 2] 86.2 86.7 88.9 72.6 0.959 0.654 77.3 77.2 36.5
HPFN-L2-S2, P=[2, 2] 86.2 86.7 89.0 72.7 0.957 0.656 77.3 77.3 36.5
HPFN-L3, P=[2, 2, 1] 86.1 86.8 88.3 72.7 0.960 0.651 76.8 76.8 36.0

HPFN-L4, P=[2, 2, 2, 1] 85.8 86.4 88.1 72.5 0.992 0.634 76.6 76.5 34.6

Table 5: Results on the modelling of locally mixed temporal-modality features.

Models CMU-MOSI
MAE Corr Acc-2 F1 Acc-7

HPFN-L2, P=[2, 2] (non-temporal) 0.958 0.652 77.1 77.1 36.3

HPFN-L2, P=[2, 2] (temporal-overlapped, audio) 1.407 0.229 57.4 56.2 20.1
HPFN-L2, P=[2, 2] (temporal-overlapped, video) 1.358 0.183 61.2 61.3 20.3
HPFN-L2, P=[2, 2] (temporal-overlapped, text) 0.933 0.677 76.7 76.6 35.4
HPFN-L2, P=[2, 2] (temporal-overlapped) 0.944 0.678 77.5 77.4 36.7
HPFN-L2, P=[2, 2] (weight-shared) 0.955 0.667 77.0 76.9 35.7

variants, we validate on HPFN, HPFN-L2, HPFN-L3 and HPFN-L4. We also compare with two densely
connected variants: HPFN-L2-S1 and HPFN-L2-S2. In Table 4, we find two-layer and three-layer based
architectures attain the better overall results than their both one-layer and four-layer counterparts. In
particular, HPFN-L2-S2 reach the best precisions on both datasets. The HPFN is too simple to learn
the complex interactions while HPFN-L4 containing too many intermediate nodes is likely to overfit
for this specific architecture design. Allowing skip connections further enhances the performance
of HPFN-L2, which may be due to the incorporation of the guidance from the more discriminative
unimodal signals without adding more intermediate layers.

Effect of the modelling mixed temporal-modality features. Being able to deal with a local mixture
of temporal-modality features is one desirable property of our model. In this test, we examine how
the model behaves by considering both temporal and modality domains. We adapt HPFN-L2 to the
temporal context with ‘window’ size of [4× 2] for the input layer, and set the stride step as 2 along
the time dimension. The non-temporal HPFN-L2 only considers modality domain, by averaging out
the time dimension. Table 5 indicates the superiority of the temporal HPFN-L2 over the non-temporal
one. We further attempt to share the PTPs by scanning the ‘window’ along the temporal direction. It
turns out that sharing a single PTP unit for multiple windows does not bring the extra performance
gain for this setting. Figure 6 displays the predictions w.r.t. the ‘window’ size in the temporal domain.
For non-weight-shared case, moderate ‘windows’ (sizes of 5 and 10) reach the peak performance. In
contrast, weight-shared modal gets the relatively high performance under the largest window size
(20). This again implies sharing with a single PTP may not be able to capture the local, evolving
dynamics of interactions.
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Figure 6: Results on predictions w.r.t. the ‘window’ size along the time domain. The left two figures:
no-weight-shared model. The right two figures: weight-shared model.

6 Conclusion

In this paper, we proposed a high-order polynomial multilinear pooling block for multimodal feature
fusion. Based on this, we established a hierarchical polynomial fusion network (HPFN) which can

8



flexibly fuse the mixed features across both time and modality domains. The proposed model is
effective in capturing much complex temporal-modality correlations from local scale to global scale.
The various experiments on real multimodal fusion tasks validate the superior performance of the
proposed model. For future work, we like to further examine how the architecture designs affect
the prediction performance. For example, attaching multiple PTP blocks to a single ‘window’, and
sharing those multiple PTP ‘fusion filters’ along the time dimension to model more complex patterns
of correlations.
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