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Graphs Are Everywhere
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Mathematical aspects of 
computer-aided share trading. 
We consider problems of 
statistical analysis of share 
prices and propose 
probabilistic characteristics to 
describe the price series. We 
discuss three methods of 
mathematical modelling of 
price series with given 
probabilistic characteristics.

Why graphs?
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Motivation - Text Categorization
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Mathematical aspects of 
computer-aided share trading. 
We consider problems of 
statistical analysis of share 
prices and propose 
probabilistic characteristics to 
describe the price series. We 
discuss three methods of 
mathematical modelling of 
price series with given 
probabilistic characteristics.

Given a text, create a
graph where

- vertices correpond to
terms

- two terms are linked
to each other if they
co-occur within a
fixed-size sliding
window

Rousseau et al. “Text categorization as a graph classification problem.”. ACL’15
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Motivation - Text Categorization

Intuition: documents sharing same subgraphs belong to the same class

Given a set of documents and their graph representations:

Extract frequent subgraphs

- from the set of graphs

or

- from the set of the main cores of the graphs

Then, use frequent subgraphs as features for classification
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Motivation - Protein Function Prediction

For each protein, create a graph that contains information about its

structure

sequence

chemical properties

Use graph kernels to

- measure structural similarity between proteins

- predict the function of proteins

Borgwardt et al. “Protein function prediction via graph kernels”. Bioinformatics 21
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Motivation - Chemical Compound Classification

Represent each chemical compound as a graph

→

Use a frequent subgraph discovery algorithm to discover the substructures that
occur above a certain support constraint

Perform feature selection

Use the remaining substructures as features for classification

Deshpande et al. “Frequent substructure-based approaches for classifying chemical compounds”. TKDE 17(8)
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Motivation - Anomaly Detection for the Web Graph

Search engines create snapshots of the web → web graphs

These are necessary for

monitoring the evolution of the web

computing global properties such as PageRank

Identify anomalies in a single snapshot by comparing it with previous snapshots

Employed similarity mesaures:

vertex/edge overlap

vertex ranking

vertex/edge vector similarity

etc

Papadimitriou et al. “Web graph similarity for anomaly detection”. JISA 1(1)
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Motivation - Malware Detection

Given a computer program, create its control flow graph

→

Compare the control flow graph of the problem against the set of control flow
graphs of known malware

If it contains a subgraph isomporphic to these graphs → malicious code inside the
program

Gascon et al. “Structural detection of android malware using embedded call graphs”. In AISec’13
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Machine Learning on Graphs

Machine learning tasks on graphs:

Node classification: given a graph with labels on some nodes, provide a high
quality labeling for the rest of the nodes

Graph clustering: given a graph, group its vertices into clusters taking into
account its edge structure in such a way that there are many edges within
each cluster and relatively few between the clusters

Link Prediction: given a pair of vertices, predict if they should be linked with
an edge

Graph classification: given a set of graphs with known class labels for
some of them, decide to which class the rest of the graphs belong
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Graph Classification

Input data x ∈ X

Output y ∈ {−1, 1}

Training set S = {(x1, y1), . . . , (xn, yn)}

Goal: estimate a function f : X → R to predict y from f(x)
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Graph Comparison

Graph classification very related to graph comparison

Example

f ( , )

+

−nnk

= graph
classification

Although graph comparison seems a tractable problem, it is very complex

We are interested in algorithms capable of measuring the similarity between two
graphs in polynomial time
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Graph Kernels

Definition (Graph Kernel)

A graph kernel k : G × G → R is a kernel function over a set of graphs G

- It is equivalent to an inner product of the embeddings φ : X → H of a pair
of graphs into a Hilbert space: k(G1,G2) = 〈φ(G1), φ(G2)〉

- Makes the whole family of kernel methods (e.g. SVMs) applicable to graphs
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Graph Invariants

We saw that proving that two graphs are isomorphic is not a simple task

It is much simpler to show that two graphs are not isomorphic by finding a
property that only one of the two graphs has. Such a property is called a graph
invariant

Definition (Graph Invariant)

A graph invariant is a numerical property of graphs for which any two isomorphic
graphs must have the same value

Some examples of graph invariants include:

1 number of vertices

2 number of edges

3 number of spanning trees

4 degree sequence

5 spectrum
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Learning on Graphs

Most machine learning algorithms require the input to be represented as a
fixed-length feature vector

Graphs cannot be naturally represented as vectors

Typical vector-based classifiers (e. g., logistic regression) are not applicable

→

?
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Graph Kernels

Definition (Graph Kernel)

A graph kernel k : G × G → R is a kernel function over a set of graphs G

- It is equivalent to an inner product of the embeddings φ : X → H of a pair of
graphs into a Hilbert space

- Makes the whole family of kernel methods applicable to graphs.
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Graph Kernels - Expressiveness vs. Efficiency

Definition (Complete Graph Kernel)

A graph kernel k(Gi ,Gj) =φ(Gi), φ(Gj) > is complete iff the transformation φ is
injective.

- Computing any complete graph kernel is of same complexity as graph
isomorphism [Gartner et.al., 2003]

- Complete graph kernels prohibitive in practical applications.

- More efficient kernels do not guarrantee that non-isomorphic graphs will not
be mapped into the same point in the feature space.

- Trade-off between efficiency and effectiveness is a vital issue designing a
graph kernel
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Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in
polynomial time:

walks

shortest path lengths

cyclic patterns

rooted subtrees

graphlets

...

1

2 4

5

73

6

8
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Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in
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Walk: 4→ 3→ 1→ 2→ 3→ 4→ 5

Vishwanathan et al. “Graph Kernels”. JMLR 11, 2010
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Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in
polynomial time:

walks

shortest path lengths

cyclic patterns

rooted subtrees

graphlets

...

1

2 4
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8

SP length between vertices 2 and 8 : 4

Borgwardt and Kriegel. “Shortest-path kernels on graphs”. In ICDM’05
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Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in
polynomial time:

walks

shortest path lengths

cyclic patterns

rooted subtrees

graphlets

...

1

2 4

5
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8

Cycle: 4→ 7→ 6→ 5→ 4

Horváth et al. “Cyclic pattern kernels for predictive graph mining”. In KDD’04
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Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in
polynomial time:

walks

shortest path lengths

cyclic patterns

rooted subtrees

graphlets

...

1

2 4

5
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8

Subtree rooted at vertex 3

Shervashidze et al. “Weisfeiler-Lehman Graph Kernels”. JMLR 12, 2011
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Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in
polynomial time:

walks

shortest path lengths

cyclic patterns

rooted subtrees

graphlets

...

1

2 4

5

73

6

8

Shervashidze et al. “Efficient graphlet kernels for large graph comparison.”. In AISTATS’09
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Weisfeiler-Lehman Framework

Uses the Weisfeiler-Lehman isomorphism test to improve the performance of existing
kernels

subtree kernel

shortest path kernel

...

Weisfeiler-Lehman kernels achieve state-of-the-art results

Based on the Weisfeiler-Lehman algorithm: may answer if two graphs are not isomorphic

Shervashidze et al. “Weisfeiler-Lehman Graph Kernels”. JMLR 12(Sep)
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Example

Run the Weisfeiler-Lehman algorithm for the following pair of graphs

G1 G2
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Iteration 1

First step: Augment the labels of the vertices by the sorted set of labels of neighbouring
vertices

G1 G2
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Iteration 1

Second step: Compress the augmented labels into new, short labels:

o 1, 11 → 2

o 1, 111 → 3

o 1, 1111 → 4

G1 G2

21 / 75 M. Vazirgiannis Graph Similarity and Classification @ DaSciM



Iteration 1

Are the label sets of G1 and G2 identical?

G1 G2

Yes!!!

Continue to the next iteration
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Iteration 2

First step: Augment the labels of the vertices by the sorted set of labels of neighbouring
vertices

G1 G2
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Iteration 2

Second step: Compress the augmented labels into new, short labels:

o 2, 24 → 5

o 2, 33 → 6

o 2, 34 → 7

o 3, 234 → 9

o 4, 2233 → 10

G1 G2
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Iteration 2

Are the label sets of G1 and G2 identical?

G1 G2
No!!!

Graphs are not isomorphic
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Weisfeiler-Lehman Framework

Let G 1,G 2, . . . ,G h be the graphs emerging from graph G at the iteration 1, 2, . . . , h of
the Weisfeiler-Lehman algorithm

Then, the Weisfeiler-Lehman kernel is defined as:

kh
WL(G1,G2) = k(G1,G2) + k(G 1

1 ,G
1
2 ) + k(G 2

1 ,G
2
2 ) + . . .+ k(G h

1 ,G
h
2 )

where k(·, ·) is a base kernel (e.g. subtree kernel, shortest path kernel, . . .)

At each iteration of the Weisfeiler-Lehman algorithm:

runs a graph kernel for labeled graphs

the new kernel values are added to the ones of the previous iteration
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Weisfeiler-Lehman Subtree Kernel

Counts matching pairs of labels in two graphs after each iteration

G1 G2
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Initialization

Feature vector for a graph G :

φ(G ) = {#nodes with label 1,#nodes with label 2, . . . ,#nodes with label l}

G1 G2

φ(G1) = {1, 2, 1, 1, 1}> φ(G2) = {1, 1, 2, 1, 1}>

k(G1,G2) = φ(G1)> φ(G2) = 7
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Iteration 1

First step: Augment the labels of the vertices by the sorted set of labels of neighbouring
vertices

G1 G2
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Iteration 1

Second step: Compress the augmented labels into new, short labels:

o 1, 24 → 6

o 2, 14 → 7

o 2, 1334 → 8

o 2, 3 → 9

o 3, 24 → 10

o 3, 245 → 11

o 3, 25 → 12

o 4, 1235 → 13

o 5, 34 → 14

G1 G2
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Graph Kernels Features

Summary of selected graph kernels regarding computation by explicit feature mapping
(Exp.φ), support for node-labeled and node-attributed graphs, and type
*R − convolution: decompose graphs into their substructures and add up the pairwise
similarities between these substructures
Graph Kernels: a Survey, G. Nikolentzos, M. Vazirgiannis, under submission
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Graph Similarity with Graph Kernels - DaSciM contributions

New Kernels

Matching Node Embeddings for Graph Similarity [AAAI 2017]

Message Passing GKs [arXiv:1808.02510]

Shortest-path graph kernels for document similarity – [ENMLP
2017] - applications to NLP

Kernel based Similarity / Embedding Frameworks

Degeneracy framework for graph similarity [IJCAI 2018 - best
paper award]

Enhancing graph kernels via successive embeddings [CIKM 2018]

Structural Node Embeddings using Graph Kernels [submitted to
TKDE]

Software Library

GraKel: A python library for graph kernels – scikit compatible
https://github.com/ysig/GraKeL
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Matching Node Embeddings for Graph Similarity [AAAI 2017]

Goal: Measure the similarity between pairs of graphs and perform graph classification
Motivation:

1 Graph similarity is a key issue in many applications (e.g. chemoinformatics,
bioinformatics)

2 Most algorithms focus on local substructures of graphs (e.g. graphlets, cycles,
trees)

3 Several interesting properties of graphs may not be captured in local substructures

Contributions:

Generate features describing global properties of graphs

Elaborate two algorithms that utilize these features:

1 Earth Mover’s Distance [Rubner et al., IJCV ’00]

2 Pyramid Match Kernel [Grauman and Darrell, JMLR ’07]
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Preliminary Concepts

Node embeddings: represent nodes as points in a vector
space

Generate embeddings using eigenvectors of adjacency
matrix

Such embeddings capture global properties of graphs

Y-
A
xi
s

Y-
A
xi
s

Figure: Node
embedding

Graphs represented as bags-of-vectors:

A graph is represented as a set of vectors: {u1, . . . , un}
Each vector ui ∈ Rd represents the embedding of the i th

node in the d-dimensional space

This is a natural representation
↪→ There is no canonical ordering for the nodes of a
graph

0.7 -0.2 0.04    

Figure: Bag-of-vectors34 / 75 M. Vazirgiannis Graph Similarity and Classification @ DaSciM



Earth Mover’s Distance

Earth Mover’s Distance (EMD): minimum
“travel cost” from G1 = (V1,E1) to G2 = (V2,E2):

min
T≥0

n1∑
i=1

n2∑
j=1

Tij ||vi − uj ||2

subject to
n1∑
i=1

Tij =
1

n2
∀j ∈ {1, . . . , n2}

n2∑
j=1

Tij =
1

n1
∀i ∈ {1, . . . , n1}

Graph 1

Graph 2

Figure: Minimum cumulative
distance between G1,G2

where vi , uj are the embeddings of nodes vi ∈ V1, uj ∈ V2 and T is a flow matrix

Each vertex vi ∈ V1 transformed into any vertex uj ∈ V2 in total or in parts
Outgoing flow from each graph = 1 and equally divided among all vertices
However, emerging similarity matrices not necessarily positive semidefinite
Complexity: O(n3logn)

However, emerging similarity matrices not necessarily positive semidefinite
Complexity: O(n3logn)
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Pyramid Match Graph Kernel - need to fit..all

The Pyramid Match Graph Kernel (PM)

partitions feature space into cells

at level l → 2l cells along each dimension

Number of nodes (i.e. embeddings) that match at l :

I (H l
G1
,H l

G2
) =

2ld∑
i=1

min
(
H l

G1
(i),H l

G2
(i)
)

H l
G (i) : number of nodes of G in cell i

PM: weightd sum of the matches occurring at each level (levels 0
to L):

k∆(G1,G2) = I (HL
G1
,HL

G2
) +

L−1∑
l=0

1

2L−l

(
I (H l

G1
,H l

G2
)

− I (H l+1
G1

,H l+1
G2

)
)

Matches within lower levels weighted less

Only new matches are taken into account

Complexity: O(dnL)

Level 0

0

2,5

5

Level 1

0

1

2

0
1
2
3

0

1

2

0
1
2
3

Level 2

0

1

0

1

0

1

0
1
2

0
1
2

0

1

0

1

2

0

1

2

0

2,5

5

Figure: Histogram
creation
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Graph Classification Datasets - misssing table

Dataset MUTAG ENZYMES NCI1 NCI109 PTC-MR D&D

Max # vertices 28 126 111 111 109 5, 748
Min # vertices 10 2 3 4 2 30
Average # vertices 17.93 32.63 29.87 29.68 25.56 284.32

Max # edges 33 149 119 119 108 14, 267
Min # edges 10 1 2 3 1 63
Average # edges 19.79 62.14 32.30 32.13 25.96 715.66

# labels 7 3 37 38 19 82

# graphs 188 600 4, 110 4, 127 344 1, 178

# classes 2 6 2 2 2 2

Table: Data Sets

Baselines We compare our methods against the following baselines:

random walk kernel (RW)

graphlet kernel (GR)

shortest path kernel (SP)

Weisfeiler-Lehman subtree and shortest path kernels (WL ST, WL SP)

Lovász ϑ kernel (Lo-ϑ)

optimal assignment between node embeddings (OA)
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Experimental evaluation - missing table

Figure: Classification accuracy (± standard deviation) and CPU runtime for kernel/similarity matrix computation of the random walk kernel (RW),
shortest path kernel (SP), lets of size 3 kernel (GR), Lovász ϑ kernel (Lo-ϑ), optimal assignment similarity (OA), Weisfeiler-Lehman subtree kernel (WL
ST), Weisfeiler-Lehman shortest path kernel (WL SP), Weisfeiler-Lehman optimal assignment similarity (WL OA), earth mover’s distance similarity
(EMD), pyramid match kernel (PM) and Weisfeiler-Lehman pyramid match kernel (WL PM) on the 6 graph classification datasets. > 1 day indicates
that the computation did not finish after 1 day.
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Degeneracy Framework for Graph Comparison
[IJCAI 2018 - best paper award]

A framework that allows graph similarity algorithms to compare structure in graphs at
multiple different scales

k-core

The k-core of a graph is defined as a maximal subgraph in which every vertex is
connected to at least k other vertices within that subgraph

A k-core decomposition of a graph consists of finding the set of all k-cores

3-core

2-core

1-core

0-core

The set of all k-cores forms a nested se-
quence of subgraphs

The degeneracy δ∗(G ) is defined as the maximum k for which graph G contains a
non-empty k-core subgraph39 / 75 M. Vazirgiannis Graph Similarity and Classification @ DaSciM



Degeneracy Framework for Graph Comparison

Uses the nested sequence of subgraphs generated by k-core decomposition to capture
structure at multiple different scales

Let G = (V ,E ) and G ′ = (V ′,E ′) be two graphs

Let δ∗min be the minimum of the degeneracies of G ,G ′

Let C0,C1, . . . ,Cδ∗min
and C ′0,C

′
1, . . . ,C

′
δ∗min

be the 0-core, 1-core,. . ., δ∗min-core

subgraphs of G and G ′ respectively

Let k be any kernel for graphs

The core variant of the base kernel k is defined as:

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1) + . . .+ k(Cδ∗min

,C ′δ∗min
)
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Degeneracy Framework for Graph Comparison - Example

G G ′

kc(G ,G ′) = k(C0,C
′
0)
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Degeneracy Framework for Graph Comparison - Example

G G ′

k
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Degeneracy Framework for Graph Comparison - Example

C0 C ′0

kc(G ,G ′) = k(C0,C
′
0)
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Degeneracy Framework for Graph Comparison - Example

C1 C ′1

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1)
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Degeneracy Framework for Graph Comparison - Example

C2 C ′2

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1) + k(C2,C

′
2)
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Degeneracy Framework for Graph Comparison - Example

C3 C ′3

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1) + k(C2,C

′
2) + k(C3,C

′
3)
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Computational Complexity

Computational complexity depends on:

the properties of the base kernel

the degeneracy of the graphs under comparison

Given a pair of graphs and an algorithm A for comparing two graphs, computing the
core variant requires δ∗minOA time, where OA be the time complexity of algorithm A

The degeneracy of a graph is upper bounded by the largest eigenvalue of its adjacency
matrix λ1

In most real-world graphs, λ1 � n, then δ∗min � n, hence time complexity not prohibitive
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Dimensionality Reduction View

k-core decomposition can be seen as a method for performing dimensionality reduction
on graphs

each core can be considered as an approximation of the graph

features of low importance are removed

Problem: For very large graphs, the running time of algorithms with high complexity
(e.g. shortest path kernel) is prohibitive

Solution: Use high-order cores

→

43 / 75 M. Vazirgiannis Graph Similarity and Classification @ DaSciM



Datasets

Task: graph classification → standard datasets from chemoinformatics, bioinformatics
and social networks

Dataset MUTAG ENZYMES NCI1 PTC-MR D&D
IMDB IMDB REDDIT REDDIT REDDIT COLLAB

BINARY MULTI BINARY MULTI-5K MULTI-12K

Max # vertices 28 126 111 111 109 620 5748 136 89 3782 3648 3782 492
Min # vertices 10 2 3 4 2 4 30 12 7 6 22 2 32
Average # vertices 17.93 32.63 29.87 29.68 25.56 39.05 284.32 19.77 13.00 429.61 508.50 391.40 74.49
Max # edges 33 149 119 119 108 1049 14267 1249 1467 4071 4783 5171 40119
Min # edges 10 1 2 3 1 5 63 26 12 4 21 1 60
Average # edges 19.79 62.14 32.30 32.13 25.96 72.81 715.66 96.53 65.93 497.75 594.87 456.89 2457.34
# graphs 188 600 4110 4127 344 1113 1178 1000 1500 2000 4999 11929 5000
# classes 2 6 2 2 2 2 2 2 3 2 5 11 3

Classification using:

SVM → precompute kernel matrix

Hyperparameters of SVM (i. e. C ) and kernels optimized on training set using
cross-validation

We compare an algorithm’s output with the expected outcome:

Accuracy : proportion of good predictions
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Base Kernels

We employed the following kernels:

1 Graphlet kernel (GR) [?]: The graphlet kernel counts identical pairs of graphlets
(i.e. subgraphs with k nodes where k ∈ 3, 4, 5) in two graphs

2 Shortest path kernel (SP) [?]: The shortest path kernel counts pairs of shortest
paths in two graphs having the same source and sink labels and identical length

3 Weisfeiler-Lehman subtree kernel (WL) [?]: The Weisfeiler-Lehman subtree
kernel for a number of iterations counts pairs of matching subtree patterns in two
graphs, while at each iteration updates the labels of the vertices of the two graphs

4 Pyramid match graph kernel (PM) [?]: The pyramid match graph kernel first
embedds the vertices of the graphs in a vector space. It then partitions the feature
space into regions of increasingly larger size and takes a weighted sum of the
matches that occur at each level

45 / 75 M. Vazirgiannis Graph Similarity and Classification @ DaSciM



Graph Classification

Method

Dataset
MUTAG ENZYMES NCI1 PTC-MR D&D

GR 69.97 (± 2.22) 33.08 (± 0.93) 65.47 (± 0.14) 56.63 (± 1.61) 77.77 (± 0.47)

Core GR 82.34 (± 1.29) 33.66 (± 0.65) 66.85 (± 0.20) 57.68 (± 1.26) 78.05 (± 0.56)

SP 84.03 (± 1.49) 40.75 (± 0.81) 72.85 (± 0.24) 60.14 (± 1.80) 77.14 (± 0.77)

Core SP 88.29 (± 1.55) 41.20 (± 1.21) 73.46 (± 0.32) 59.06 (± 0.93) 77.30 (± 0.80)

WL 83.63 (± 1.57) 51.56 (± 2.75) 84.42 (± 0.25) 61.93 (± 2.35) 79.19 (± 0.39)

Core WL 87.47 (± 1.08) 47.82 (± 4.62) 85.01 (± 0.19) 59.43 (± 1.20) 79.24 (± 0.34)

PM 80.66 (± 0.90) 42.17 (± 2.02) 72.27 (± 0.59) 56.41 (± 1.45) 77.34 (± 0.97)

Core PM 87.19 (± 1.47) 42.42 (± 1.06) 74.90 (± 0.45) 61.13 (± 1.44) 77.72 (± 0.71)

Method

Dataset IMDB IMDB REDDIT REDDIT REDDIT

BINARY MULTI BINARY MULTI-5K MULTI-12K

GR 59.85 (± 0.41) 35.28 (± 0.14) 76.82 (± 0.15) 35.32 (± 0.09) 22.68 (± 0.18)

Core GR 69.91 (± 0.19) 47.34 (± 0.84) 80.67 (± 0.16) 46.77 (± 0.09) 32.41 (± 0.08)

SP 60.65 (± 0.34) 40.10 (± 0.71) 83.10 (± 0.22) 49.48 (± 0.14) 35.79 (± 0.09)

Core SP 72.62 (± 0.59) 49.43 (± 0.42) 90.84 (± 0.14) 54.35 (± 0.11) 43.30 (± 0.04)

WL 72.44 (± 0.77) 51.19 (± 0.43) 74.99 (± 0.57) 49.69 (± 0.27) 33.44 (± 0.08)

Core WL 74.02 (± 0.42) 51.35 (± 0.48) 78.02 (± 0.23) 50.14 (± 0.21) 35.23 (± 0.17)

PM 68.53 (± 0.61) 45.75 (± 0.66) 82.70 (± 0.68) 42.91 (± 0.42) 38.16 (± 0.19)

Core PM 71.04 (± 0.64) 48.30 (± 1.01) 87.39 (± 0.55) 50.63 (± 0.50) 42.89 (± 0.14)
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Degree distribution of D&D (left) and REDDIT-BINARY (right) datasets. Both axis of
the right figure are logarithmic.
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Runtime Performance

Comparison of running times of base kernels vs their core variants (relative increase in
running time)

MUTAG ENZYMES NCI1 PTC-MR D&D
IMDB IMDB REDDIT REDDIT REDDIT

BINARY MULTI BINARY MULTI-5K MULTI-12K

SP 1.69x 2.52x 1.62x 1.65x 3.00x 12.42x 17.34x 1.04x 1.05x 1.18x

GR 1.85x 2.94x 1.75x 1.50x 3.44x 7.95x 8.20x 2.24x 2.37x 2.80x

WL 1.76x 2.77x 1.68x 1.62x 3.34x 7.13x 6.84x 1.52x 1.58x 1.54x

PM 1.87x 2.79x 1.68x 1.50x 3.67x 6.92x 6.33x 1.90x 1.98x 1.96x

δ∗ 2 4 3 2 7 29 37 6 8 8

In most cases, extra computational cost is negligible

Extra computational cost is very related to the maximum of the degeneracies of
the graphs of the dataset δ∗
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Conclusion

Graph kernels have shown good performance on several tasks

We defined a general framework for improving the performance of graph
comparison algorithms

The proposed framework allows existing algorithms to compare structure in graphs
at multiple different scales

The conducted experiments highlight the superiority in terms of accuracy of the
core variants over their base kernels at the expense of only a slight increase in
computational time
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Enhancing Graph Kernels via Successive Embeddings [CIKM 2018 ]

Goal: Measure similarity between pairs of graphs for graph classification

Motivation:

Graph similarity - key issue in many applications (e.g. chemoinformatics,
bioinformatics)

Graph kernels compute implicitly the inner product between the representations of
input graphs in H

- Equivalent to computing the linear kernel on feature space H
- Linear kernel limits expressiveness of derived representations

Contributions:

1 Increase expressive power of graph kernels by applying kernel functions for vector
data to derived representations

2 Embed graphs into a high-dimensional feature space by combining graph kernels
with gaussian and polynomial kernels

3 Show how to efficiently compute this sequence in the kernel space
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Successive Embeddings

Idea: Obtain complex kernels by stacking simpler kernels on top of one another
Methodology:

Define a kernel k1 on set of graphs G
↪→ There exists a Hilbert space H1 and a mapping φ1:
k1(G ,G ′) = 〈φ1(G ), φ1(G ′)〉H1 for all G ,G ′ ∈ G

Define a kernel k2 on feature space H1

↪→ There exists a Hilbert space H2 and a mapping φ2 such that
k2(φ1(G ), φ1(G ′)) = 〈φ2(φ1(G )), φ2(φ1(G ′))〉H2 for all φ1(G ), φ1(G ′) ∈ H1

Define a new kernel k3 on feature space H2

↪→ There exists a Hilbert space H3 and a mapping φ3 such that
k3(φ2(φ1(G )), φ2(φ1(G ′))) = 〈φ3(φ2(φ1(G ))), φ3(φ2(φ1(G ′)))〉H3 for all
φ2(φ1(G )), φ2(φ1(G ′)) ∈ H2

.......
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Successive Embeddings - Example

Figure below illustrates a sequence of two embeddings

Separation of the data points associated with the two classes progressively
increased

H1 H2

φ1

φ1

φ1

φ1

φ2

φ2

φ2

φ2

φ
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Proposed Instances of Kernels

Proposed Instances: Sequences of two embeddings
Embedding 1: Embed graphs in a Hilbert space H1 using a graph kernel

Shortest path kernel (SP) Borgwardt and Kriegel, ICDM ’05

Weisfeiler-Lehman subtree kernel (WL) Shervashidze et al., JMLR ’09

Pyramid match graph kernel (PM) Nikolentzos et al., AAAI ’17

Embedding 2: Embed emerging representations x , y into a Hilbert space H2 using
kernels for vector data:

1 Polynomial kernel : kP(x , y) =
(
〈x , y〉

)d
, d ∈ N

2 Gaussian kernel : kG (x , y) = exp
(
− ||x−y ||

2

2σ2

)
, σ > 0

Problem: Usually x and y not computed explicitly. How to apply Embedding 2?
↪→ Use an implicit computation scheme
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Proposed Instances of Kernels

The two kernels for vector data can be computed as:

1 Polynomial kernel : kP(x , y) =
(
〈x , y〉

)d
=
(
k(x , y)

)d
, d ∈ N

2 Gaussian kernel : kG (x , y) = exp
(
− k(x,x)−2k(x,y)+k(y ,y)

2σ2

)
, σ > 0

where k is the employed graph kernel (i.e. the first kernel in the sequence)

Complexity:

Increase depends only on size of dataset and not on size of graphs

Both proposed kernels for vector data implemented using fast matrix operations

Added complexity is low
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Experimental Evaluation

Increase in running time due to the proposed approach negligible compared to running
time of graph kernels
Example: largest dataset → REDDIT-MULTI-12K

Computing each one of the 3 graph kernels takes several minutes/hours

Given the kernel matrix generated by a graph kernel, computing second embedding
takes less than 10 seconds

Accuracy

The proposed kernels:

outperformed the baseline kernels on 34/36 experiments

led to statistically significant improvement in accuracy on 29/36 experiments

Conclusion

On most datasets, proposed kernels outperform baseline kernels

Slight increase in running time

Results confirm that successive embeddings increase expressiveness

Larger improvements can be obtained if carefully designed kernels are employed
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Experimental results

Method
Dataset

MUTAG ENZYMES AIDS NCI1 PTC5-MR D&D
S

P
linear 86.46 (±1.47) 42.00 (±0.96) 99.34 (±0.07) 73.66 (±0.36) 59.21 (±1.87) 77.96 (±0.58)
polynomial 84.18 (±1.89) 53.15 (±1.03) 99.53 (±0.03) 77.89 (±0.25) 58.20 (±2.47) 80.95 (±0.53)
gaussian 87.94 (±1.02) 50.52 (±1.34) 99.64 (±0.01) 77.80 (±0.36) 58.52 (±1.95) 80.29 (±0.42)

W
L

linear 80.30 (±1.43) 50.65 (±1.47) 98.05 (±0.10) 84.68 (±0.15) 61.62 (±1.16) 79.25 (±0.31)
polynomial 82.92 (±0.90) 53.73 (±1.37) 98.48 (±0.05) 85.63 (±0.16) 65.26 (±1.39) 79.58 (±0.29)
gaussian 85.55 (±0.96) 54.80 (±0.82) 99.21 (±0.07) 86.17 (±0.17) 59.81 (±1.34) 77.91 (±0.33)

P
M

linear 85.46 (±1.18) 40.65 (±0.82) 99.68 (±0.02) 69.71 (±0.73) 58.17 (±1.86) 77.05 (±0.96)
polynomial 87.12 (±1.51) 48.43 (±1.08) 99.63 (±0.03) 77.35 (±0.32) 61.19 (±1.43) 78.74 (±0.59)
gaussian 87.71 (±1.39) 48.32 (±0.88) 99.69 (±0.03) 76.84 (±0.26) 61.47 (±1.97) 77.49 (±0.58)

Method
Dataset IMDB IMDB REDDIT REDDIT REDDIT

COLLAB
BINARY MULTI BINARY MULTI-5K MULTI-12K

S
P

linear 60.19 (±0.29) 39.82 (±0.57) 82.54 (±0.22) 49.24 (±0.15) 33.46 (±0.08) 64.58 (±0.60)
polynomial 63.99 (±0.83) 39.88 (±0.30) 84.50 (±0.24) 49.94 (±0.22) 34.98 (±0.07) 60.03 (±0.04)
gaussian 70.08 (±1.11) 46.37 (±0.49) 82.43 (±0.15) 46.05 (±0.21) 30.32 (±0.10) 68.37 (±0.20)

W
L

linear 73.51 (±0.43) 51.16 (±0.31) 69.36 (±0.49) 50.27 (±0.26) 36.20 (±0.08) 77.39 (±0.13)
polynomial 73.49 (±0.33) 49.08 (±0.32) 73.58 (±0.39) 50.06 (±0.23) 37.62 (±0.10) 75.82 (±0.11)
gaussian 74.11 (±0.60) 50.57 (±0.45) 77.62 (±0.11) 52.63 (±0.21) 40.94 (±0.11) 77.96 (±0.18)

P
M

linear 65.25 (±0.97) 42.09 (±0.89) 77.88 (±0.11) 37.12 (±0.62) 30.70 (±0.40) 71.92 (±0.29)
polynomial 66.35 (±0.68) 43.08 (±0.42) 79.30 (±0.26) 36.63 (±0.39) 31.20 (±0.31) 75.46 (±0.24)
gaussian 66.64 (±0.69) 42.74 (±0.30) 78.01 (±0.12) 40.92 (±0.51) 34.19 (±0.19) 73.59 (±0.23)

Table: Classification accuracy (± standard deviation) of the kernels defined using a
sequence of two embeddings (polynomial and gaussian) and a single embedding (linear)
on the 12 graph classification datasets. Kernels that perform successive embeddings
with statistically significant improvements over the corresponding graph kernels are
shown in bold as measured by a t-test with a p value of ≤ 0.05.
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Graph Similarity with Graph Kernels - DaSciM contributions

New Kernels

Matching Node Embeddings for Graph Similarity [AAAI 2017]

Message Passing GKs [arXiv:1808.02510]

Shortest-path graph kernels for document similarity – [ENMLP
2017] - applications to NLP

Kernel based Similarity / Embedding Frameworks

Degeneracy framework for graph similarity [IJCAI 2018 - best
paper award]

Enhancing graph kernels via successive embeddings [CIKM 2018]

Structural Node Embeddings using Graph Kernels [submitted to
TKDE]

Software Library

GraKel: A python library for graph kernels – scikit compatible
https://github.com/ysig/GraKeL
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SP Graph Kernels for Document Similarity [EMNLP2017]

Traditionally, documents are represented as bag of words (BOW) vectors

I entries correspond to terms

non-zero for terms appearing in the document

Example

corpus vocabulary: the, quick, brown, cat, fox, jumped, went, over, lazy, lion, dog

BOW representation of sentence: “the quick brown fox jumped over the lazy dog“

However, BOW representation disregards word order!!!
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Graph of Words [CIKM2013 - best paper mention award]

Each document is represented as a graph G = (V ,E ) consisting of a set V of
vertices and a set E of edges between them

vertices: unique terms (i.e. pre-preprocessed words)

edges: co-occurrences within a fixed-size sliding window no edge weight no edge
direction

Graph representation more flexible than n-grams. It takes into account word
inversion

subset matching
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Graph of Words - Example

Data Science is the extraction of knowledge from large volumes of data that are
structured or unstructured which is a continuation of the field of data mining
and predictive analytics

data
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Graph of Words - Example

Data Science is the extraction of knowledge from large volumes of data that
are structured or unstructured which is a continuation of the field of data mining
and predictive analytics
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Graph of Words as a Graph similarity problem

Data mining is the computing
process of discovering patterns in
large data sets

data

mining

is

the

computing

process

of discovering

patterns

in

largesets

Data mining is the process of
discovering actionable information
from large sets of data

data

mining

is

the

process

of

discovering

actionable

information

from

largesets

Hence, document similarity problem → graph comparison problem
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Custom Shortest Path Kernel

Based on the Shortest Path Kernel proposed by Borgwardt and Kriegel

Compares the length of shortest paths having the same endpoint labels in two
graphs-of-words

SP-transformation

Transforms the original graphs into shortest-paths graphs

Create a shortest-path graph C

Same set of vertices

Edges correspond to shortest paths of length at most d in original graph
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Example

SP-transformation (d = 2)

→

G C
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Custom Shortest Path Kernel

Given the SP-transformed graphs C1 = (V1,E1) and C2 = (V2,E2) of G1 and G2, the
shortest path kernel is defined as:

k(G1,G2) =

∑
v1∈V1,v2∈V2

knode(v1, v2) +
∑

e1∈E1,e2∈E2
k (1)
walk(e1, e2)

norm

where knode is a kernel for comparing two vertices, k (1)
walk a kernel on edge walks of length

1 and norm a normalization factor. Specifically:

knode(v1, v2) =

{
1 if `(v1) = `(v2),
0 otherwise

k (1)
walk(e1, e2) = knode(u1, u2)× kedge(e1, e2)× knode(v1, v2)

kedge(e1, e2) =

{
`(e1)× `(e2) if e1 ∈ E1 ∧ e2 ∈ E2,

0 otherwise
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Example

d1: “barclays bank cut its base lending rate”

d2: “base rate of barclays bank dropped”

cut

bank

barclays rate

base

lending

its
barclays

bank

dropped

of

rate

base

G1 G2
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Example

SP-transformation (d = 2)
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Example

∑
v1∈V1,v2∈V2

knode(v1, v2) = 4
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Example

∑
e1∈E1,e2∈E2

k (1)
walk(e1, e2) = 1 + 1

2
= 3
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Example

norm = 13.07

k(G1,G2) =
4+ 3

2
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Run Time Complexity

Standard kernel computation:

All shortest paths from root: O(bd ) time (average branching factor b with
breadth-first search)

All shortest paths for n nodes: O(nbd ) time

Compare all pairs of shortest paths from C1 and C2: O(n4)

However, since each node has a unique label, we have to consider n2 pairs of edges

Hence, total complexity: O(n2 + nbd )

Special case for d = 1:

k(G1,G2) =

∑
M1 ◦M2

‖M1‖F × ‖M2‖F
Mi = Ai + Di

Ai : adjacency matrix of the SP-transformed graph
Di : diagonal matrix with diagonal entries set to 1 if corresponding term exists in
corresponding document
O(n + m) time in the worst case scenario
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Text Categorization

Method

Dataset WebKB News Subjectivity Amazon Polarity

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

n = 1 90.26 89.23 81.10 77.64 89.92 89.92 91.88 91.88 76.27 76.26

Dot n = 2 90.47 89.50 80.91 77.32 91.01 91.01 92.00 92.02 77.46 77.45

product n = 3 90.26 89.17 80.72 77.10 90.90 90.90 91.81 91.85 77.41 77.40

n = 4 89.40 88.13 80.31 76.51 90.39 90.39 91.31 91.33 77.19 77.18

Cosine

n = 1 92.48 91.88 81.17 77.66 90.03 90.02 94.00 94.00 76.70 76.69

n = 2 93.05 92.75 81.49 77.97 90.94 90.94 94.13 94.13 77.56 77.56

n = 3 92.98 92.59 80.97 77.38 90.99 90.99 94.19 94.18 77.65 77.65

n = 4 92.48 92.08 80.76 77.09 90.76 90.75 94.13 94.13 77.53 77.53

Tanimoto

n = 1 90.62 89.83 81.55 78.15 90.94 90.93 92.25 92.26 77.49 77.48

n = 2 90.40 89.45 80.75 77.00 90.61 90.60 91.81 91.85 77.35 77.35

n = 3 92.41 91.80 79.80 75.75 90.21 90.20 93.44 93.47 76.48 76.48

n = 4 91.76 90.84 78.99 74.83 89.53 89.52 93.00 93.00 75.86 75.86

DCNN 89.18 87.99 79.91 76.15 90.26 90.26 91.81 91.81 73.26 73.26

CNN
static,rand > 1 day 77.57 73.37 87.16 87.15 88.81 88.82 71.50 71.50

non-static,rand > 1 day 81.13 77.49 89.61 89.60 93.56 93.56 76.54 76.53

SPGK

d = 1 93.27 92.78 81.04 77.49 91.48 91.48 94.00 94.01 77.76 77.75

d = 2 93.70 93.36 80.89 77.29 91.46 91.46 94.13 94.13 77.89 77.88

d = 3 92.91 92.33 80.78 77.03 91.37 91.37 94.44 94.44 77.61 77.60

d = 4 92.91 92.23 80.97 77.30 91.18 91.18 94.63 94.63 77.80 77.80
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Story Link Detection
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Graph Similarity with Graph Kernels - DaSciM contributions

New Kernels

Matching Node Embeddings for Graph Similarity [AAAI 2017]

Message Passing GKs [arXiv:1808.02510]

Shortest-path graph kernels for document similarity – [ENMLP
2017] - applications to NLP

Kernel based Similarity / Embedding Frameworks

Degeneracy framework for graph similarity [IJCAI 2018 - best
paper award]

Enhancing graph kernels via successive embeddings [CIKM 2018]

Structural Node Embeddings using Graph Kernels [submitted to
TKDE]

Software Library

GraKel: A python library for graph kernels – scikit compatible
https://github.com/ysig/GraKeL
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GraKel: A python library for graph kernels

Python library for graph similarity computations

Contains practically all known graph kernels

Compatible with scikit learn

Open source - can be extended

Project repository https://ysig.github.io/GraKeL/dev/
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Graph Kernels - Experimental Comparison

Graph Kernels: a Survey, G. Nikolentzos, M. Vazirgiannis, under submission

- Average classification
accuracy (+/-standard
deviation) on the 7
classification datasets
containing node-labeled
graphs.
- “Avg. Rank” column
illustrates the averagerank
of each kernel. The lower
the average rank, the
better the overall
performance of thekernel
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Graph Kernels - Experimental Comparison

Graph Kernels: a Survey, G. Nikolentzos, M. Vazirgiannis, under submission

- Average CPU running
time for kernel matrix
computation on the 7
classificationdatasets
containing node-labeled
graphs.
- “Avg. Rank” column
illustrates averagerank of
each kernel. The lower
the average rank, the
lower the overall running
time of thekernel
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Graph Similarity - with Deep Learning - Current work

Tasks: Embedding Nodes, Graphs, Sets with Deep Learning for node/graph
classification, set comparison etc.

Kernel graph convolutional neural networks [ICANN 2018]

Learning Structural Node Representations on Directed Graphs [Complex Networks
2018]

Graph Matching for learning Set representations [sbmtd ICML 2019]

Learning Deep Set representations [submitted ICML2019]

Classifying graphs as images with convolutional neural networks [arXiv:1708.02218]

Challenge: How do Kernels compare to GNNs ?
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