
NASA: Neural Articulated Shape Approximation

Timothy Jeruzalski* Boyang Deng∗ Mohammad Norouzi
JP Lewis Geoffrey Hinton Andrea Tagliasacchi

Google Research

Abstract

Efficient representation of articulated objects such as hu-
man bodies is an important problem in computer vision and
graphics. To efficiently simulate deformation, existing ap-
proaches represent objects as meshes and deform them us-
ing skinning techniques. This paper introduces neural ar-
ticulated shape approximation (NASA), a framework that
enables efficient representation of articulated deformable
objects using neural indicator functions parameterized by
pose. In contrast to classic approaches, NASA avoids the
need to convert between different representations. For occu-
pancy testing, NASA circumvents the complexity of meshes
and mitigates the issue of water-tightness. In comparison
with regular grids and octrees, our approach provides high
resolution without high memory use.

1. Introduction

There has been a surge of recent interest in computer vi-
sion in developing better and more flexible 3D representa-
tions of objects and scenes [6, 11, 28, 29]. These recent ad-
vances are partly motivated by the development of “inverse
graphics” pipelines for scene understanding [34]. With the
dominance of deep neural networks in computer vision, we
have seen inverse graphics flourish, especially when dif-
ferentiable models of geometry are available. However,
among possible applications, neural models of articulated
objects have received little attention. Models of articulated
objects are particularly important because they encompass
3D representations of humans. Virtual humans are a central
subject not only in computer games and animated movies,
but also in other applications such as augmented and virtual
reality.
Existing geometric learning algorithms include self-
supervised methods for face [32], body [18], and low level
geometry [8], all relying on optimization of fully differen-
tiable encoder-decoder architectures. The use of neural de-
coders is also a possibility [14], but the quality of results

*equal contributors

ground truth unstructured NASA
(interpolation)

ground truth unstructured NASA
(extrapolation)

Figure 1: The occupancy of a ground truth mesh (red) can
be represented by a network in an unstructured way (pur-
ple [4, 28, 29]) or by our NASA approximation (blue) that
models the underlying quasi-rigid structure. Notice the
stark difference in the performance when interpolating vs.
extrapolating.

can receive a significant boost when more structure about
the phenomena being modeled is directly expressed within
the architecture; see [33] for an example. Geometric mod-
els often must fullfill several purposes such as represent-
ing the shape for rendering or representing the volume for
the purpose of intersection queries. Although neural mod-
els have been used in the context of articulated deforma-
tion [2], they have addressed only deformations while rele-
gating both intersection queries and the overall articulation
to classic methods, thus sacrificing full differentiability.
Our method represents articulated objects with a differen-
tiable neural model. We train a neural decoder Dω that
exploits the structure of the underlying deformation driv-
ing the articulated object. As with some previous geomet-
ric learning efforts [4, 8, 28, 29] we represent geometry by
indicator functions – also referred to as occupancy func-
tions – that evaluate to 1 inside the object and 0 otherwise.
If desired, an explicit surface can be extracted via marching
cubes [24]. Unlike previous approaches, which focused on
collections of static objects described by (unknown) shape
parameters, we look at learning indicator functions as we
vary pose parameters, which will be discovered by training
on animation sequences. Overall, our contributions are:
1. We propose a way to approximate articulated deformable

models via neural networks – the core idea is to model

1

ar
X

iv
:1

91
2.

03
20

7v
1

 [
cs

.C
V

]
 6

 D
ec

 2
01

9

Figure 2: Data and notation – (left) The ground truth occupancy O(x|θ̄) in the rest frame and the pose parameters
θ̄ ≡ {B̄b}Bb=1 representing the transformations of B bones. (right) T frames of an animation associated with pose pa-
rameters {θt}Tt=1 with corresponding occupancy {O(x|θt)}Tt=1; each θt encodes the transformations of B bones.

shapes by networks that encode a [quasi] piecewise rigid
decomposition;

2. We show how explicitly expressing structure of defor-
mation in the network allows for fewer model parame-
ters while providing both similar performance and better
generalization;

3. The indicator function representation supports efficient
intersection and collision queries, avoiding the need to
convert to a separate representation for this purpose;

4. The results on learning 3D body motion outperform
previous geometric learning algorithms [4, 29, 29] and
are competitive with a hand-crafted statistical body
model [23].

2. Related works

Neural shape approximation provides a single framework
that addresses problems that have previously been ap-
proached separately. The related literature thus includes a
number of works across several different fields.
Skinning algorithms. Efficient articulated deformation is
traditionally accomplished with a skinning algorithm that
deforms vertices of a mesh surface as the joints of an un-
derlying abstract skeleton change. The classic linear blend
skinning (LBS) algorithm expresses the deformed vertex as
a weighted sum of that vertex rigidly transformed by several
adjacent bones; see [16] for details. LBS is widely used in
computer games, and is a core ingredient of popular vision
models [23]. Mesh sequences of general (not necessarily
articulated) deforming objects have also been represented
with skinning for the purposes of compression and manipu-
lation, using a collection of non-hierarchical “bones” (trans-
formations) discovered with clustering [17, 20]. LBS has
well-known disadvantages: the deformation has a simple
algorithmic form that cannot produce pose-dependent de-
tail, it results in characteristic volume-loss effects such as
the “collapsing elbow” and “candy wrapper” artifacts [21,
Figs. 2,3] , and for best results the weights must be manu-
ally painted by artists. It is possible to add pose-dependent
detail with a deep net regression [2], but this process oper-
ates as a correction to classical LBS deformation.

Object intersection queries. Registration, template match-
ing, 3D tracking, collision detection, and other tasks require
efficient inside/outside tests. A disadvantage of polygonal
meshes is that they do not efficiently support these queries,
as meshes often contain thousands of individual triangles
that must be tested for each query. This has led to the devel-
opment of a variety of spatial data structures to accelerate
point-object queries [22, 31], including voxel grids, octrees,
and others. In the case of deforming objects, the spatial data
structure must be repeatedly rebuilt as the object deforms.
A further problem is that typical meshes may be constructed
without regard to being “watertight” and thus do not have a
clearly defined interior [15].
Part-based representations. For object intersection
queries on articulated objects, it can be more efficient to
approximate the overall shape in terms of a moving collec-
tion of rigid parts, such as spheres or ellipsoids, that sup-
port an efficient intersection test [30]. Unfortunately this
has the drawbacks of introducing a second approximate rep-
resentation that does not exactly match the originally de-
sired deformation. A further core challenge, and subject of
continuing research, is the automatic creation of this part-
based representation [1, 7, 12]. Unsupervised part discov-
ery has been recently tacked by a number of deep learning
approaches [5, 8–10, 25]. In general these methods address
analysis and correspondence across shape collections, and
do not target accurate representations of articulated deform-
ing objects. Pose-dependent deformation effects are also
not considered in any of these approaches.
Neural implicit object representation. Finally, several
recent works represent objects with neural implicit func-
tions [4, 28, 29]. These works focus on the neural repre-
sentation of static shapes in an aligned canonical frame and
do not target the modeling of transformations. Our work
can be considered an extension of these methods, where the
core difference is its ability to efficiently represent complex
and detailed articulated objects (e.g. human bodies).

Figure 3: Qualitative / 2D – Approximation quality across model architectures on the gingerbread dataset. We report un-
structured (U), piecewise-rigid (R), and piecewise-deformable (U) models and indicate network width via @; see Section 4.4.

3. Neural Articulated Shapes Approximation

Figure 2 illustrates the problem of articulated shape approx-
imation in 2D. We are provided with an articulated object in
the rest pose (the typical T-pose) and the corresponding oc-
cupancy functionO(x|θ̄). In addition, we are provided with
a collection of T ground-truth occupancies {O(x|θt)}Tt=1

associated with T poses. In our formulation, each pose pa-
rameter θ represents a set of of posed transformations as-
sociated with B bones, i.e., θ ≡ {Bb}Bb=1. To help dis-
ambiguate the part whole relationship, we also assume that
for each mesh vertex v∈V, the skinning weights w(v) are
available, where w(v)∈[0, 1]B with ‖w(v)‖1=1.
Given the collection of pose parameters θ, we desire to
query the corresponding indicator function O(x|θ) at a
point x. This task is more complicated than might seem, as
in the general setting this operation requires the computa-
tion of generalized winding numbers [15]. However, when
given a database of poses Θ={θt}Tt=1 and corresponding
ground truth indicator {O(x|θt)}Tt=1, we can formulate our
problem as the minimization of the following objective:

Loccupancy(ω)=
∑
θ∈Θ

Ex∼p(x)

[
(O(x|θ)−Oω(x|θ))

2
]

(1)

where p(x) is a density representing the sampling distribu-
tion of points in R3 (Section 4.4) and Oω is a neural net-
work with parameters ω that represents our neural shape
approximator. We adopt a sampling distribution p(x) that
randomly samples in the volume surrounding a posed char-
acter, along with additional samples in the vicinity of the
deformed surface.
One can viewO(x|θ) as a binary classifier that aims to sep-
arate the interior of the shape from its exterior. Accordingly,
one can use a binary cross-entropy loss for optimization, but
our preliminary experiments suggest that both L2 and cross-
entropy losses perform similarly for shape approximation.
Thus, we adopt (1) in our experiments.

4. Neural Architectures for NASA

We investigate several neural architectures for the problem
of articulated shape approximation. The unstructured archi-

tecture in Section 4.1 does not explicitly encode the knowl-
edge of articulated deformation. However, typical articu-
lated deformation models [23] express deformed mesh ver-
tices V reusing the information stored in rest vertices V̄.
Hence, we can assume that computing the function O(x|θ)
in the deformed pose can be done by reasoning about the
information stored at rest pose Ō(x|θ̄). Taking inspiration
from this observation, we investigate two different archi-
tecture variants, one that models geometry via a piecewise-
rigid assumption (Section 4.2), and one that relaxes this as-
sumption and employs a quasi-rigid decomposition, where
the shape of each element can deform according to the
pose (Section 4.3).

4.1. Unstructured model – “U”

Recently, a series of papers [4, 28, 29] tackled the problem
of modeling occupancy across shape datasets as Oω(x|β),
where β is a latent code learned to encode the shape.
These techniques employ deep and fully connected net-
works, which one can adapt to our setting by replacing the
shape β with pose parameters θ, and using a neural net-
work that takes as input [x,θ]. ReLU activations are used
for inner layers of the neural net and a sigmoid activation is
used for the final output so that the occupancy prediction is
bounded between 0 and 1.
To provide pose information to the network, one can sim-
ply concatenate the set of affine bone transformations to the
query point to obtain [x, {Bb}] as the input. This results in
an input tensor of size 3+16×B. Instead, we propose to
represent the composition of a query point x with a pose θ
via {B−1

b x}Bb=1, resulting in a smaller input of size 3×B.
Our unstructured baseline takes the form:

Oω(x|θ) = MLPω({B−1
b x}) (2)

We term this the unstructured model as it does not explicitly
model the underlying deformation process.

4.2. Piecewise rigid model – “R”

The simplest structured deformation model for articulated
objects assumes our object can be represented via a piece-

Figure 4: Piecewise rigid model (R) – is applied to (top) a piecewise rigid motion and (bottom) a linear blend skinned
motion dataset. The first column shows the ground truth indicator values for the pose, whereas the second column is the
predicted indicator. The indicator is constructed by taking the max(·) over the collection of per bone indicators Ob(·) in
columns 3-13.

wise rigid composition of b elements; e.g. [27, 30]:

O(x|θ) = max
b
{Ob(x|θ)} (3)

We observe that if these elements are related to corre-
sponding rest-pose elements through the rigid transforma-
tions {Bb}, then it is possible to query the corresponding
rest-pose indicator as:

Oω(x|θ) = max
b
{Ōb

ω(B−1
b x)} (4)

where and similar (2) we can represent each of components
via a learnable indicator Ōb

ω(.)=MLPb
ω(.). This formu-

lation assumes that the local shape of each learned bone
component stays constant across the range of poses when
viewed from the corresponding coordinate frame, which is
only a crude approximation of the deformation in realistic
characters and other deformable shapes.

4.3. Piecewise deformable model – “D”

We can generalize our models by combining the model
of (2) to the one in (4), hence allowing each of the elements
to be adjusted in shape conditional on the pose of the model:

Oω(x|θ) ≈ max
b
{Ōb

ω(B−1
b x|θ)} (5)

Similarly to (4) we use a collection of learnable indicator
functions in rest pose {Ōb

ω}, and to encode pose condition-
als we take inspiration from (2). More specifically, we ex-
press our model as:

Oω(x|θ) ≈ max
b
{Ōb

ω(B−1
b x, {B−1

b t0})} (6)

Here t0 is the translation vector of the root bone in homoge-
neous coordinates, and the pose of the model is represented
as {B−1

b t0}. Similarly to (4), we model this function via
dense layers Ōb

ω(.)=MLPb
ω(.). While the input dimension-

ality of this network is 3+B×3, which is similar to the di-
mensionality in (2), we will see that the necessary network
capacity |ω| to achieve comparable approximation perfor-
mance, especially in extrapolation settings, is much lower.

4.4. Technical details

We now detail the auxiliary losses we employ to facilitate
learning, and the architecture of the network backbones.

Auxiliary loss – skinning weights. As most deformable
models are equipped with skinning weights, we exploit this
information to facilitate learning of the part-based mod-
els (i.e. “R” and “D”). In particular, we label each mesh ver-
tex v with the index of the corresponding highest skinning
weight value b∗(v)= arg maxb w(v)[b], and use the loss:

Lweights(ω) = 1
V

1
B

∑
θ∈Θ

∑
v

∑
b

(
Ōb

ω(v|θ)− Ib(v)
)2

(7)

where Ib(v)=½ when b=b∗, and Ib(v)=0 otherwise – by
convention, the ½ level set of the indicator is the surface our
occupancy represents. In the supplementary material, we
conduct an ablation study on the effectiveness of Lweights
showing that this loss is necessary for effective shape de-
composition. Without such a loss, we could end up in the
situation where a single (deformable) part could end up be-
ing used to describe the entire deformable model, and the
trivial solution (zero) would be returned for all other parts.

Auxiliary loss – parsimony. As parts create a whole via
a simple union, nothing prevents unnecessary overlaps be-
tween parts. To remove this null-space from our training,
we seek a minimal description by penalizing the volume of
each part:

Lparsimony(ω) = 1
B

∑
b

Ex̄∈R3

[
‖Ōb

ω(x̄)‖2
]

(8)

This loss improves generalization, as quantified in the sup-
plementary material.

Training. Given λ1=5e−1, and λ2=5e−3 as found through
hyper-parameter tuning, the overall loss for our model is:

L(ω) = Loccupancy+λ1Lweights+λ2Lparsimony

All models are trained with the Adam optimizer, with batch
size 12 and learning rate 1e−4. For better gradient prop-
agation, we use softmax whenever a max was employed

Figure 5: Piecewise deformable model (D) – is capable to deal with rigid (top), as well as non-rigid (bottom) deformations.

Figure 6: Qualitative / 2D+T – The animation is split into seen (training) and unseen (testing) poses.

in our expressions. For each optimization step, we use
1024 points sampled uniformly within the bounding box
and 1024 points sampled near the ground truth surface.
For all the 2D experiments, we train the model for 120K
iterations which takes approximately 5 hours on a single
NVIDIA Tesla V100. For 3D experiments, the models are
trained for 240K iterations for approximately 10 hours.

Network architectures. To keep our experiments compa-
rable across baselines, we use the same network architecture
for all the models while varying the width of the layers. The
network backbone is similar to DeepSDF [29], but simpli-
fied to 4 layers. Each layer has a residual connection, and
uses the Leaky ReLU activation function. All layers have
the same size, which we vary from 88 to 760 according to
the experiment (i.e., a backbone with 88 hidden units in the
first layer will be marked as “@88”). For the piecewise (4)
and deformable (6) models note the neurons are distributed
across B different channels; e.g. with R@960 we mean that
each of the B=24 branches will be processed by dense lay-
ers having 960/24=40 neurons. Similarly to the use of
grouped filters/convolutions [13, 19], note that such a struc-
ture allows for significant performance boosts compared to
unstructured models (2), as the different branches can be
executed in parallel on separate compute devices.

5. Evaluation

We employ two datasets to evaluate our method in 2D
and 3D. The datasets consist of a rest configuration sur-
face, sampled indicator functions values, bone transforma-
tion frames per pose, and skinning weights. The ground
truth indicator functions were robustly computed via gener-
alized winding numbers [15], and are evaluated in a regular
grid surrounding the deformed surface with additional sam-
ples on the surface. The performance of the models can be
evaluated by comparing the Intersection over Union (IOU)
of the predicted indicator values against the ground truth
samples on a regular grid.

5.1. Analysis on 2D data

Our gingerbread dataset consists of 100 different poses sam-
pled from a temporally coherent animation. The anima-
tion drives the geometry in two different ways: 1© in the
rigid dataset, we have a collection of surfaces, and each sur-
face region is rigidly attached to a single bone which does
not change shape as the pose changes; 2© in the blended
dataset, we employ the skinning weights to deform the sur-
faces via LBS. Our 2D results are summarized in Figure 3:
given enough neural capacity, both the unstructured and

Training Testing U@192 R@192 D@192 U@960 R@960 D@960

Jumping Jacks Jumping Jacks .92 .94 .95 .96 .96 .97
Punching Punching .93 .95 .94 .97 .96 .97
Running on Spot Running on Spot .92 .94 .94 .97 .95 .97
One Leg Jump One Leg Jump .92 .94 .94 .96 .96 .97

mean (interp.) .92 .95 .94 .97 .96 .97
interpolation

Training Testing U@192 R@192 D@192 U@960 R@960 D@960

!Jumping Jacks Jumping Jacks .21 .93 .53 .34 .93 .71
!Punching Punching .66 .92 .93 .72 .95 .94
!Running on Spot Running on Spot .71 .94 .94 .76 .95 .96
!One Leg Jump One Leg Jump .68 .94 .94 .69 .95 .96

mean (extrap.) .56 .94 .83 .63 .94 .89
extrapolation

Table 1: Quantitative / 3D – Mean IoU across baselines on
3D sequences from the AMASS dataset [26]. The top part
of the table tests interpolation, while the second part extrap-
olation (leave one out) performance of our neural shape ap-
proximation. These results can be better appreciated quali-
tatively in supplementary material video.

interpolation extrapolation

Figure 7: We evaluate the average performance (IoU) of the
various models as we sweep the complexity of the network
in the range {192 · · · 960}. We report the results in both
interpolation (left) and extrapolation (right) regimes.

deformable model are able to overfit to the training data.
Note that since the animation produced via skinning ex-
hibits highly non-rigid (i.e. blended) deformations, the rigid
model struggles.

Unstructured model – “U”. Looking at overfitting results
can be misleading, and, in this sense, the fundamental lim-
itations of the unstructured model are revealed in Figure 6.
The performance of the unstructured model gives reason-
able reconstruction across poses seen within the training set,
but struggles to generalize to new poses – the more different
the pose is from those in the training set, the worse the IoU
score.

Piecewise rigid model – “R”. Training the representation
in (4) via SGD is effective when the data can truly be mod-
eled by a piecewise rigid decomposition; see Figure 4 (top).
When the same network is trained on a dataset which vi-
olates this assumption, the learning performance degrades
significantly; see Figure 4 (bottom). The rigid animation is
recreated exactly, but the blended animation has incorrect
blurred boundaries, and is missing portions of the bone in-
dicators. Note that adding more capacity to the network
brought no further improvements in performance, as the
dataset violates the core assumption of the rigid model.

Piecewise deformable model – “D”. Skinned deformation
models give smooth transitions between bones, making a
single continuous surface across the range of deformations.
Conditioning the network with pose as in (6) allows the net-
work to learn the relative deformation of the parts across
poses. When the surface cannot be simply modelled with
a piecewise rigid decomposition, the piecewise deformable
model performs significantly better. This improvement can
clearly be seen by comparing the results of Figure 5 to those
of Figure 4. While in interpolation scenarios (re-playing the
frames of a known animation) the deformable model per-

forms excellently, it struggles when dealing with extrapo-
lation (Figure 6). The extrapolation performance on a re-
alistic 3D dataset (Section 5.2) is better, perhaps because
physically correct deformations are not as exaggerated as in
our gingerbread example, hence more predictable.

5.2. Analysis on 3D data

The AMASS dataset [26] is a large-scale collection of 3D
human motion driven by SMPL [23]. In this paper, we
use the "DFaust_67" subset of AMASS which has 10 hu-
manoid characters performing different motions. We select
the "50002" subject (see Figure 1) and consider four dif-
ferent sequences. The deformation model of the dataset
involves LBS with pose-space correctives [23]. As each
sequence contains 200 to 400 frames, the overall training
dataset contains ≈1000 3D objects, which is roughly the
same as the biggest classes (planes, chairs) of the ShapeNet
dataset [3]. Note that the model is trained on a single char-
acter and is not expected to generalize across characters, but
rather across animation sequences. Further, note that we did
not balance the sampling density to focus the network train-
ing on small features such as fingers and face details, as
these are not animated in AMASS.

Analysis. As visualized in Table 1 and Figure 7, the de-
formable model is able to achieve high IOU scores with
fewer model parameters than would be required with a fully
unstructured network. On the AMASS dataset, the rigid
model performed well on interpolation tasks, and did not
suffer failures analogous to those found in 2D; see Fig-
ure 6 – we believe this is due to the fact that our ginger-
bread character presents non-rigid deformations far beyond
those the level that are present in the AMASS dataset. Note
how both rigid and deformable models are significantly bet-
ter than the unstructured baseline in generalizing to unseen

poses; see qualitative results in Figure 1, as well as in the
supplementary material. Note how the plot in Figure 7 re-
veals how the rigid model is able to extrapolate much better
than the unstructured model. Nonetheless, the deformable
model results are still not optimal as the model was unable
to properly extrapolate the pose-dependent correctives for
unseen poses.

6. Conclusions

We introduced the problem of geometric modeling of de-
formable (solid) models from a neural perspective. We
showed how unstructured baselines require a significantly
larger neural budget compared to structured baselines, but
more significantly, they simply fail to generalize. Amongst
structured baselines the deformable models performs best
at interpolation, while the rigid model leads the extrapola-
tion benchmarks. It would be interesting to understand how
to combine these two models and inherit both behaviors.
Note that the deformable model (“D”) is still usable in ap-
plications as far as the query poses are sufficiently similar
to those seen at training time.

Application. Our approach can be applied to a number of
problems. These include representation of complex articu-
lated bodies such as human characters, object intersection
queries for computer vision registration and tracking, colli-
sion detection for computer games and other applications,
and compression of mesh sequences. In all these applica-
tions neural shape approximation allows different trade-offs
of efficiency vs. detail to be handled using the same general
approach.

Future directions. One natural direction for future work
would be to reduce the amount of supervision needed. To
name a few goals in increasing order of complexity: 1© Can
we learn the posing transformations {B̃b} and perhaps also
the rest transformations {B̄b} automatically? 2© Can the
representation be generalized to capture collections of de-
formable bodies? (i.e. the β parameters of SMPL [23]).
3© Can the signed distance function, rather than occupancy
be learnt as well? 4© Is NASA a representation suitable to
differentiable rendering? 5© Can a 3D representation of ar-
ticulated motion be learnt from 2D supervision alone?

7. Acknowledgements

We would like to particularly thank Paul Lalonde for
the initial project design, and Gerard Pons-Moll for
his help accessing the AMASS data. We would
also like to thank David I.W. Levin, Alec Jacob-
son, Hugues Hoppe, Nicholas Vining, Yaron Lip-
man, and Angjoo Kanazawa for the insightful discus-
sions.

References
[1] Dragomir Anguelov, Daphne Koller, Hoi-Cheung Pang,

Praveen Srinivasan, and Sebastian Thrun. Recovering artic-
ulated object models from 3d range data. In Uncertainty in
Artificial Intelligence, 2004. 2

[2] Stephen W. Bailey, Dave Otte, Paul Dilorenzo, and James F.
O’Brien. Fast and deep deformation approximations. SIG-
GRAPH, 2018. 1, 2

[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, et al. Shapenet: An
information-rich 3d model repository. arXiv:1512.03012,
2015. 6

[4] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. CVPR, 2019. 1, 2, 3

[5] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha
Chaudhuri, and Hao Zhang. Bae-net: Branched autoencoder
for shape co-segmentation. In ICCV, 2019. 2

[6] Angela Dai and Matthias Nießner. Scan2mesh: From un-
structured range scans to 3d meshes. In CVPR, 2019. 1

[7] Fernando de Goes, Siome Goldenstein, and Luiz Velho. A
hierarchical segmentation of articulated bodies. In SGP,
2008. 2

[8] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien
Bouaziz, Geoffrey Hinton, and Andrea Tagliasac-
chi. Cvxnets: Learnable convex decomposition.
arXiv:1909.05736, 2019. 1, 2

[9] Boyang Deng, Simon Kornblith, and Geoffrey Hinton. Cer-
berus: A multi-headed derenderer. arXiv:1905.11940, 2019.

[10] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-
Kun Lai, and Hao Zhang. Sdm-net: deep generative network
for structured deformable mesh. ACM TOG, 2019. 2

[11] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. Atlasnet: A papier-
m\ˆ ach\’e approach to learning 3d surface generation.
arXiv preprint arXiv:1802.05384, 2018. 1

[12] Qixing Huang, Vladlen Koltun, and Leonidas Guibas. Joint
shape segmentation with linear programming. ACM TOG,
2011. 2

[13] Yani Ioannou, Duncan Robertson, Roberto Cipolla, and An-
tonio Criminisi. Deep Roots: Improving CNN efficiency
with hierarchical filter groups. In CVPR, 2017. 5

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In CVPR, 2017. 1

[15] Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung.
Robust inside-outside segmentation using generalized wind-
ing numbers. ACM TOG, 2013. 2, 3, 5

[16] Alec Jacobson, Zhigang Deng, Ladislav Kavan, and J.P.
Lewis. Skinning: Real-time shape deformation. In ACM
SIGGRAPH Courses, 2014. 2

[17] Doug L. James and Christopher D. Twigg. Skinning mesh
animations. SIGGRAPH, 2005. 2

[18] Angjoo Kanazawa, Michael J Black, David W Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In CVPR, 2018. 1

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Ima-
genet classification with deep convolutional neural networks.
In NIPS, 2012. 5

[20] Binh Huy Le and Zhigang Deng. Smooth skinning decom-
position with rigid bones. ACM TOG, 2012. 2

[21] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space
deformation: A unified approach to shape interpolation and
skeleton-driven deformation. In Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’00, pages 165–172, New York,
NY, USA, 2000. ACM Press/Addison-Wesley Publishing
Co. 2

[22] Ming C. Lin, USA Dinesh Manocha, and Jon Cohen. Colli-
sion detection: Algorithms and applications, 1996. 2

[23] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: A skinned multi-
person linear model. SIGGRAPH Asia, 2015. 2, 3, 6, 7

[24] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In SIG-
GRAPH, 1987. 1

[25] Dominik Lorenz, Leonard Bereska, Timo Milbich, and
BjÃűrn Ommer. Unsupervised part-based disentangling of
object shape and appearance. arXiv:1903.06946, 2019. 2

[26] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Ger-
ard Pons-Moll, and Michael J Black. Amass: Archive of
motion capture as surface shapes. ICCV, 2019. 6

[27] Stan Melax, Leonid Keselman, and Sterling Orsten. Dynam-
ics based 3d skeletal hand tracking. In Graphics Interface,
2013. 4

[28] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy net-
works: Learning 3d reconstruction in function space.
arXiv:1812.03828, 2018. 1, 2, 3

[29] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. CVPR, 2019. 1, 2, 3, 5

[30] Edoardo Remelli, Anastasia Tkach, Andrea Tagliasacchi,
and Mark Pauly. Low-dimensionality calibration through lo-
cal anisotropic scaling for robust hand model personaliza-
tion. In ICCV, 2017. 2, 4

[31] Hanan Samet. Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS. Addison-
Wesley Longman Publishing Co., Inc., 1990. ISBN 0-201-
50300-X. 2

[32] Ayush Tewari, Michael Zollhofer, Hyeongwoo Kim, Pablo
Garrido, Florian Bernard, Patrick Perez, and Christian
Theobalt. MoFA: Model-based deep convolutional face au-
toencoder for unsupervised monocular reconstruction. In
CVPR, 2017. 1

[33] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
ferred neural rendering: Image synthesis using neural tex-
tures. arXiv:1904.12356, 2019. 1

[34] Julien Valentin, Cem Keskin, Pavel Pidlypenskyi, Ameesh
Makadia, Avneesh Sud, and Sofien Bouaziz. Tensorflow
graphics: Computer graphics meets deep learning. https:
//github.com/tensorflow/graphics, 2019. 1

https://github.com/tensorflow/graphics
https://github.com/tensorflow/graphics

